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Why bother?

Why are proofs for lower bounds so difficult? (e.g.
P � PSPACE, P � NP)

Answer 1: because great mathematicians cannot prove
them...
Answer 2: because known techniques are not good
enough:

relativization: oracles, diagonalization (Baker, Gill, Solovay
1975)
natural proofs: circuit lower bounds (Razborov, Rudich
1994)
algebrization: IP = PSPACE, PCP theorems (Aaronson,
Wigderson 2008)
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Circuit Complexity

A boolean circuit is a directed acyclic graph. It's nodes are
AND, OR and NOT gates

The size of the circuit is the number of gates in it
Different circuit for every different input size
Let Γ be a complexity class. A family of circuits C0, C1, . . .
is said to be Γ-uniform if there is a Γ-bounded TM that on
input 1n outputs Cn

.
Theorem..

.

. ..

.

.

A language L is in P iff L has logspace-uniform polynomial
circuits
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What is a natural proof?

.
Definition (nc-usefulness)
..

.

. ..

.

.

Let f : t0, 1un Ñ t0, 1u, c P N. Any proof that f does not have
nc-sized circuits can be viewed as defining a predicate P s.t.
P(f) = 1 and @g P SIZE(nc) P(g) = 0

.
Definition (Natural predicate)
..

.

. ..

.

.

We say that a predicate P is natural if it satisfies the following
two conditions (g : t0, 1un Ñ t0, 1u):

Constructiveness: We can compute P(g) in time polynomial to
the size of the truth table of g (that is in time 2O(n))

Largeness: Pr[P(g) = 1] ¥ 1/n
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What is a natural proof?
.
Theorem (Existence of hard functions (Shannon, 1949))
..

.

. ..

.

.

The vast majority of all boolean functions with n inputs requires
Ω(2n/n) gates

The above theorem implies that only a small fraction of
boolean functions have polynomial size circuits. (but it's
proof is not constructive, so we cannot use it to prove that
there is a languge in NPzSIZE(nc))
So the largeness condition does not contradict
nc-usefulness.

.
Definition (Natural Proof)
..

.

. ..

.

.

A proof that a function does not have polynomial size circuits is
called natural if it defines a natural predicate that is nc-useful.
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Examples of predicates

...1 P(g) = 1ô g R SIZE(nlog n)

Usefulness: nc = O(nlogn)
Largeness: existence of hard functions theorem
Constructiveness: it's an open problem (we can check

whether P(g) = 1 in time O(2n
log n

) by

enumerating all circuits of size nlog n)
...2 P(g) = 1ô g correctly solves the decision problem 3SAT
for inputs of size n

Usefulness: if 3SAT R SIZE(nc)...
Largeness: it is true only for one function
Constructiveness: we can check whether P(g) = 1 by

checking g's truth table in time 2O(n)
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A natural proof
.
.
. ..

.

.AC0: constant depth, polynomial size, unlimited fan-in

.

.

. ..

.

.

Parity({x : x has an odd number of 1s}) R AC0. In this proof the
following predicate is defined:
P(g) = 1ô g cannot be made constant by restricting n� nε
input bits

Usefulness: P(g) = 0 for every AC0 circuit and P(g) = 1 for the
parity function

Largeness: if g is a random function then P(g) = 1 with high
probability

Constructiveness: we can check in time 2O(n) if P(g) = 1 from
g's truth table
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Why did we define natural predicates that way?

...1 Why constructiveness?

We are interested in checking our conditions efficiently...

...2 Why largeness?

.
Lemma..

.

. ..

.

.

If a function f does not have circuits of size < S then at least half
of the functions (with the same number of input variables as f)
do not have circuits of size ¤ S/2 -3

.
Proof...

.

. ..

.

.

Let g be a random function then f = (f` g)` g. If both g and
f` g have circuits of size < S/2 - 3 then f has a circuit of size <S
(we need only 5 gates to compute `)
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The Natural Proofs Theorem

So, we can easily check whether a function satisfies a
natural predicate or not

That means that we can easily tell whether a function is
"random" or not
That is a key fact to prove the

.
Theorem (Natural Proofs, Razborov-Rudich 1994)
..

.

. ..

.

.

Suppose that subexponentially strong one-way functions exist.
Then there exists a constant c P N such that there is no
nc-useful natural predicate P

*subexponentially strong one-way function = one that resists
inverting even by a 2n

ε
-time adversary for some fixed ε ¡ 0.
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Pseudorandom functions

We will show the contrapositive: suppose that for every c
there exists a natural predicate, then one way functions do
not exist

J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby in
1999 showed that we can built a pseudorandom function
family from every one way function.

.
Definition (Pseudorandom function family)
..

.

. ..

.

.

A family of functions tfsus P t0,1u� , where for s P t0, 1um, fs is a
function from t0, 1um to t0, 1u, s.t.:

...1 We can built fs(x) in time polynomial in s and x

...2 For s P t0, 1um no polynomial time algorithm can
distinguish fs from a random function from t0, 1um to t0, 1u
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Proof of the theorem

Let P be a natural property on n-bit functions that is nc
-useful. That means that we have a 2O(n)-time algorithm
which:

...1 outputs 0 on functions with circuit complexity lower than nc

...2 outputs 1 on a nonnegligible fraction of functions

Let tfsu be a 2m
ε
-secure pseudorandom function family

Let h : t0, 1um Ñ t0, 1u be an unknown function (it could be
either fs for some s or a random function)
We will use the natural property P to tell whether h is a
(truly) random function
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Proof of the theorem

Let n = mε/2, x P t0, 1un and g(x) = h(x0m�n).

We construct g's truth table (it costs 2O(n) time)
We calculate P(g). There are two cases:

...1 h is a random function, so g is also a random function from
t0, 1un to t0, 1u. That is Pr[P(g) = 1] ¥ 1/n.

...2 h is fs for some s. The map s, x ÞÑ fs(x) can be computed in
poly(m) time and hence the map x ÞÑ g(x) is computable by
a circuit of size poly(m) = nc (for some c) that has s
hard-wired into it. (To be sure, the distinguisher does not
know s or this circuit; we are only asserting that the circuit
exists). Hence P(g) = 0.

That means that we can distinguish between fs and a
random function with nonnegligible probability in
polynomial time.
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. . . . . .

Introduction What is a natural proof? The theorem The weakness Epilogue

Proof of the theorem

Let n = mε/2, x P t0, 1un and g(x) = h(x0m�n).
We construct g's truth table (it costs 2O(n) time)

We calculate P(g). There are two cases:

...1 h is a random function, so g is also a random function from
t0, 1un to t0, 1u. That is Pr[P(g) = 1] ¥ 1/n.

...2 h is fs for some s. The map s, x ÞÑ fs(x) can be computed in
poly(m) time and hence the map x ÞÑ g(x) is computable by
a circuit of size poly(m) = nc (for some c) that has s
hard-wired into it. (To be sure, the distinguisher does not
know s or this circuit; we are only asserting that the circuit
exists). Hence P(g) = 0.

That means that we can distinguish between fs and a
random function with nonnegligible probability in
polynomial time.

Yiannis Kokkinis Natural Proofs 16 / 27



. . . . . .

Introduction What is a natural proof? The theorem The weakness Epilogue

Proof of the theorem

Let n = mε/2, x P t0, 1un and g(x) = h(x0m�n).
We construct g's truth table (it costs 2O(n) time)
We calculate P(g). There are two cases:

...1 h is a random function, so g is also a random function from
t0, 1un to t0, 1u. That is Pr[P(g) = 1] ¥ 1/n.

...2 h is fs for some s. The map s, x ÞÑ fs(x) can be computed in
poly(m) time and hence the map x ÞÑ g(x) is computable by
a circuit of size poly(m) = nc (for some c) that has s
hard-wired into it. (To be sure, the distinguisher does not
know s or this circuit; we are only asserting that the circuit
exists). Hence P(g) = 0.

That means that we can distinguish between fs and a
random function with nonnegligible probability in
polynomial time.

Yiannis Kokkinis Natural Proofs 16 / 27



. . . . . .

Introduction What is a natural proof? The theorem The weakness Epilogue

Proof of the theorem

Let n = mε/2, x P t0, 1un and g(x) = h(x0m�n).
We construct g's truth table (it costs 2O(n) time)
We calculate P(g). There are two cases:
...1 h is a random function, so g is also a random function from
t0, 1un to t0, 1u. That is Pr[P(g) = 1] ¥ 1/n.

...2 h is fs for some s. The map s, x ÞÑ fs(x) can be computed in
poly(m) time and hence the map x ÞÑ g(x) is computable by
a circuit of size poly(m) = nc (for some c) that has s
hard-wired into it. (To be sure, the distinguisher does not
know s or this circuit; we are only asserting that the circuit
exists). Hence P(g) = 0.

That means that we can distinguish between fs and a
random function with nonnegligible probability in
polynomial time.

Yiannis Kokkinis Natural Proofs 16 / 27



. . . . . .

Introduction What is a natural proof? The theorem The weakness Epilogue

Proof of the theorem

Let n = mε/2, x P t0, 1un and g(x) = h(x0m�n).
We construct g's truth table (it costs 2O(n) time)
We calculate P(g). There are two cases:
...1 h is a random function, so g is also a random function from
t0, 1un to t0, 1u. That is Pr[P(g) = 1] ¥ 1/n.

...2 h is fs for some s. The map s, x ÞÑ fs(x) can be computed in
poly(m) time and hence the map x ÞÑ g(x) is computable by
a circuit of size poly(m) = nc (for some c) that has s
hard-wired into it. (To be sure, the distinguisher does not
know s or this circuit; we are only asserting that the circuit
exists). Hence P(g) = 0.

That means that we can distinguish between fs and a
random function with nonnegligible probability in
polynomial time.

Yiannis Kokkinis Natural Proofs 16 / 27



. . . . . .

Introduction What is a natural proof? The theorem The weakness Epilogue

Proof of the theorem

Let n = mε/2, x P t0, 1un and g(x) = h(x0m�n).
We construct g's truth table (it costs 2O(n) time)
We calculate P(g). There are two cases:
...1 h is a random function, so g is also a random function from
t0, 1un to t0, 1u. That is Pr[P(g) = 1] ¥ 1/n.

...2 h is fs for some s. The map s, x ÞÑ fs(x) can be computed in
poly(m) time and hence the map x ÞÑ g(x) is computable by
a circuit of size poly(m) = nc (for some c) that has s
hard-wired into it. (To be sure, the distinguisher does not
know s or this circuit; we are only asserting that the circuit
exists). Hence P(g) = 0.

That means that we can distinguish between fs and a
random function with nonnegligible probability in
polynomial time.

Yiannis Kokkinis Natural Proofs 16 / 27



. . . . . .

Introduction What is a natural proof? The theorem The weakness Epilogue

Overview

.
. .1 Introduction
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. .4 The weakness
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Trying to find a circuit lower bound for 3SAT...

If a circuit is complicated, some part of it should be
complicated too

So it is tempting to try to prove circuit lower bounds by
induction on a measure defined on the circuit size

.
Definition (Formal complexity measure)
..

.

. ..

.

.

A function µ : tt0, 1un Ñ t0, 1uu Ñ N+ s.t.:

...1 µ(x) ¤ 1, µ(sx) ¤ 1

...2 µ(f^ g) ¤ µ(f) + µ(g)

...3 µ(f_ g) ¤ µ(f) + µ(g)

For example µ (f ) = 1 + the smallest formula size for f

Yiannis Kokkinis Natural Proofs 18 / 27
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Definition (Formal complexity measure)
..

.

. ..

.

.

A function µ : tt0, 1un Ñ t0, 1uu Ñ N+ s.t.:
...1 µ(x) ¤ 1, µ(sx) ¤ 1
...2 µ(f^ g) ¤ µ(f) + µ(g)
...3 µ(f_ g) ¤ µ(f) + µ(g)

For example µ (f ) = 1 + the smallest formula size for f
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Trying to find a circuit lower bound for 3SAT...

If µ is any formal complexity measure, then µ(f) is a lower
bound on the formula complexity of f (proof by induction)

So it suffices to show that µ(3SaT) is super-polynomial
But this property cannot hold only for one function...

.
Theorem..

.

. ..

.

.

Suppose µ is a formal complexity measure and µ(f) ¥ S for
some f and some large number S. Then Pr[µ(g) ¥ S/4] ¥ 1/4.

.
Proof...

.

. ..

.

.

For random g let h = f` g so f = h` g = (h^ sg)_ (g^ sh). If
Pr[µ(g)   S/4] ¡ 3/4 then µ(h), µ(g), µ(�g), µ(sh)   S/4, so
µ(f)   S, but that is absurd.

Yiannis Kokkinis Natural Proofs 19 / 27



. . . . . .

Introduction What is a natural proof? The theorem The weakness Epilogue

Trying to find a circuit lower bound for 3SAT...

If µ is any formal complexity measure, then µ(f) is a lower
bound on the formula complexity of f (proof by induction)
So it suffices to show that µ(3SaT) is super-polynomial

But this property cannot hold only for one function...

.
Theorem..

.

. ..

.

.

Suppose µ is a formal complexity measure and µ(f) ¥ S for
some f and some large number S. Then Pr[µ(g) ¥ S/4] ¥ 1/4.

.
Proof...

.

. ..

.

.

For random g let h = f` g so f = h` g = (h^ sg)_ (g^ sh). If
Pr[µ(g)   S/4] ¡ 3/4 then µ(h), µ(g), µ(�g), µ(sh)   S/4, so
µ(f)   S, but that is absurd.

Yiannis Kokkinis Natural Proofs 19 / 27



. . . . . .

Introduction What is a natural proof? The theorem The weakness Epilogue

Trying to find a circuit lower bound for 3SAT...

If µ is any formal complexity measure, then µ(f) is a lower
bound on the formula complexity of f (proof by induction)
So it suffices to show that µ(3SaT) is super-polynomial
But this property cannot hold only for one function...

.
Theorem..

.

. ..

.

.

Suppose µ is a formal complexity measure and µ(f) ¥ S for
some f and some large number S. Then Pr[µ(g) ¥ S/4] ¥ 1/4.

.
Proof...

.

. ..

.

.

For random g let h = f` g so f = h` g = (h^ sg)_ (g^ sh). If
Pr[µ(g)   S/4] ¡ 3/4 then µ(h), µ(g), µ(�g), µ(sh)   S/4, so
µ(f)   S, but that is absurd.

Yiannis Kokkinis Natural Proofs 19 / 27



. . . . . .

Introduction What is a natural proof? The theorem The weakness Epilogue

Trying to find a circuit lower bound for 3SAT...

If µ is any formal complexity measure, then µ(f) is a lower
bound on the formula complexity of f (proof by induction)
So it suffices to show that µ(3SaT) is super-polynomial
But this property cannot hold only for one function...

.
Theorem..

.

. ..

.

.

Suppose µ is a formal complexity measure and µ(f) ¥ S for
some f and some large number S. Then Pr[µ(g) ¥ S/4] ¥ 1/4.

.
Proof...

.

. ..

.

.

For random g let h = f` g so f = h` g = (h^ sg)_ (g^ sh). If
Pr[µ(g)   S/4] ¡ 3/4 then µ(h), µ(g), µ(�g), µ(sh)   S/4, so
µ(f)   S, but that is absurd.

Yiannis Kokkinis Natural Proofs 19 / 27



. . . . . .

Introduction What is a natural proof? The theorem The weakness Epilogue

Trying to find a circuit lower bound for 3SAT...

If µ is any formal complexity measure, then µ(f) is a lower
bound on the formula complexity of f (proof by induction)
So it suffices to show that µ(3SaT) is super-polynomial
But this property cannot hold only for one function...

.
Theorem..

.

. ..

.

.

Suppose µ is a formal complexity measure and µ(f) ¥ S for
some f and some large number S. Then Pr[µ(g) ¥ S/4] ¥ 1/4.

.
Proof...

.

. ..

.

.

For random g let h = f` g so f = h` g = (h^ sg)_ (g^ sh). If
Pr[µ(g)   S/4] ¡ 3/4 then µ(h), µ(g), µ(�g), µ(sh)   S/4, so
µ(f)   S, but that is absurd.

Yiannis Kokkinis Natural Proofs 19 / 27



. . . . . .

Introduction What is a natural proof? The theorem The weakness Epilogue

Trying to find a circuit lower bound for 3SAT...

.

.

. ..

.

.

So if we prove this way that µ(3SaT) is super-polynomial we
define a natural predicate P(f) = 1ô µ(f) ¡ nc

Usefulness: P(3SAT) = 1, if g P SIZE(nc) thenP(g) = 0

Largeness: we just proved it

Constructiveness: easy from the truth table

.

.

. ..

.

.

That means that if one way functions exist we cannot prove P
� NP that way
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Overview

.
. .1 Introduction

.
. .2 What is a natural proof?

.
. .3 The theorem

.
. .4 The weakness

.
. .5 Epilogue
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Unnatural proofs

Can we prove circuit lower bounds using unnatural proofs?

We can use old simple diagonalization!
Diagonalization is an inherently unnatural technique
because it focuses on a specific function, so it violates the
largeness condition
Alternatively, one can also view a diagonalization proof as
showing that a function has the property that it disagrees
with every small circuit on some input - a property that
satisfies largeness but not constructiveness.
But diagonalization is a relativizing proof technique...
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Promise problems

A promise problem is a partially defined function
f : t0, 1u� Ñ t0, 1,Ku

An algorithm A solves a promise problem f iff
@x(f(x) P t0, 1u ñ A(x) = f(x)) (K represents undefined so
when f(x) = K there is no guarantee for A's output)
We can define promiseC for every complexity class C

.
Definition (promiseMA)
..

.

. ..

.

.

Let f be a promise problem. f P promiseMA if for every
x P t0, 1u� D polynomials p,q and a polynomial time algorithm A
s.t.:
f(x) = 1ñ Dy P t0, 1uq(|x|), Dz P t0, 1up(|x|)Pr[A(x, y, z) = 1] ¥ 2/3
f(x) = 0ñ Dy P t0, 1uq(|x|), Dz P t0, 1up(|x|)Pr[A(x, y, z) = 1] ¤ 1/3
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Unnatural proofs

.
Theorem..
.
. ..

.

.PSPACE � SIZE(nc)

.
Theorem (R. Santhanam, 2007)
..
.
. ..

.

.promiseMA � SIZE(nc)

the proof of the first theorem uses diagonalization and the proof
of the second theorem uses the first result
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Moral

We showed that we can use a natural property (one that
holds for a nonnegligible fraction of boolean functions and
can easily be checked) to distinguish a pseudorandom
function from a truly random function

So, we cannot use natural proofs to prove circuit lower
bounds in complexity classes where pseudorandom
generators exist, like NC1(parallel log-time and polynomial
number of processors) or TC0 (constant depth, polynomial
size, unbounded-fanin )
It is interesting that we used computational complexity to
shed light on a metamathematical question about
computational complexity
But remember that we used a condition (existence of
one-way functions) that is stronger than P � NP...
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