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Preliminaries

Qubits

Motivation

Ordinary computer chips: bits are physically represented
by low and high voltages on wires
There are many other ways a bit could be stored! For
example, the state of a hydrogen atom
The single electron in this atom can either be in the ground
state (the lowest energy configuration) or it can be in an
excited state (a high energy configuration)
Ground state: |0y. Excited state: |1y
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Preliminaries

Qubits

Quantum Bit

Superposition principle: If a quantum state can be in one of
two states, then it can be in any linear superposition of
these states.

Qubit : |αy = α0|0y+ α1|1y
α0, α1: complex numbers such that |α0|2 + |α1|2 = 1

We can see a qubit as a unit length column vector in the
2-d complex space
For example 1?

5
|0y+ 2i?

5
|1y is a valid quantum state!
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Preliminaries

Qubits

Measurement

Measurement of the qubit |ψy = a0|0y+ a1|1y gives 0 w.p.
}a0}2 and 1 w.p. }a1}2
Suppose two qubits: |ϕy = a0|0y+ a1|1y and
|ψy = b0|0y+ b1|1y
The whole state can be written as
|ϕψy = a0b0|00y+ a0b1|01y+ a1b0|10y+ a1b1|11y
Measurement of two qubits gives 00 w.p. }a0b0}2, 01 w.p.
}a0b1}2 10 w.p. }a1b0}2 and 11 w.p. }a1b1}2
A measurement is a normalized projection onto one basis
vector of the space and the probability of taking this vector
is the square of the norm of this projection

Ta manaria Quantum Complexity 7 / 52
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Preliminaries

Qubits

What if we have two qubits?
Quantum state: |αy = α00|00y+α01|01y+α10|10y+α11|11y,
such that ΣxPt0,1u2 |ax|2 = 1.
We can see a state of 2 qubits as a unit length column
vector in the 4-d complex space
What if we have 500 qubits?
The quantum state is a linear superposition of 2500

classical states! Way more than the number of elementary
particles in the universe!
Where is all this information stored?
Can we use this to make faster computers?
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Preliminaries

Quantum Circuits

Gates

We can see Quantum gates as operators applied on one or
more qubits
Those operators are Unitary
U is unitary iff UUJ = I where UJ is the complex conjugate
of U
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Preliminaries

Quantum Circuits

Gates(2)

CNOT gate:
|x, yy Ñ |x, x` yy

Hadamard gate:

|0y Ñ 1?
2
|0y+ 1?

2
|1y

|1y Ñ 1?
2
|0y � 1?

2
|1y

a|0y+ b|1y Ñ a+ b?
2
|0y+ a� b?

2
|1y

Ta manaria Quantum Complexity 11 / 52



. . . . . .

Quantum Complexity 11 / 52

Preliminaries

Quantum Circuits

Gates(2)

CNOT gate:
|x, yy Ñ |x, x` yy

Hadamard gate:

|0y Ñ 1?
2
|0y+ 1?

2
|1y

|1y Ñ 1?
2
|0y � 1?

2
|1y

a|0y+ b|1y Ñ a+ b?
2
|0y+ a� b?

2
|1y

Ta manaria Quantum Complexity 11 / 52



. . . . . .

Quantum Complexity 12 / 52

Preliminaries

Quantum Circuits

Properties

Quantum gates unlike Classical gates have the same
number of input and output qubits
Quantum gates do not lose information, which means that
Quantum gates...and generaly Quantum Computations are
reversible
A unitary operator preserves the length of a state and the
cosine of the angle between 2 states
So a unitary operator just rotates or mirrors the space of
our states
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Preliminaries

Quantum Circuits

Entanglement

Suppose we have the state |χy = 1?
2
|00y+ 1?

2
|11y

We cannot find states |ϕy = a0|0y+ a1|1y and
|ψy = b0|0y+ b1|1y such that |ϕy|ψy = |χy
We say that the qubits in |χy are in entanglement
If we measure only the first qubit we will get 0 w.p. 1/2 and
1 w.p. 1/2
If we measured the first and got b then if we measure the
second we will also get b immediately
No matter the distance between the two qubits!
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Preliminaries

Quantum Circuits

Parallelism

A Quantum Computer operates in parallel
Suppose we have the state |ψy = 1?

2
|00y+ 1?

2
|10y

Let's perform the 2-qubit operator CNOT(Controlled-NOT)
CNOT|ψy = 1?

2
CNOT|00y+ 1?

2
CNOT|10y = 1?

2
|00y+ 1?

2
|11y

We performed the operator on those two states in one step!
What a pity we don't have access to all that informationÑ
A measurement will return only 2 bits.
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Preliminaries

Quantum Circuits

Computing a function

A quantum circuit that computes a function f is a unitary
operator U which takes as input:

1 n input qubits
2 The output qubits (in case we have a decision function we

have only one output qubit) usually initialized to |0y

And gives as output
1 The n qubits
2 The answer in the output qubit

So |xy|0y UÑ |xy|0` f(x)y = |xy|f(x)y
Measurement is always the last step of an algorithm

Ta manaria Quantum Complexity 15 / 52



. . . . . .

Quantum Complexity 16 / 52

Preliminaries

Quantum Circuits

But we are in a quantum world so the input qubits can be in
a superposition of many classical inputs
And of course the output will be a superposition of all the
classical outputs
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Preliminaries

Quantum Turing Machine

Quantum Turing Machine

Definition (Quantum Turing Machine - David Deutch, 1985)

A Quantum Turing machine (QTM) is a 3-tuple M = (Q,Σ, δ),
where Q is a finite set of states, Σ is the alphabet, δ is a state
transition ''function'' and is a mapping from QxΣ to
QxΣxtL,RuxC, where C is the set of complex numbers.
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Preliminaries

Quantum Turing Machine

δ(p, α) = (q,b,d, c) represents the following: if M in a state
p reads a symbol α (in configuration C1), then M:

1 writes symbol b on the square under the tape head
2 changes the state into q
3 moves the head on the square in the direction denoted by

d P tL,Ru (configuration C2)

The complex number c is called amplitude of this event.
The probability that M changes its configuration from C1 to
C2 is |c|2
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Some Algorithms

The Query Model

We have an oracle for some f : t0, 1un Ñ t0, 1u (decision
problems)
We allow our algorithm to apply arbitrary unitary
transformations to its own state, as long as these are
dened without reference to the values of f.
2 types of queries:

1 |x,wy Ñ |x,w` f(x)y
2 |xy Ñ (�1)f(x)|xy

They can simulate each other with a single query.
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Some Algorithms

Deutsch-Jozsa Algorithm

We are given a function f : t0, 1u Ñ t0, 1u and wish to
compute f(0)` f(1)

In the classical world we need two queries
In the quantum world we need only one:

Single bit register initialized to |0y
Apply a Hadamard |0y+|1y?

2

Apply a phase query: |ψy = (�1)f(0)|0y+(�1)f(1)|1y?
2

If f(0) = f(1) (f(0)` f(1) = 0), |ψy = |0y+|1y?
2

, else,

|ψy = (�) � |0y�|1y?
2

Apply another Hadamard: in the first case we get �|0y and
in the second case�|1y

Factor 2 speedup in computing the XOR of n bits

Ta manaria Quantum Complexity 22 / 52
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Some Algorithms

Deutsch-Jozsa Algorithm(2)

General version: we are given a function
f : t0, 1un Ñ t0, 1u, which is either constant or balanced.
In the classical world we need (worst case) 2n�1+1 queries
In the quantum world, a generalization of the previous
algorithm can solve the problem with 1 query!
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Quantum Complexity

EQP, BQP

Exact Quantum Polynomial Time

Definition (EQP)

EQP is the class of languages L � (0, 1)�, decidable with zero
error probability by a uniform family of polynomial-size quantum
circuits over some universal family of gates.

Quantum analogue of P
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Quantum Complexity

EQP, BQP

Bounded Error Quantum Polynomial Time

Definition (BQP)

BQP is the class of languages L � (0, 1)�, decidable with
bounded error probability (say 1

3 ) by a uniform family of
polynomial-size quantum circuits over some universal family of
gates.

Quantum analogue of BPP
Factoring, DLP P BQP

Ta manaria Quantum Complexity 27 / 52
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Quantum Complexity

EQP, BQP

Some trivial bounds

EQP � BQP

P � EQP

A classical circuit can be simulated by a Quantum Circuit
We just need to simulate the fundamental gates (for
example NAND gate)

BPP � BQP
Quantum property gives us randomness

Just apply a Hadamard gate on an ancilla qubit initialized to
the state |0y
H|0y = 1?

2
(|0y+ |1y)

XSo, a Quantum Computer is a least as powerful as a
Classical Computer
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Quantum Complexity

BQP vs Classical Classes

Overview

1 Preliminaries
Qubits
Quantum Circuits
Quantum Turing Machine

2 Some Algorithms
3 Quantum Complexity

EQP, BQP
BQP vs Classical Classes
Structural Properties of BQP
QMA, QCMA, QIP

4 Ending
Open Problems
Epilogue
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Quantum Complexity

BQP vs Classical Classes

BQP vs EXP

BQP � EXP

A classical computer can simulate the whole evolution of
the state vector |ψy = °2n�1

i=0 αi|iy
So, a Quantum Computer can provide at most an
exponential advantage over classical computers
But is that accurate?
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Quantum Complexity

BQP vs Classical Classes

BQP vs PSPACE [Bernstein, Vazirani - 93],
[Feynmann's path integral]

BQP � PSPACE

At first it seems that we need an exponential space to
simulate the evolution of the state vector |ψy = °2n�1

i=0 αi|iy.
But we just need the amplitudes of the accepting states
Let S be the set of all accepting states
Let αx be the amplitude of the state |xy P S
We can find αx by looping over all computational paths that
contribute amplitude to |xy. This requires only polynomial
space.
Then we sum the probabilities of every |xy to take the total
accepting probability.
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Quantum Complexity

BQP vs Classical Classes

BQP vs PP [Adleman, DeMarrais, Huang - 97]

BQP � PP

A PP problem involves summing up exponentially many
terms and then deciding whether the sum is greater or less
than some threshold, which is exactly what the Feynman
Path Integral does.
Paccept = ΣxPS|Σiax,i|2. This is the sum of exponentially
many terms, each of which is computable in P! So we can
decide in PP whether Paccept ¤ 1

3 or Paccept ¥ 2
3

BQP is in fact low for PP, meaning that a PP machine
achieves no benefit from being able to solve BQP
problems instantly.
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Quantum Complexity

Structural Properties of BQP

BQP is low for itself

BQPBQP = BQP

Informally, this is true because polynomial time algorithms
are closed under composition
Obstacle for proving this for BQP: Entanglement
(garbage)! The answer of the subroutine depends on its
working qubits
Charles Bennett proposed a smart trick: Uncomputing
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Quantum Complexity

Structural Properties of BQP

Uncomputing

1 Run the subroutine
2 Copy the answer qubit to a separate location
3 Run the subroutine backwards
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Quantum Complexity

QMA, QCMA, QIP

Reminder: MA

Definition (MA)

The class of decision problems solvable by a Merlin-Arthur
protocol: Merlin (unbounded computational resources) sends
Arthur a polynomial-size purported proof that the answer to the
problem is "yes". Arthur must verify the proof in BPP so that:

If the answer is "yes", then there exists a proof such that
Arthur accepts w.p. at least 2/3.
If the answer is "no", then for all proofs Arthur accepts w.p.
at most 1/3.

AM (AM[2]) is the same thing, but this time Arthur goes first
and the Merlin answers
AM[k] = AM[2]
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Quantum Complexity

QMA, QCMA, QIP

QMA, QCMA

Definition (QMA)

QMA is the class of languages L � (0, 1)�, for which there is a
polynomial size quantum circuit A such that @x

if x P L then there is a quantum witness |wy such that
A(x, |wy) accepts with probability at least 2

3

if x R L then for all quantum witnesses |wy, A(x, |wy)
accepts with probability at most 1

3

QMA is the quantum analogue of MA
QCMA stands for: Quantum Classical Merlin Arthur.
In QCMA the witness should be a classical string
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Quantum Complexity

QMA, QCMA, QIP

Some Bounds

MA � QCMA

QCMA � QMA
BQP � QCMA
QMA � PP
We don't know if QMA � QCMA (This would imply that
P � PSPACE)
We don't know if there exists an oracle A s.t.
QCMAA � QMAA

Quantum Oracle Separation [Aaronson, Kuperberg]

There is a quantum oracle A (that is a black box unitary
transformation) such that QCMAA � QMAA
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Quantum Complexity

QMA, QCMA, QIP

Reminder

IP: The class of languages L � t0, 1u for which there exists
an interaction protocol between BPP verier and an
omnipotent prover s.t. @x:

1 x P Lñ D a prover strategy that causes verier to accept
with probability ¥ 2

3
2 x R Lñ @ prover strategies, verier accepts with probability

¤ 1
3

IP = PSPACE (Shamir)
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Quantum Complexity

QMA, QCMA, QIP

Quantum Interactive proofs

The proover and verifier can exchange quantum
messages, and are limited by the laws of quantum physics.
The number of gates is polynomial.
QIP: The class of languages L � t0, 1u for which there
exists an interaction protocol between BQP verier (Arthur)
and an omnipotent prover (Merlin) s.t. @x:

1 If x P L then the prover can behave in such a way that the
verifier accepts with probability at least 2

3
2 If x R L then however the prover behaves, the verifier

rejects with probability at least 2
3
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Quantum Complexity

QMA, QCMA, QIP

Quantum Interactive proofs

Theorem (Kitaev,Watrous - 2003)

Any QIP protocol can be made three-round. In other words, all
QIP rounds are given by QIP(1) = QMA, QAM � QIP(2), and
QIP(3) = QIP.

Theorem (Jain,Ji,Upadhyay,Watrous - 2009)

QIP = IP = PSPACE
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Ending

Open Problems

BPP
?
� BQP

In other words: is a Quantum Computer more poweful than
it's Classical counterpart?

This would imply that P � PSPACE
Simon's algorithm is an evidence
Problem: Given f : t0, 1un Ñ t0, 1un s.t. @x � y, f (x) = f (y)
iff x` y = s. Find s.
Classically we need 2

n
2 queries but Simon's algorithm

needs only n queries
It proves that there exists an oracle relative to which
BPP � BQP
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Where NP sits? [Grover's Algorithm]

Why not try every possible solution in parallel and then
pick the correct one?

It has not been proved that NP � BQP
Classically we need on average 2n�1 queries to find a valid
solution over a space of 2n possible solutions
Quantumly, Grover's algorithm needs only 2

n
2 on average

Quantum Computers give quadratic (not exponential)
speedup!
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