
PCP’s, Hardness of Approximation and the Unique
Games Conjecture

Haris Angelidakis

MPLA

May 3 & 10, 2012



Outline

1 PCP Theorems

2 PCP’s and Hardness of Approximation

3 Inapproximability of Set Cover

4 The Unique Games Conjecture

Haris Angelidakis (MPLA) PCP’s, Inapproximability & UGC May 3 & 10, 2012 2 / 45



Outline

1 PCP Theorems

2 PCP’s and Hardness of Approximation

3 Inapproximability of Set Cover

4 The Unique Games Conjecture

Haris Angelidakis (MPLA) PCP’s, Inapproximability & UGC May 3 & 10, 2012 3 / 45



The PCP Idea

The main idea behind PCP’s is to check a proof faster than usual. How is
this done?

We first rewrite the proof in a certain format, the PCP format.

We then check randomly a constant number of its bits:

A correct proof always convinces us.
A false proof will convince us with probability ≤ 1/2.

Detail: The rewriting is completely mechanical and does not greatly
increase its size. But, it requires proofs to be written in a formal
axiomatic system (such as ZF Set Theory).

Haris Angelidakis (MPLA) PCP’s, Inapproximability & UGC May 3 & 10, 2012 4 / 45



The PCP Idea

The main idea behind PCP’s is to check a proof faster than usual. How is
this done?

We first rewrite the proof in a certain format, the PCP format.

We then check randomly a constant number of its bits:

A correct proof always convinces us.
A false proof will convince us with probability ≤ 1/2.

Detail: The rewriting is completely mechanical and does not greatly
increase its size. But, it requires proofs to be written in a formal
axiomatic system (such as ZF Set Theory).

Haris Angelidakis (MPLA) PCP’s, Inapproximability & UGC May 3 & 10, 2012 4 / 45



The PCP Idea

The main idea behind PCP’s is to check a proof faster than usual. How is
this done?

We first rewrite the proof in a certain format, the PCP format.

We then check randomly a constant number of its bits:

A correct proof always convinces us.
A false proof will convince us with probability ≤ 1/2.

Detail: The rewriting is completely mechanical and does not greatly
increase its size. But, it requires proofs to be written in a formal
axiomatic system (such as ZF Set Theory).

Haris Angelidakis (MPLA) PCP’s, Inapproximability & UGC May 3 & 10, 2012 4 / 45



The PCP Idea

The main idea behind PCP’s is to check a proof faster than usual. How is
this done?

We first rewrite the proof in a certain format, the PCP format.

We then check randomly a constant number of its bits:

A correct proof always convinces us.
A false proof will convince us with probability ≤ 1/2.

Detail: The rewriting is completely mechanical and does not greatly
increase its size. But, it requires proofs to be written in a formal
axiomatic system (such as ZF Set Theory).

Haris Angelidakis (MPLA) PCP’s, Inapproximability & UGC May 3 & 10, 2012 4 / 45



The PCP Idea

The main idea behind PCP’s is to check a proof faster than usual. How is
this done?

We first rewrite the proof in a certain format, the PCP format.

We then check randomly a constant number of its bits:

A correct proof always convinces us.
A false proof will convince us with probability ≤ 1/2.

Detail: The rewriting is completely mechanical and does not greatly
increase its size. But, it requires proofs to be written in a formal
axiomatic system (such as ZF Set Theory).

Haris Angelidakis (MPLA) PCP’s, Inapproximability & UGC May 3 & 10, 2012 4 / 45



The PCP Idea

The main idea behind PCP’s is to check a proof faster than usual. How is
this done?

We first rewrite the proof in a certain format, the PCP format.

We then check randomly a constant number of its bits:

A correct proof always convinces us.
A false proof will convince us with probability ≤ 1/2.

Detail: The rewriting is completely mechanical and does not greatly
increase its size. But, it requires proofs to be written in a formal
axiomatic system (such as ZF Set Theory).

Haris Angelidakis (MPLA) PCP’s, Inapproximability & UGC May 3 & 10, 2012 4 / 45



Towards a new definition of NP

Note: From now on, we shall refer to languages L ⊆ {0, 1}∗.

Definition (NP “yes”-certificate definition)

A language L is in NP if there exists a polynomial p : N→ N and a
deterministic polynomial-time TM M (called the verifier of L) such that
for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x |) such that M(x , u) = 1.

If x ∈ L and u ∈ {0, 1}p(|x |) satisfy M(x , u) = 1, then we call u a
certificate for x (with respect to the language L and machine M).

Informally, NP is the complexity class of problems for which it is easy to
check that a solution is correct.
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Towards a new definition of NP

Some comments

What is a mathematical proof? Anything that can be verified by a
rigorous procedure, i.e., an algorithm.

A theorem = a problem.

A proof = a solution.
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Towards a new definition of NP

Definition (NP alternative definition)

An alternative way to define NP is as the class of all languages
L ⊆ {0, 1}∗ that have efficient proof systems: proof systems in which
there is a polynomial-time algorithm that verifies correctness of the
statement x ∈ L with assistance of a proof.

One problem with the usual proof systems (i.e. the “yes”-certificates
for NP) is that these proofs are very sensitive to error. A false
theorem can be “proven” by a proof that consists of only one
erroneous step. Similarly, a 3-SAT formula φ can be unsatisfiable, yet
have an assignment that satisfies all clauses but one. In these cases,
the verifier must check every single proof step / clause in order to
make sure that the proof is correct.
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Towards a new definition of NP

In contrast, the PCP theorem gives each set in NP an alternative
proof system, in which proofs are robust.

In this system a proof for a false statement is guaranteed to have
many errors.

As a result, a verifier can randomly read only a few bits from the
proof and decide, with high probability of success, whether the proof
is valid or not.
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Towards a new definition of NP

Definition (NP revisited - The NP verifier)

L ∈ NP iff there exists a poly-time TM V (the verifier) such that:

x ∈ L⇒ ∃π such that V π(x) = 1,

x /∈ L⇒ ∀π, V π(x) = 0.

(π is a proof)
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Towards a new definition of NP

Definition (The PCP verifier)

Let L be a language and q, r : N→ N. We say that L has an
(r(n), q(n))-PCP verifier if there’s a polynomial-time probabilistic
algorithm V satisfying:

Efficiency: On input x ∈ {0, 1}n and given random access to a string
π ∈ {0, 1}∗ of length at most q(n)2r(n) (the proof ), V uses at most
r(n) random coins and makes at most q(n) nonadaptive queries to
locations of π. Then it outputs “1” (for “accept”) or “0” (for
“reject”). We let V π(x) denote the random variable representing V’s
output on input x and with random access to π.

Completeness: x ∈ L⇒ ∃π ∈ {0, 1}∗ such that Pr [V π(x) = 1] = 1.
(We call this string π the correct proof for x .)

Soundness: x /∈ L⇒ ∀π ∈ {0, 1}∗,Pr [V π(x) = 1] ≤ 1/2.

We say that a language L is in PCP[r(n), q(n)] if there are some constants
c , d > 0 such that L has a (cr(n), dq(n))-PCP verifier.
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The PCP Theorem

Theorem (PCP Theorem - Arora, Lund, Motwani, Sudan, Szegedy,
Safra)

NP = PCP[O(log n),O(1)].
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Gap-introducing reductions and NP-completeness

Dinur’s proof of the PCP theorem is based on finding gap-introducing
reductions, i.e. reductions of the following form:

(we want to reduce L ∈ NP, to a 3CNF formula φx with m clauses and
with the following properties)

x ∈ L⇒ φx is satisfiable

x /∈ L⇒ no assignment satisfies more than (1− ε1)m clauses of φx .

Theorem

If there is a gap-introducing reduction for some problem L in NP, then
L ∈ PCP[O(log n),O(1)]. In particular, if L is NP-complete then the PCP
theorem holds.
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How can we get inapproximability results

In general, standard NP-hardness proofs are not powerful enough to
give inapproximability results.

In order to get such a result, we will need stronger reductions, the
gap-introducing reductions we have already mentioned.
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Approximability of Max-3SAT

Theorem

The PCP theorem implies that there is an ε1 > 0 such that there is no
polynomial (1− ε1)-approximation algorithm for Max-3SAT, unless
P = NP.

Proof.

On board...

Note: This directly implies that there is no PTAS for Max-3SAT.
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Optimized PCP constructions (1 / 3)

Theorem (Håstad)

For every ε > 0, NP = PCP1−ε, 1
2
+ε[O(log n), 3]. Furthermore, the verifier

behaves as follows: it uses its randomness to pick three entries i , j , k in the
proof w and a bit b, and it accepts iff wi ⊕ wj ⊕ wk = b.

Consequences:

Reduction of an NP-complete problem, say SAT, to Max-E3LIN-2:

Take the PCP1−ε, 12+ε
[O(log n), 3] for SAT.

If a SAT formula φ is satisfiable, then there is a proof w such that at
least 1− ε fraction of the system of 3ELIN-2 equations
wi ⊕ wj ⊕ wk = b are satisfied by the corresponding bits.
If φ is not satisfiable, then for every proof w at most 1

2 + ε fraction of
equations can be satisfied.
Thus, we cannot approximate Max-E3LIN-2 within a factor better than
2 unless P = NP. (can you find an algorithm that achieves this factor?)
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Optimized PCP constructions (2 / 3)

Continuing the reduction: Max-E3LIN-2 to Max-E3SAT:

Every equation wi ⊕ wj ⊕ wk = b can be expressed as the conjunction
of 4 clauses, so that the equation is satisfied iff all 4 clauses can be
satisfied. (how?)
Thus, from a system I of m equations we can construct a formula φI of
4m clauses.
If we can satisfy ≥ m(1− ε) equations, then the same assignment can
satisfy ≥ 4m(1− ε) clauses.
Conversely, if it is impossible to satisfy more than m( 1

2 + ε) equations,
then it is impossible to satisfy more than 4m −m( 1

2 + ε) = 7
2m −mε

(at least one clause for each unsatisfied equation)
Thus, Max-E3SAT, and so Max-3SAT, cannot be approximated within
a factor better than 7/8, unless P = NP.
Actually, the trivial randomized algorithm achieves the 7/8 factor for
Max-E3SAT. Observe that it can be easily derandomized with the
method of conditional expectation.
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Optimized PCP constructions (3 / 3)

Finally, with a similar reduction from Max-E3LIN-2 to Max-CUT, we
can prove that Max-Cut has an approximability bound of
16/17 u 0.94117. (the currently best result is the u 0.878 SDP
algorithm due to Goemans and Williamson)
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Improvement on Håstad’s Theorem

Theorem (Guruswami, Lewin, Sudan, Trevisan 98)

NP = PCP1, 1
2
+ε[O(log n), 3], ∀ε > 0

Proof of Optimality of the above result

Theorem (Karloff, Zwick 97)

P = PCP1, 1
2
[O(log n), 3]
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Outline

1 PCP Theorems

2 PCP’s and Hardness of Approximation

3 Inapproximability of Set Cover

4 The Unique Games Conjecture
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A Threshold of ln n for Approximating Set Cover

We will now try to sketch the proof of the following theorem:

Theorem

If there is some ε > 0 such that a polynomial time algorithm can
approximate set cover within (1− ε) ln n, then NP ⊂ TIME (nO(log log n)).

Note: The above result is due to Feige (1996). Under the weaker
assumption that P 6= NP, Raz and Safra (1997) established a lower bound
of c · ln n where c is a constant, and Alon, Moshkovitz and Safra (2006)
improved the result with a higher constant.
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Main idea of the proof (1 / 2)

The proof is based on a reduction from a multi-prover proof system.
We start with the Max-3SAT-B problem, for which we know the
following:

Theorem

It is MAX-SNP hard to approximate MAX-3SAT-B. For some ε > 0, it is
NP-hard to distinguish between satisfiable 3CNF-B formulas and 3CNF-B
formulas in which at most an (1− ε)-fraction of the clauses can be
simultaneously satisfied.

We will actually use Max-E3SAT-5, in which we have a CNF formula
with n variables and 5n/3 clauses, in which every clause contains
exactly 3 literals and every variable appears in exactly 5 clauses.

Theorem

For some ε > 0, it is NP-hard to distinguish between satisfiable 3CNF-5
formulas and 3CNF-5 formulas in which at most an (1− ε)-fraction of the
clauses can be simultaneously satisfied.
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Main idea of the proof (2 / 2)

By using a k-prover proof system for Max-3SAT-5, we reduce, by
using some “partition systems” the problem to an instance of the set
cover with universe size m such that:

- If φ is satisfiable, then the instance created can be covered by
kQ subsets for some Q.

- If only a (1− ε) fraction of the clauses of φ can be simultaneously
satisfied, then the created instance requires (1− 2f (k))kQ ln m
subsets in order to be covered, where f (k)→ 0 as k →∞.

Thus, we cannot approximate set cover within a factor of
(1− o(1)) ln n, unless NP ⊂ TIME (nO(log log n)).
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Multiprover Interactive Protocols

Definition (k-Prover Proof Systems)

Let P1,P2, ...,Pk be infinitely powerful machines and V be a probabilistic
polynomial-time machine, all of which share the same read-only input tape.
The verifier V shares tapes with each Pi , but different provers Pi and Pj

have no communication between them. Formally, each Pi is a function
from the input and the conversation it has seen so far to a message.
P1, ...,Pk and V form a multiprover interactive protocol for a
language L if:

1 If x ∈ L then Pr [P1, ...,Pk and V on x accept] ≥ 2
3 .

2 If x /∈ L then for all provers P ′1, ...,P
′
k ,

Pr [P ′1, ...,P
′
k and V on x accept] ≤ 1

3 .

Note: A round of a multiprover interactive protocol consists of messages
from the verifier to some or all of the provers followed by messages from
these provers to the verifier. In general, interactive protocols can have a
polynomial number of rounds.
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k-Prover Proof Systems as PCP’s

PCP witness (not in general encoded in binary, but in an alphabet
with cardinality depending on input size) partitioned into k segments.

Each segment is controlled by a prover.

The verifier reads one character from each segment. (can be viewed
as a query to each prover)

The above description corresponds to one round multiprover proof
systems.
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Reducing the probability error (1 / 4)

It can be shown that if we have a constant error of probability, we can
easily reduce it by running the protocol several times serially only in
the case of one-prover model.

However, if we have 2 or more provers, it isn’t obvious whether a
parallel repetition works or not.
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Reducing the probability error (2 / 4)

Counter-example:

(2-prover 1-round)

V : Pick two bits a and b uniformly and independently at random.

V → P1 : a

V → P2 : b

P1 → V : c

P2 → V : d

Accept if (a ∨ c) 6= (b ∨ d).

It is easy to show that the best strategy for two provers causes the verifier
to accept with probability 1

2 .

Haris Angelidakis (MPLA) PCP’s, Inapproximability & UGC May 3 & 10, 2012 27 / 45



Reducing the probability error (2 / 4)

Counter-example:

(2-prover 1-round)

V : Pick two bits a and b uniformly and independently at random.

V → P1 : a

V → P2 : b

P1 → V : c

P2 → V : d

Accept if (a ∨ c) 6= (b ∨ d).

It is easy to show that the best strategy for two provers causes the verifier
to accept with probability 1

2 .

Haris Angelidakis (MPLA) PCP’s, Inapproximability & UGC May 3 & 10, 2012 27 / 45



Reducing the probability error (3 / 4)

Now, the parallel version of the same protocol:

V : Pick bits a1, a2 and b1, b2 uniformly and independently at random.
V → P1 : a1, a2
V → P2 : b1, b2

P1 → V : c1, c2
P2 → V : d1, d2

Accept if (a1 ∨ c1) 6= (b ∨ d) and (a2 ∨ c2) 6= (b2 ∨ d2).

If the parallel runs of the protocol behaved independently we would expect
that the optimum strategy for the provers causes the verifier to accept
with probability (1/2)2 = 1

4 . However the following strategy for the
provers causes the verifier to accept with probability 3

8 .

P1: If a1 = a2 = 0 respond c1 = c2 = 0 otherwise respond
c1 = c2 = 1.
P2: If b1 = b2 = 0 respond d1 = d2 = 0 otherwise respond
d1 = d2 = 1.
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Reducing the probability error (4 / 4)

However, it is true that parallel repetition reduces the error at an
exponential rate:

Theorem (Raz Parallel Repetition Theorem)

If a 2-prover 1-round proof system is repeated λ times independently in
parallel, then the error is 2−cλ, where c > 0 is a constant that depends
only on the error of the original proof system (assuming this error was less
than one) and on the length of the answers of the provers in the original
proof system.
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parallel, then the error is 2−cλ, where c > 0 is a constant that depends
only on the error of the original proof system (assuming this error was less
than one) and on the length of the answers of the provers in the original
proof system.

Haris Angelidakis (MPLA) PCP’s, Inapproximability & UGC May 3 & 10, 2012 29 / 45



A k-prover proof system for Max-3SAT-5 (1 / 3)

1 We use a binary code that contains k code words, each of length λ
and weight (number of 1’s) λ/2, and Hamming distance at least λ/3.
We choose λ = Θ(log log n) and k an arbitrarily large constant. (such
a code can be easily found, but it is out of the scope of this
presentation)

2 The verifier V selects λ clauses, say C1, ...,Cλ u.i.r.

3 From each Cj V selects a single variable u.i.r. These x1, ..., xλ are
called the distinguished variables.

4 Prover Pi receives Cj for those coordinates j in its code word that
have the bit 1 and xj for all the others.

5 Each Pi replies with a string of 2λ bits. This string is interpreted as
an assignment to all the variables that the prover received. (λ/2
distinguished variables plus three variables in each of the λ/2 clauses)
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A k-prover proof system for Max-3SAT-5 (2 / 3)

For simplicity, assume that the corresponding bits in the prover’s
answer for each of the λ/2 clauses received encode a satisfying
assignment for that clause.

Observe that the answer of a prover induces an assignment to the
distinguished variables.

We say that the answers of two provers are consistent if the induced
assignments to the distinguished variables are identical.

We now introduce 2 acceptance predicates:

- Weak acceptance predicate: At least one pair of provers is
consistent.

- Strong acceptance predicate: Every pair of provers is consistent.
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A k-prover proof system for Max-3SAT-5 (3 / 3)

Lemma

Consider the k-prover proof system defined above and a 3CNF-5 formula
φ. If φ is satisfiable, then the provers have a strategy that causes the
verifier to always strongly accept. If at most a (1− ε)-fraction of the
clauses in φ are simultaneously satisfiable, then the verifier weakly accepts
with probability at most k2 · 2−cλ, where c > 0 is a constant that depends
only on ε.

Proof.

On board...
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Construction of Partition Systems

Definition

A partition system B(m, L, k, d) has the following properties:

1 There is a ground set B of m points.

2 There is a collection of L distinct partitions p1, ..., pL.

3 For 1 ≤ i ≤ L, partition pi is a collection of k disjoint subsets of B
whose union is B.

4 Any cover of the m points by subsets that appear in pairwise different
partitions requires at least d subsets.

Lemma

For every c ≥ 0 and m sufficiently large, there is a partition system
B(m, L, k , d) whose parameters satisfy the following inequalities:

1 L u (log m)c

2 k can be chosen arbitrarily as long as k < ln m/3 ln ln m

3 d = (1− f (k))k ln m, where f (k)→ 0 as k →∞.
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Construction of Partition Systems

The above partition system, with f (k) = 2/k can be constructed in
ZTIME (mO(logm)). The construction is randomized.

However, there is a deterministic construction due to Naor, Schulman
and Srinivasan (1995) that can be used instead.
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The Reduction to Set Cover

On board...
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Outline

1 PCP Theorems

2 PCP’s and Hardness of Approximation

3 Inapproximability of Set Cover

4 The Unique Games Conjecture
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Motivation

The main motivation for the conjecture is to prove inapproximability
results.

The UGC states that a specific problem, called the Unique Game, is
inapproximable.

A gap-preserving reduction from the Unique Game then implies
inapproximability results for other NP-complete problems.
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Unique Games

Definition (Unique Game)

A Unique Game U(G (V ,E ), [n], {πe | e ∈ E}) is a constraint satisfaction
problem defined as follows: G (V ,E ) is a directed graph whose vertices
represent variables and edges represent constraints. The goal is to assign
to each vertex a label from the set [n]. The constraint on an edge
e = (v ,w) ∈ E is described by a bijection πe : [n]→ [n]. A labeling
L : V → [n] satisfies the constraint on edge e = (v ,w) if and only if
πe(L(v)) = L(w). Let OPT (U) denote the maximum fraction of
constraints that can be satisfied by any labeling:

OPT (U) := max
L:V→[n]

1

|E |
· |{e ∈ E | L satisfies e}|.

Haris Angelidakis (MPLA) PCP’s, Inapproximability & UGC May 3 & 10, 2012 38 / 45



The Unique Games Conjecture

Conjecture (UGC, Khot 02)

For every ε, δ > 0, there exists a constant n = n(ε, δ), such that given a
Unique Game instance U(G (V ,E ), [n], {πe | e ∈ E}), it is NP-hard to
distinguish between these two cases:

YES Case: OPT (U) ≥ 1− ε.
NO Case: OPT (U) ≤ δ.
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Inapproximability results assuming the UGC

Problem Best Approx. Inapprox. Known Best Inapprox.
Known Under UGC Known

Vertex Cover 2 2− ε 1.36

Max-Cut a u 0.878 a + ε 16/17
(SDP gap)

Any CSP C with aC aC -
integrality gap aC

Non-uniform Õ(
√

log n) ω(1) APX -hard
Sparsest Cut
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SDPs and the UGC (1 / 3)

Definition (k-CSP)

A k-ary CSP C is defined by a collection of finitely many predicates
P : {0, 1}k → {0, 1}. An instance is specified as I (V ,E , {Pe | e ∈ E}),
where V = {x1, ..., xN} is a set of boolean variables and E is a collection
of constraints, each being a size k subset of V . A constraint e ∈ E is
denoted as e = (xe1 , ..., xek ), ei ∈ [N], with a specific order on the
variables, and has an associated predicate Pe ∈ C.

An assignment is a map p : V → {0, 1}, and satisfies a constraint e if

Pe(p(xe1), ..., p(xek )) = 1.

Let OPT (I ) denote the maximum fraction of constraints satisfied by any
assignment.
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SDPs and the UGC (2 / 3)

There is a natural SDP relaxation for the above CSP.

Let SDP(I ) denote the optimum of the SDP relaxation, and define
the integrality gap aC as:

aC := sup
I

SDP(I )

OPT (I )

We have OPT (I ) ≤ SDP(I ) ≤ aC · OPT (I ), and so we get an aC
approximation from the SDP.

It has been proved that the UGC captures in a precise way the
limitations of SDP. More formally:
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SDPs and the UGC (3 / 3)

Theorem (Raghavendra 08)

Suppose there is an instance I ∗ of the CSP C such that SDP(I ∗) ≥ c and
OPT (I ∗) ≤ s. Then for every γ > 0, there exist ε, δ > 0, and a polynomial
time reduction from a Unique Game instance to an instance I of the CSP
such that:

(YES Case): If OPT (U) ≥ 1− ε, then OPT (I ) ≥ c − γ.

(NO Case): If OPT (U) ≤ δ, then OPT (I ) ≤ s + γ.

In particular, assuming the UGC, it is NP-hard to approximate the CSP
within any factor strictly less than aC .
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THANK YOU!
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