$$
\text { Протعเvó } \mu \varepsilon v \alpha \text { Өء́ } \mu \alpha \tau \alpha \text { үı } \alpha \text { то } \mu \alpha ́ \vartheta \vartheta \eta \mu \alpha
$$

Theoretical Computer Science II: Structural Complexity

Interactive Proof Systems: Introduction, Interactive Proofs (IP), Arthur-Merlin Games (AM): Private vs. Public coins, GNI $\in \mathbf{A M}[2]$ (Set Lower Bound protocol), IP $=\mathbf{P S P A C E}$ (Arithmetization Technique), Multi-Prover Protocols $($ MIP $=\mathbf{N E X P})$, Zero-Knowledge and pseudorandom functions.

Probabilistically Checkable Proofs: Definitions, Gap \& Constraint Satisfaction problems, low-degree testing, self-corrections of polynomials, PCP characterization of NP and NEXP, Overview of the proof, PCPs and Hardness of Approximations: Inapproximability results.

Natural Proofs: Definitions, main results and their significance.
Counting Complexity: Basic Classes: $\# \mathbf{P}, \oplus \mathbf{P}$, Valiant's \& Toda's Theorems, Approximate Counting and Uniform Generation of Solutions.

Measure and Dimension in Complexity Classes Gales \& Martingales, Resource-Bounded Measure, Measure Theory analogies, Kolmogorov's zero-one laws, Resource-bounded (Hausdorff) dimension, dimension characterization of complexity classes.

Decision Trees: Decision Tree Complexity, Certificate Complexity, Randomized Decision Trees, Topological \& Algebraic Criteria.

Pseudorandomness: Pseudorandom Constructions: Pseudorandom Generators, Dispersers, Extractors, Expander Graphs, List-Decodable Codes etc.
-Expander Graphs: Combinatorial and algebraic definitions, random walks on expanders, explicit constructions, spectrum, error correcting codes and metric embedding using expanders.
-Applications to Complexity: Error reduction, Undirected Connectivity is in L, Dinur's proof of the PCP Theorem.
-Randomness Extractors: Definitions, min-entropy, explicit constructions and existence proofs.

Hardness Amplification: Average and worst case hardness of Boolean functions, Yao's XOR Lemma, Hardcore Predicates and One-Way Functions, Local \& List Decoding, Hardness Amplification, Applications to uniform derandomization of Complexity Classes.

Derandomization of Complexity Classes: Basic introduction to the field, the nature of randomness in computation and mathematics, conjectures about its inherence.
Non-Uniform Derandomization: Hardness-Randomness tradeoffs (high-end \& low-end), Pseudorandom Generators, The Nisan-Wigderson construction, Non-uniform results for BPP assuming circuit lower bounds \& hard functions, other constructions of PRGs (using min-entropy and one-way functions), Derandomization vs. Lower Bounds.
Uniform Derandomization: Derandomization of BPP under uniform assumptions, Derandomization of RP and AM using easiness assumptions, gap-theorem interpretations, uniform hardness-randomness tradeoffs for $\mathbf{A M}$ and $\mathbf{A M} \cap \operatorname{coAM}$ (high-end \& low-end).

Various Techniques and Notions in Structural Complexity Theory: Downward and Random selfreducibility, Bi-immunity, Mitoticity, sparse and tally sets, Density, Padding, Polynomial-time isomorphism, Infinity Often and Almost Everywhere Hierarchies, Hierarchies for semantic classes, Promise Problems, Reductions (Karp, Cook, 1-1, truth-table, query-monotonic) and relations among them, Arithmetization \& Algebrization techniques, Tournament Divide \& Conquer technique, Isolation technique, Witness Reduction technique, Random Restriction technique etc.

Algebraic Computation: Algebraic Circuits, the classes $\operatorname{Alg}_{/ \text {poly }}, \operatorname{AlgNP}_{/ \text {poly }}$, Topological methods for lower bounds in algebraic computation trees, Complexity and Real Computation: Introduction to the Blum-Shub-Smale model.

Proof Complexity: Propositional Calculus and Resolution, lower bounds, interpolation theorems, various proof systems, foundational issues.

Communication Complexity: Two-party and multi-party communication complexity, lower bounds, communication models, main topics and results.

Parameterized Complexity: Introduction to the field, parameterized problems, fixed-parameter tractability, approximability, fixed-parameter tractable reductions, the classes paraNP, XP and $\mathbf{W}[\mathbf{P}], W$-Hierarchy and A-Hierarchy.

Average-Case Complexity: Definitions, Probability ensembles, distributional problems, the classes dist \mathbf{P}, dist $\mathbf{N P}$ and $s a m p \mathbf{N P}$, average-case reductions, main results.

