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Promise problems overview

Introduced and initially studied by Even, Selman and Yacobi.

Can be thought as a generalization of language-recognition problems.

Every decision problem can be viewed as a promise problem:
I In some cases the promise is trivial or tractable
I In some cases Promise problems appear to be the most appropriate

representation of natural decision problems

Q Do they provide a really useful framework?

Q How are they connected with the familiar language-recognition
problems?

Q What are the implications of studing the complexity of promise
problems?
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Informal description

A Promise problem is a partition of the set of all strings over an alphabet
into three subsets:

1 The set of strings representing YES-instances

2 The set of strings representing NO-instances

3 The set of disallowed strings (representing neither YES-instances nor
NO-instances)

An algorithm solving a Promise problem is required to distinguish
YES-instances from NO-instances and is allowed arbitrary behaviour on
disallowed strings.
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Motivation: Hard promise

Observe that there are two alternatives to promise problems in the case of
the description of a decision problem:

meaningless (non-canonical) representations are interpreted as a
representation of some fixed instance.

meaningless representations are interpreted as NO-instances.

But imagine a problem with a hard promise:

Example

Given a Hamiltonian graph, determine whether or not. . .

Both alternatives fail: the first cannot be implemented and the second
could substantially affect the complexity of the problem.
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Definition of Promise Problems

Definition (Promise problem)

A promise problem Π is a pair of sets (Πyes,Πno) such that
Πyes,Πno ⊆ {0, 1}∗ and Πyes ∩Πno = ∅.

The set Πyes ∪Πno is called the promise.
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Classes of Promise problems

Definition (P in terms of Promise problems)

A promise problem Π = (Πyes,Πno) is in P if there exists a deterministic
polynomial-time algorithm M such that:

∀x ∈ Πyes =⇒M(x) = 1

∀x ∈ Πno =⇒M(x) = 0

Definition (NP in terms of Promise problems)

A promise problem Π = (Πyes,Πno) is in NP if there exists a polynomially
bounded binary relation R recognized by a polynomial-time deterministic
algorithm such that:

(∀x ∈ Πyes)(∃y)[(x, y) ∈ R]

(∀x ∈ Πno)(∀y)[(x, y) 6∈ R]
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Classes of Promise problems

Definition (BPP in terms of Promise problems)

A promise problem Π = (Πyes,Πno) is in BPP if there exists a
probabilistic polynomial-time algorithm M such that:

∀x ∈ Πyes =⇒ Pr [M(x) = 1] ≥ 2
3

∀x ∈ Πno =⇒ Pr [M(x) = 0] ≥ 2
3

Other classes can be defined in the same way: the conditions used in the
standard definition are applied to the partition Πyes ∪Πno of all possible
inputs and nothing is required with respect to inputs that violate the
promise.
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Reductions of Promise problems

Definition (Karp reduction)

A Promise problem Π = (Πyes,Πno) is Karp-reducible to the problem
Π′ = (Π′yes,Π

′
no) if there exists polynomial-time computable function f

such that:

∀x ∈ Πyes =⇒ f(x) ∈ Π′yes

∀x ∈ Πno =⇒ f(x) ∈ Π′no

Definition (Cook reduction)

A Promise problem Π = (Πyes,Πno) is Cook-reducible to the problem
Π′ = (Π′yes,Π

′
no) if there exists polynomial-time oracle machine M such

that:

∀x ∈ Πyes =⇒MΠ′
(x) = 1

∀x ∈ Πno =⇒MΠ′
(x) = 0
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Reductions of Promise problems

Remark

The query q to oracle Π′ is answered as follows:

1, if q ∈ Π′yes

0, if q ∈ Π′no

arbitrarily, otherwise

Randomized reductions can be defined analogously.
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Finding unique solutions

The intractability of SAT does not seem to be due to instances that
have many solutions.

Contrary, SAT instances having very few satisfying assignments are
hard.

In the extreme case, distinguishing uniquely satisfiable formulae from
unsatisfiable ones in not easier than distinguishing satisfiable formulae
from unsatisfiable ones.[5]
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Finding unique solutions

Definition

For any boolean predicate Q, the problem USATQ is defined as follows:

USATQ(x) =


0 #SAT(x) = 0
1 #SAT(x) = 1
Q(x) #SAT(x) > 1

Theorem (Valiant, Vazirani [5])

There is a randomized polynomial-time reduction from SAT to USATQ for
any boolean predicate Q.
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Finding unique solutions

The problem of distinguishing between uniquely satisfiable and
unsatisfiable formulae can be easily formulated in terms of Promise
problems:

Definition

The problem uSAT is the Promise problem with

YES-instances the formulae that have a unique satisfying assignment

NO-instances the formulae that have no satisfying assignment

Now the Valiant-Vazirani Theorem can be stated as follows:

Theorem

There exists a randomized Cook-reduction of SAT to uSAT.
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Observations and Benefits

It seems that the notion of Promise problems is necessary for handling
”unique solution” problems.

The formulation in terms of Promise problems leads to a proper
definition of ”unique solution” problems that also captures the
essence of their hardness: distinguishing instances with a unique
solution from instances with no solution.
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Approximately counting the number of solutions

Given a relation R recognized by a polynomial-time algorithms we are
interested in determining the number of certificates of an instance x, that

is the cardinality of the set Rcerts(x)
def
= {y | (x, y) ∈ R}. We denote this

problem by #R.

Remark

#R is not easier than the decision problem: for a given x the decision
version asks whether |Rcerts(x)| is positive or zero.
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Approximately counting the number of solutions

. . . but we are also interested in approximating |Rcerts(x)| up to a factor
f(|x|), f : N→ {r ∈ R : r ≥ 1}, that is finding solutions SOL for which
|Rcerts(x)|/f(|x|) ≤ SOL ≤ |Rcerts(x)| · f(|x|).

This problem can be
formulated in terms of Promise problems by reducing it to the following
promise problem:

Definition

The problem #Rf is the Promise problem with

YES-instances the pairs (x,N) such that |R(x)certs| ≥ N
NO-instances the pairs (x,N) such that |R(x)certs| < N/f(|x|)
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Approximately counting the number of solutions

Observe that #Rf is at least as hard as deciding LR:

x ∈ LR =⇒ |R(x)certs| ≥ 1 =⇒ (x, 1) ∈ YES

x 6∈ LR =⇒ |R(x)certs| = 0 =⇒ |R(x)certs| < 1 =⇒ (x, 1) ∈ NO

Interestingly, #Rf is not much harder than deciding LR:

Theorem ([4],[1])

For every f : N→ R such that f(n) > 1 + (1/poly(n)), the problem

#RfSAT is randomly Karp-reducible to SAT.
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Observations and Benefits

Appealing approach when one wants to establish the hardness of
obtaining an approximation of the optimal value.
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Gap problems

Gap problems, for example in the maximization case, can be seen as
Promise problems having YES-instances with relative high optimum value
and NO-instances with relative low optimum value.

Example

The corresponding with Max3SAT, gap problem gap3SATs, is the
Promise problem with

YES-instances the satisfiable 3CNF formulae

NO-instances the 3CNF formulae for which every assignment that
satisfies less than an s fraction of its clauses

Hastad showed [2] that for every ε > 0 gap3SAT(7/8)+ε is NP-hard under
Karp-reductions.
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Gap problems

Now consider the assertion “For every ε > 0 it is NP-hard to approximate
Max3SAT within a factor of (7/8) + ε”.

Q Does this assertion capture the full strength of Hastad’s result?

A No! For example, consider the following question: Given a satisfiable
3CNF formula, can we find an assignment that satisfies 90% of its
clauses?

I The fact that gap3SAT(7/8)+ε is NP-hard rules out this possibility.
I However, the assertion above tells us nothing about it.
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Gap problems

Given a 3CNF formula:

1 Try to find an assignment that satisfies 90% of the clauses
2 Check whether the returned assignment satisfies 90% of the clauses

I If it does then the formula is either a YES-instance of gap3SAT9/10 or
it is a disallowed instance. In any case, answer ’YES’.

I Else the formula is a NO-instance of gap3SAT9/10, or it is a disallowed
instance. In any case, answer ’NO’.
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Observations and Benefits

Promise problems provide useful expressiveness which is necessary for
capturing the full extend of some results.
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A complete problem for BPP

In terms of language recognition, no complete problem is known for BPP.
However, in terms of promise problems, there is the follown complete
problem for the class promise−BPP:

YES-instances are Boolean circuits that evaluate to 1 on at least a
2/3 fraction of their inputs

NO-instances are Boolean circuits that evaluate to 0 on at least a 2/3
fraction of their inputs

A reduction of a problem Π ∈ promise−BPP to this complete problem
maps input x to circuit Cx, which on input r emulates the computation of
MΠ on input x and random tape r.

Panagiotis Theofilopoulos (µ
∏

λ∀) Promise Problems June 22, 2012 25 / 33



A complete problem for BPP

In terms of language recognition, no complete problem is known for BPP.

However, in terms of promise problems, there is the follown complete
problem for the class promise−BPP:

YES-instances are Boolean circuits that evaluate to 1 on at least a
2/3 fraction of their inputs

NO-instances are Boolean circuits that evaluate to 0 on at least a 2/3
fraction of their inputs

A reduction of a problem Π ∈ promise−BPP to this complete problem
maps input x to circuit Cx, which on input r emulates the computation of
MΠ on input x and random tape r.

Panagiotis Theofilopoulos (µ
∏

λ∀) Promise Problems June 22, 2012 25 / 33



A complete problem for BPP

In terms of language recognition, no complete problem is known for BPP.
However, in terms of promise problems, there is the follown complete
problem for the class promise−BPP:

YES-instances are Boolean circuits that evaluate to 1 on at least a
2/3 fraction of their inputs

NO-instances are Boolean circuits that evaluate to 0 on at least a 2/3
fraction of their inputs

A reduction of a problem Π ∈ promise−BPP to this complete problem
maps input x to circuit Cx, which on input r emulates the computation of
MΠ on input x and random tape r.

Panagiotis Theofilopoulos (µ
∏

λ∀) Promise Problems June 22, 2012 25 / 33



A complete problem for BPP

In terms of language recognition, no complete problem is known for BPP.
However, in terms of promise problems, there is the follown complete
problem for the class promise−BPP:

YES-instances are Boolean circuits that evaluate to 1 on at least a
2/3 fraction of their inputs

NO-instances are Boolean circuits that evaluate to 0 on at least a 2/3
fraction of their inputs

A reduction of a problem Π ∈ promise−BPP to this complete problem
maps input x to circuit Cx, which on input r emulates the computation of
MΠ on input x and random tape r.
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A complete problem for BPP

Let A be our BPP-complete problem.

x ∈ Πyes =⇒MΠ = yes with prob ≥ 2/3

=⇒ CMΠ,x = 1 for at least 2/3 of all random inputs r

=⇒ CMΠ,x ∈ Ayes

x ∈ Πno =⇒MΠ = no with prob ≥ 2/3

=⇒ CMΠ,x = 0 for at least 2/3 of all random inputs r

=⇒ CMΠ,x ∈ Ano
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A complete problem for BPP

There are analogous results the promise versions of RP and ZPP.

There are complete problems for the class SZK.
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Failure of some structural properties

In the case of language-recognition problems, if an NP-hard problem
is in NP ∩ coNP then NP = coNP

This is not so in the case of promise problems. . .

Definition

The problem xSAT is the promise problem for which

YES-instances are the pairs (φ1, φ2) such that φ1 ∈ SAT and
φ2 6∈ SAT

NO-instances are the pairs (φ1, φ2) such that φ1 6∈ SAT and
φ2 ∈ SAT

Theorem ([3])

Any problem in NP is Cook-reducible to xSAT, which is in NP ∩ coNP.
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Failure of some structural properties

Q What has happened?

A A Cook-reduction to a Promise problem does not maintain the
standard meaning of the concept when the promise is not tractable.

Definition (Smart reduction)

A smart reduction is a reduction that does not make queries that violate
the promise.

Theorem

If the Promise problem Π′ is reducible via smart reduction to the Promise
problem Π and Π ∈ NP ∩ coNP then Π′ ∈ NP ∩ coNP.
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Thank you!
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