イロン イヨン イヨン イヨン

Natural Proofs

Yiannis Kokkinis

Structural Complexity $(\mu\Pi\lambda\forall)$

May 17, 2012

æ.

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Overview				

▲ロ → ▲圖 → ▲ 国 → ▲ 国 → 一

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Overview				

æ

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
i				
Overview				

- 2 What is a natural proof?
- 3 The theorem

크

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Overview	1			

- 2 What is a natural proof?
- 3 The theorem

크

글 🕨 🔸 글 🕨

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Overview	1			

- 2 What is a natural proof?
- 3 The theorem

< ∃⇒

크

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Overview				

- 2 What is a natural proof?
- 3 The theorem
- 4 The weakness
- 5 Epilogue

크

 Why are proofs for lower bounds so difficult? (e.g. *P* ≠ *PSPACE*, *P* ≠ *NP*)

크

・ロト ・回ト ・ヨト ・ヨト

- Why are proofs for lower bounds so difficult? (e.g. *P* ≠ *PSPACE*, *P* ≠ *NP*)
- Answer 1: because great mathematicians cannot prove them...

- Why are proofs for lower bounds so difficult? (e.g. *P* ≠ *PSPACE*, *P* ≠ *NP*)
- Answer 1: because great mathematicians cannot prove them...
- Answer 2: because known techniques are not good enough:

- Why are proofs for lower bounds so difficult? (e.g. *P* ≠ *PSPACE*, *P* ≠ *NP*)
- Answer 1: because great mathematicians cannot prove them...
- Answer 2: because known techniques are not good enough:
 - relativization: oracles, diagonalization (Baker, Gill, Solovay 1975)

- Why are proofs for lower bounds so difficult? (e.g. *P* ≠ *PSPACE*, *P* ≠ *NP*)
- Answer 1: because great mathematicians cannot prove them...
- Answer 2: because known techniques are not good enough:
 - relativization: oracles, diagonalization (Baker, Gill, Solovay 1975)
 - natural proofs: circuit lower bounds (Razborov, Rudich 1994)

・ロト ・回ト ・ヨト ・ヨト

- Why are proofs for lower bounds so difficult? (e.g. *P* ≠ *PSPACE*, *P* ≠ *NP*)
- Answer 1: because great mathematicians cannot prove them...
- Answer 2: because known techniques are not good enough:
 - relativization: oracles, diagonalization (Baker, Gill, Solovay 1975)
 - natural proofs: circuit lower bounds (Razborov, Rudich 1994)
 - algebrization: IP = PSPACE, PCP theorems (Aaronson, Wigderson 2008)

 A boolean circuit is a directed acyclic graph. It's nodes are AND, OR and NOT gates

- A boolean circuit is a directed acyclic graph. It's nodes are AND, OR and NOT gates
- The size of the circuit is the number of gates in it

- A boolean circuit is a directed acyclic graph. It's nodes are AND, OR and NOT gates
- The size of the circuit is the number of gates in it
- Different circuit for every different input size

- A boolean circuit is a directed acyclic graph. It's nodes are AND, OR and NOT gates
- The size of the circuit is the number of gates in it
- Different circuit for every different input size
- Let Γ be a complexity class. A family of circuits C₀, C₁, ... is said to be Γ-uniform if there is a Γ-bounded TM that on input 1ⁿ outputs C_n

- A boolean circuit is a directed acyclic graph. It's nodes are AND, OR and NOT gates
- The size of the circuit is the number of gates in it
- Different circuit for every different input size
- Let Γ be a complexity class. A family of circuits C₀, C₁, ... is said to be Γ-uniform if there is a Γ-bounded TM that on input 1ⁿ outputs C_n

Theorem

A language L is in P iff L has logspace-uniform polynomial circuits

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Overview				

- Introduction
- 2 What is a natural proof?
 - 3 The theorem
 - 4 The weakness
 - 5 Epilogue

æ

The theorem

・ロト ・回ト ・ヨト ・ヨト

What is a natural proof?

Definition (*n^c*-usefulness)

Let $f: \{0,1\}^n \to \{0,1\}, c \in \mathbb{N}$. Any proof that f does not have n^c -sized circuits can be viewed as defining a predicate \mathcal{P} s.t. $\mathcal{P}(f) = 1$ and $\forall g \in SIZE(n^c) \mathcal{P}(g) = 0$

イロト イヨト イヨト

What is a natural proof?

Definition (*n^c*-usefulness)

Let $f: \{0,1\}^n \to \{0,1\}, c \in \mathbb{N}$. Any proof that f does not have n^c -sized circuits can be viewed as defining a predicate \mathcal{P} s.t. $\mathcal{P}(f) = 1$ and $\forall g \in SIZE(n^c) \mathcal{P}(g) = 0$

Definition (Natural predicate)

We say that a predicate \mathcal{P} is natural if it satisfies the following two conditions ($g : \{0, 1\}^n \rightarrow \{0, 1\}$):

< D > < B > < E >

What is a natural proof?

Definition (*n^c*-usefulness)

Let $f: \{0,1\}^n \to \{0,1\}, c \in \mathbb{N}$. Any proof that f does not have n^c -sized circuits can be viewed as defining a predicate \mathcal{P} s.t. $\mathcal{P}(f) = 1$ and $\forall g \in SIZE(n^c) \mathcal{P}(g) = 0$

Definition (Natural predicate)

We say that a predicate \mathcal{P} is natural if it satisfies the following two conditions ($g: \{0, 1\}^n \rightarrow \{0, 1\}$):

Constructiveness: We can compute $\mathcal{P}(g)$ in time polynomial to the size of the truth table of g (that is in time $2^{\mathcal{O}(n)}$)

・ロト ・回ト ・ヨト ・ヨト

What is a natural proof?

Definition (*n^c*-usefulness)

Let $f: \{0,1\}^n \to \{0,1\}, c \in \mathbb{N}$. Any proof that f does not have n^c -sized circuits can be viewed as defining a predicate \mathcal{P} s.t. $\mathcal{P}(f) = 1$ and $\forall g \in SIZE(n^c) \mathcal{P}(g) = 0$

Definition (Natural predicate)

We say that a predicate \mathcal{P} is natural if it satisfies the following two conditions ($g: \{0, 1\}^n \rightarrow \{0, 1\}$):

Constructiveness: We can compute $\mathcal{P}(g)$ in time polynomial to the size of the truth table of g (that is in time $2^{\mathcal{O}(n)}$)

Largeness: $Pr[\mathcal{P}(g) = 1] \ge 1/n$

what is a natural proof:

Theorem (Existence of hard functions (Shannon, 1949))

The vast majority of all boolean functions with n inputs requires $\Omega(2^n/n)$ gates

Theorem (Existence of hard functions (Shannon, 1949))

The vast majority of all boolean functions with n inputs requires $\Omega(2^n/n)$ gates

 The above theorem implies that only a small fraction of boolean functions have polynomial size circuits. (but it's proof is not constructive, so we cannot use it to prove that there is a language in $NP \setminus SIZE(n^c)$)

What is a natural proof?

Theorem (Existence of hard functions (Shannon, 1949))

The vast majority of all boolean functions with n inputs requires $\Omega(2^n/n)$ gates

- The above theorem implies that only a small fraction of boolean functions have polynomial size circuits. (but it's proof is not constructive, so we cannot use it to prove that there is a language in $NP \setminus SIZE(n^c)$)
- So the largeness condition does not contradict n^c-usefulness.

What is a natural proof?

Theorem (Existence of hard functions (Shannon, 1949))

The vast majority of all boolean functions with n inputs requires $\Omega(2^n/n)$ gates

- The above theorem implies that only a small fraction of boolean functions have polynomial size circuits. (but it's proof is not constructive, so we cannot use it to prove that there is a language in $NP \setminus SIZE(n^c)$)
- So the largeness condition does not contradict n^c-usefulness.

Definition (Natural Proof)

A proof that a function does not have polynomial size circuits is called natural if it defines a natural predicate that is n^c-useful.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Examples of predicates

크

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Example	s of predicates			

■
$$\mathcal{P}(g) = 1 \Leftrightarrow g \notin SIZE(n^{\log n})$$

Usefulness: $n^c = \mathcal{O}(n^{\log n})$

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Examples	s of predicates			

$$(g) = 1 \Leftrightarrow g \notin SIZE(n^{\log n})$$

Usefulness: $n^c = \mathcal{O}(n^{logn})$

Largeness: existence of hard functions theorem 🗸

æ

・ロン ・回 と ・ ヨ と ・

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Example	es of predicates			
Us Li	(f hard function open problem g) = 1 in time	n (we can check	,

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Exam	ples of predicates			
0	· · · · · · · · · · · · · · · · · · ·	f hard function n open problem g) = 1 in time	n (we can check $\mathcal{O}(2^{n^{\log n}})$ by	(
3	enumeratin $\mathcal{P}(g) = 1 \Leftrightarrow g \text{ correctly s}$ for inputs of size <i>n</i>	g all circuits o solves the dec		SAT

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Exam	ples of predicates			
0	,	f hard function open problem (g) = 1 in time	n (we can check $\mathcal{O}(2^{n^{\log n}})$ by	ć
2	enumeratin $\mathcal{P}(g) = 1 \Leftrightarrow g \text{ correctly s}$ for inputs of size <i>n</i> Usefulness: if $3SAT \notin S$	solves the dec	f size n ^{log n}) [?] ision problem 3S	SAT

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Examp	oles of predicates			
2	$\mathcal{P}(g) = 1 \Leftrightarrow g \notin SIZE(n^{log})$ Usefulness: $n^c = \mathcal{O}(n^{logn})$ Largeness: existence of Constructiveness: it's an whether $\mathcal{P}(g)$ enumerating $\mathcal{P}(g) = 1 \Leftrightarrow g$ correctly so for inputs of size n Usefulness: if $3SAT \notin SIZ$ Largeness: it is true only	hard function open problem () = 1 in time all circuits of lives the deci	n (we can check $\mathcal{O}(2^{n^{\log n}})$ by size $n^{\log n}$? sion problem 3S	

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Exam	ples of predicates			
0	$\mathcal{P}(g) = 1 \Leftrightarrow g \notin SIZE(n^{log})$ Usefulness: $n^c = \mathcal{O}(n^{logn})$ Largeness: existence of l Constructiveness: it's an existence $\mathcal{P}(g)$	hard function open problem p = 1 in time	n (we can check $\mathcal{O}(2^{n^{\log n}})$ by	
2	enumerating $\mathcal{P}(g) = 1 \Leftrightarrow g$ correctly so for inputs of size <i>n</i> Usefulness: if $3SAT \notin SIZ$ Largeness: it is true only Constructiveness: we can checking g's	Ives the dec $E(n^c)$ for one func check whet	tion $oldsymbol{\lambda}$ her $\mathcal{P}(oldsymbol{g})=1$ by	Л
	Yiannis Kokkinis	Natural Proofs		≣ ∽ < ເ∾ 9/27

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
A natura	ıl proof			

AC⁰: constant depth, polynomial size, unlimited fan-in

æ

・ロト ・回 ト ・ヨト ・ヨト

 AC^{0} : constant depth, polynomial size, unlimited fan-in

Parity({x : x has an odd number of 1s}) $\notin AC^0$. In this proof the following predicate is defined: $\mathcal{P}(q) = 1 \Leftrightarrow q$ cannot be made constant by restricting $n - n^{\epsilon}$ input bits

・ロ・・ (日・・ 日・・ 日・・

 AC^{0} : constant depth, polynomial size, unlimited fan-in

Parity($\{x : x \text{ has an odd number of } 1s\}$) $\notin AC^0$. In this proof the following predicate is defined: $\mathcal{P}(q) = 1 \Leftrightarrow q$ cannot be made constant by restricting $n - n^{\epsilon}$ input bits

Usefulness: $\mathcal{P}(g) = 0$ for every AC^0 circuit and $\mathcal{P}(g) = 1$ for the parity function

・ロト ・回ト ・ヨト ・ヨト … ヨ

 AC^{0} : constant depth, polynomial size, unlimited fan-in

Parity({x : x has an odd number of 1s}) $\notin AC^0$. In this proof the following predicate is defined: $\mathcal{P}(g) = 1 \Leftrightarrow g$ cannot be made constant by restricting $n - n^{\epsilon}$ input bits

Usefulness: $\mathcal{P}(g) = 0$ for every AC^0 circuit and $\mathcal{P}(g) = 1$ for the parity function \checkmark Largeness: if g is a random function then $\mathcal{P}(g) = 1$ with high probability \checkmark

(ロ) (同) (目) (目) (日) (0) (0)

 AC^{0} : constant depth, polynomial size, unlimited fan-in

Parity({x : x has an odd number of 1s}) $\notin AC^0$. In this proof the following predicate is defined: $\mathcal{P}(q) = 1 \Leftrightarrow q$ cannot be made constant by restricting $n - n^{\epsilon}$ input bits

Usefulness: $\mathcal{P}(g) = 0$ for every AC^0 circuit and $\mathcal{P}(g) = 1$ for the parity function

Largeness: if g is a random function then $\mathcal{P}(g) = 1$ with high probability 🗸

Constructiveness: we can check in time $2^{\mathcal{O}(n)}$ if $\mathcal{P}(q) = 1$ from g's truth table ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

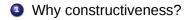
Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Overview				
1 Introc	luction			
2 What	is a natural proof?			
3 The t	heorem			

- 4 The weakness
- 5 Epilogue

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

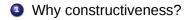
イロト イヨト イヨト イヨト

Why did we define natural predicates that way?



イロト イヨト イヨト イヨト

Why did we define natural predicates that way?



ヘロト ヘヨト ヘヨト

Why did we define natural predicates that way?

Why constructiveness?

We are interested in checking our conditions efficiently...

.≣⇒

A B > A B >

∢ ≣ ≯

Why did we define natural predicates that way?

- Why constructiveness? We are interested in checking our conditions efficiently...
- Why largeness?

A B > A B >

∢ ≣ ≯

Why did we define natural predicates that way?

- Why constructiveness? We are interested in checking our conditions efficiently...
- Why largeness?

イロト イヨト イヨト

Why did we define natural predicates that way?

- Why constructiveness? We are interested in checking our conditions efficiently...
- Why largeness?

Lemma

If a function f does not have circuits of size < S then at least half of the functions (with the same number of input variables as f) do not have circuits of size \leq S/2 -3

イロト イヨト イヨト イヨト

Why did we define natural predicates that way?

- Why constructiveness? We are interested in checking our conditions efficiently...
- Why largeness?

Lemma

If a function f does not have circuits of size < S then at least half of the functions (with the same number of input variables as f) do not have circuits of size \leq S/2 -3

Proof.

Let g be a random function then $f = (f \oplus g) \oplus g$. If both g and $f \oplus g$ have circuits of size < S/2 - 3 then f has a circuit of size <S (we need only 5 gates to compute \oplus)

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
The Natur	al Proofs Theore	em		

 So, we can easily check whether a function satisfies a natural predicate or not

< E → E

< 67 ▶

- So, we can easily check whether a function satisfies a natural predicate or not
- That means that we can easily tell whether a function is "random" or not

-≣->

・ロト ・回ト・ モート

- So, we can easily check whether a function satisfies a natural predicate or not
- That means that we can easily tell whether a function is "random" or not
- That is a key fact to prove the

< ロ > < 同 > < 巨 >

- So, we can easily check whether a function satisfies a natural predicate or not
- That means that we can easily tell whether a function is "random" or not
- That is a key fact to prove the

Theorem (Natural Proofs, Razborov-Rudich 1994)

Suppose that subexponentially strong one-way functions exist. Then there exists a constant $c \in \mathbb{N}$ such that there is no n^c -useful natural predicate \mathcal{P}

- So, we can easily check whether a function satisfies a natural predicate or not
- That means that we can easily tell whether a function is "random" or not
- That is a key fact to prove the

Theorem (Natural Proofs, Razborov-Rudich 1994)

Suppose that subexponentially strong one-way functions exist. Then there exists a constant $c \in \mathbb{N}$ such that there is no n^c -useful natural predicate \mathcal{P}

- So, we can easily check whether a function satisfies a natural predicate or not
- That means that we can easily tell whether a function is "random" or not
- That is a key fact to prove the

Theorem (Natural Proofs, Razborov-Rudich 1994)

Suppose that subexponentially strong one-way functions exist. Then there exists a constant $c \in \mathbb{N}$ such that there is no n^{c} -useful natural predicate \mathcal{P}

*subexponentially strong one-way function = one that resists inverting even by a $2^{n^{\epsilon}}$ -time adversary for some fixed $\epsilon > 0$.

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Pseudorar	ndom functions			

 We will show the contrapositive: suppose that for every c there exists a natural predicate, then one way functions do not exist

.≣...>

< 177 ▶

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Pseudo	random functions	5		

- We will show the contrapositive: suppose that for every c there exists a natural predicate, then one way functions do not exist
- J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby in 1999 showed that we can built a pseudorandom function family from every one way function.

< <p>> < <p>> < <p>> <</p>

< E >

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Pseudo	random functions	5		

- We will show the contrapositive: suppose that for every c there exists a natural predicate, then one way functions do not exist
- J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby in 1999 showed that we can built a pseudorandom function family from every one way function.

Definition (Pseudorandom function family)

A family of functions $\{f_s\}_{s \in \{0,1\}^*}$, where for $s \in \{0,1\}^m$, f_s is a function from $\{0,1\}^m$ to $\{0,1\}$, s.t.:

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Pseudo	random functions	5		

- We will show the contrapositive: suppose that for every c there exists a natural predicate, then one way functions do not exist
- J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby in 1999 showed that we can built a pseudorandom function family from every one way function.

Definition (Pseudorandom function family)

A family of functions $\{f_s\}_{s \in \{0,1\}^*}$, where for $s \in \{0,1\}^m$, f_s is a function from $\{0,1\}^m$ to $\{0,1\}$, s.t.:

3 We can built $f_s(x)$ in time polynomial in s and x

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Pseudo	random functions	5		

- We will show the contrapositive: suppose that for every c there exists a natural predicate, then one way functions do not exist
- J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby in 1999 showed that we can built a pseudorandom function family from every one way function.

Definition (Pseudorandom function family)

A family of functions $\{f_s\}_{s \in \{0,1\}^*}$, where for $s \in \{0,1\}^m$, f_s is a function from $\{0,1\}^m$ to $\{0,1\}$, s.t.:

- 3 We can built $f_s(x)$ in time polynomial in s and x
- **2** For $s \in \{0, 1\}^m$ no polynomial time algorithm can distinguish f_s from a random function from $\{0, 1\}^m$ to $\{0, 1\}$

• Let \mathcal{P} be a natural property on n-bit functions that is n^c -useful. That means that we have a $2^{\mathcal{O}(n)}$ -time algorithm which:

- Let \mathcal{P} be a natural property on n-bit functions that is n^c -useful. That means that we have a $2^{\mathcal{O}(n)}$ -time algorithm which:
 - outputs 0 on functions with circuit complexity lower than n^c

- Let P be a natural property on n-bit functions that is n^c -useful. That means that we have a $2^{\mathcal{O}(n)}$ -time algorithm which:
 - 2
 - outputs 0 on functions with circuit complexity lower than n^c outputs 1 on a nonnegligible fraction of functions

• Let \mathcal{P} be a natural property on n-bit functions that is n^c -useful. That means that we have a $2^{\mathcal{O}(n)}$ -time algorithm which:

- outputs 0 on functions with circuit complexity lower than n^c outputs 1 on a nonnegligible fraction of functions
- Let $\{f_s\}$ be a $2^{m^{\epsilon}}$ -secure pseudorandom function family

• Let \mathcal{P} be a natural property on n-bit functions that is n^c -useful. That means that we have a $2^{\mathcal{O}(n)}$ -time algorithm which:

outputs 0 on functions with circuit complexity lower than n^c outputs 1 on a nonnegligible fraction of functions

- Let $\{f_s\}$ be a $2^{m^{\epsilon}}$ -secure pseudorandom function family
- Let $h: \{0,1\}^m \rightarrow \{0,1\}$ be an unknown function (it could be either f_s for some s or a random function)

・ロ・・ (日・・ (日・・ (日・)

• Let \mathcal{P} be a natural property on n-bit functions that is n^c -useful. That means that we have a $2^{\mathcal{O}(n)}$ -time algorithm which:

outputs 0 on functions with circuit complexity lower than n^c outputs 1 on a nonnegligible fraction of functions

- Let $\{f_s\}$ be a $2^{m^{\epsilon}}$ -secure pseudorandom function family
- Let $h: \{0,1\}^m \to \{0,1\}$ be an unknown function (it could be either f_s for some s or a random function)
- We will use the natural property \mathcal{P} to tell whether h is a (truly) random function

・ロ・・ (日・・ 日・・ 日・・

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Proof of	the theorem			

• Let
$$n = m^{\epsilon/2}, x \in \{0, 1\}^n$$
 and $g(x) = h(x0^{m-n})$.

▲□▶▲□▶▲□▶▲□▶ = のへで

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Proof of	the theorem			

- Let $n = m^{\epsilon/2}, x \in \{0, 1\}^n$ and $g(x) = h(x0^{m-n})$.
- We construct g's truth table (it costs $2^{\mathcal{O}(n)}$ time)

・ロト ・回ト ・ヨト ・ヨト … ヨ

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Proof of	the theorem			
FIUUIUI				

- Let $n = m^{\epsilon/2}, x \in \{0, 1\}^n$ and $g(x) = h(x0^{m-n})$.
- We construct g's truth table (it costs $2^{\mathcal{O}(n)}$ time)
- We calculate $\mathcal{P}(g)$. There are two cases:

2

・ロト ・回 ト ・ヨト ・ヨト

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Proof of	the theorem			

- Let $n = m^{\epsilon/2}, x \in \{0, 1\}^n$ and $g(x) = h(x0^{m-n})$.
- We construct g's truth table (it costs $2^{\mathcal{O}(n)}$ time)
- We calculate $\mathcal{P}(g)$. There are two cases:
 - h is a random function, so g is also a random function from $\{0,1\}^n$ to $\{0,1\}$. That is $Pr[\mathcal{P}(g) = 1] \ge 1/n$.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Proof of	the theorem			

- Let $n = m^{\epsilon/2}, x \in \{0, 1\}^n$ and $g(x) = h(x0^{m-n})$.
- We construct g's truth table (it costs $2^{\mathcal{O}(n)}$ time)
- We calculate $\mathcal{P}(g)$. There are two cases:
 - h is a random function, so g is also a random function from $\{0,1\}^n$ to $\{0,1\}$. That is $Pr[\mathcal{P}(g) = 1] \ge 1/n$.
 - ② h is f_s for some s. The map $s, x \mapsto f_s(x)$ can be computed in poly(m) time and hence the map $x \mapsto g(x)$ is computable by a circuit of size $poly(m) = n^c$ (for some c) that has s hard-wired into it. (To be sure, the distinguisher does not know s or this circuit; we are only asserting that the circuit exists). Hence $\mathcal{P}(g) = 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Proof of	the theorem			

- Let $n = m^{\epsilon/2}, x \in \{0, 1\}^n$ and $g(x) = h(x0^{m-n})$.
- We construct g's truth table (it costs $2^{\mathcal{O}(n)}$ time)
- We calculate $\mathcal{P}(g)$. There are two cases:
 - h is a random function, so g is also a random function from $\{0,1\}^n$ to $\{0,1\}$. That is $Pr[\mathcal{P}(g) = 1] \ge 1/n$.
 - ② h is f_s for some s. The map $s, x \mapsto f_s(x)$ can be computed in poly(m) time and hence the map $x \mapsto g(x)$ is computable by a circuit of size $poly(m) = n^c$ (for some c) that has s hard-wired into it. (To be sure, the distinguisher does not know s or this circuit; we are only asserting that the circuit exists). Hence $\mathcal{P}(g) = 0$.
- That means that we can distinguish between f_s and a random function with nonnegligible probability in polynomial time.

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Overview				

1 Introduction

- 2 What is a natural proof?
- 3 The theorem
- 4 The weakness

5 Epilogue

æ

・ロ・・ (日・・ ヨ・・

Trying to find a circuit lower bound for 3SAT...

• If a circuit is complicated, some part of it should be complicated too

Trying to find a circuit lower bound for 3SAT...

- If a circuit is complicated, some part of it should be complicated too
- So it is tempting to try to prove circuit lower bounds by induction on a measure defined on the circuit size

Trying to find a circuit lower bound for 3SAT...

- If a circuit is complicated, some part of it should be complicated too
- So it is tempting to try to prove circuit lower bounds by induction on a measure defined on the circuit size

Definition (Formal complexity measure)

A function $\mu : \{\{0,1\}^n \rightarrow \{0,1\}\} \rightarrow \mathbb{N}^+$ s.t.:

Trying to find a circuit lower bound for 3SAT...

- If a circuit is complicated, some part of it should be complicated too
- So it is tempting to try to prove circuit lower bounds by induction on a measure defined on the circuit size

A function
$$\mu : \{\{0,1\}^n \to \{0,1\}\} \to \mathbb{N}^+$$
 s.t.:

$$\mu(x) \leq 1, \mu(\bar{x}) \leq 1$$

ヘロト ヘヨト ヘヨト

Trying to find a circuit lower bound for 3SAT...

- If a circuit is complicated, some part of it should be complicated too
- So it is tempting to try to prove circuit lower bounds by induction on a measure defined on the circuit size

A function
$$\mu : \{\{0,1\}^n \rightarrow \{0,1\}\} \rightarrow \mathbb{N}^+$$
 s.t.:

$$(\mathbf{x}) \leq 1, \mu(\bar{\mathbf{x}}) \leq 1$$

2
$$\mu(\mathbf{f} \wedge \mathbf{g}) \leq \mu(\mathbf{f}) + \mu(\mathbf{g})$$

ヘロト ヘヨト ヘヨト

Trying to find a circuit lower bound for 3SAT...

- If a circuit is complicated, some part of it should be complicated too
- So it is tempting to try to prove circuit lower bounds by induction on a measure defined on the circuit size

A function
$$\mu : \{\{0,1\}^n \rightarrow \{0,1\}\} \rightarrow \mathbb{N}^+$$
 s.t.:

$$(\mathbf{x}) \leq 1, \mu(\bar{\mathbf{x}}) \leq 1$$

$$(\mathbf{f} \wedge \mathbf{g}) \leq \mu(\mathbf{f}) + \mu(\mathbf{g})$$

$$(\mathbf{I} \lor \mathbf{g}) \leq \mu(\mathbf{f}) + \mu(\mathbf{g})$$

ヘロト ヘヨト ヘヨト

Trying to find a circuit lower bound for 3SAT...

- If a circuit is complicated, some part of it should be complicated too
- So it is tempting to try to prove circuit lower bounds by induction on a measure defined on the circuit size

A function
$$\mu : \{\{0,1\}^n \rightarrow \{0,1\}\} \rightarrow \mathbb{N}^+$$
 s.t.:

$$(\mathbf{x}) \leq 1, \mu(\bar{\mathbf{x}}) \leq 1$$

$$(\mathbf{f} \wedge \mathbf{g}) \leq \mu(\mathbf{f}) + \mu(\mathbf{g})$$

$$(\mathbf{I} \lor \mathbf{g}) \leq \mu(\mathbf{f}) + \mu(\mathbf{g})$$

<日>< 日>< モン

Trying to find a circuit lower bound for 3SAT...

- If a circuit is complicated, some part of it should be complicated too
- So it is tempting to try to prove circuit lower bounds by induction on a measure defined on the circuit size

Definition (Formal complexity measure)

A function
$$\mu : \{\{0,1\}^n \rightarrow \{0,1\}\} \rightarrow \mathbb{N}^+$$
 s.t.:

$$(\mathbf{x}) \leq 1, \mu(\bar{\mathbf{x}}) \leq 1$$

2
$$\mu(\mathbf{f} \wedge \mathbf{g}) \leq \mu(\mathbf{f}) + \mu(\mathbf{g})$$

$$(\mathbf{I} \lor \mathbf{g}) \leq \mu(\mathbf{f}) + \mu(\mathbf{g})$$

For example μ (f) = 1 + the smallest formula size for f

Trying to find a circuit lower bound for 3SAT...

 If μ is any formal complexity measure, then μ(f) is a lower bound on the formula complexity of f (proof by induction)

Trying to find a circuit lower bound for 3SAT...

- If μ is any formal complexity measure, then μ(f) is a lower bound on the formula complexity of f (proof by induction)
- So it suffices to show that $\mu(3SaT)$ is super-polynomial

Trying to find a circuit lower bound for 3SAT...

- If μ is any formal complexity measure, then μ(f) is a lower bound on the formula complexity of f (proof by induction)
- So it suffices to show that $\mu(3SaT)$ is super-polynomial
- But this property cannot hold only for one function...

・ロト ・回ト ・ヨト ・ヨト

Trying to find a circuit lower bound for 3SAT...

- If μ is any formal complexity measure, then μ(f) is a lower bound on the formula complexity of f (proof by induction)
- So it suffices to show that $\mu(3SaT)$ is super-polynomial
- But this property cannot hold only for one function...

Theorem

Suppose μ is a formal complexity measure and $\mu(f) \ge S$ for some f and some large number S. Then $\Pr[\mu(g) \ge S/4] \ge 1/4$.

Trying to find a circuit lower bound for 3SAT...

- If μ is any formal complexity measure, then μ(f) is a lower bound on the formula complexity of f (proof by induction)
- So it suffices to show that $\mu(3SaT)$ is super-polynomial
- But this property cannot hold only for one function...

Theorem

Suppose μ is a formal complexity measure and $\mu(f) \ge S$ for some f and some large number S. Then $\Pr[\mu(g) \ge S/4] \ge 1/4$.

Proof.

For random g let $h = f \oplus g$ so $f = h \oplus g = (h \land \overline{g}) \lor (g \land \overline{h})$. If $Pr[\mu(g) < S/4] > 3/4$ then $\mu(h), \mu(g), \mu(\overline{g}), \mu(\overline{h}) < S/4$, so $\mu(f) < S$, but that is absurd.

Trying to find a circuit lower bound for 3SAT...

So if we prove this way that $\mu(3SaT)$ is super-polynomial we define a natural predicate $\mathcal{P}(f) = 1 \Leftrightarrow \mu(f) > n^c$

イロン イヨン イヨン -

Trying to find a circuit lower bound for 3SAT...

So if we prove this way that $\mu(3SaT)$ is super-polynomial we define a natural predicate $\mathcal{P}(f) = 1 \Leftrightarrow \mu(f) > n^c$

Usefulness: $\mathcal{P}(3SAT) = 1$, if $g \in SIZE(n^c)$ then $\mathcal{P}(g) = 0$

・ロト ・回ト ・ヨト ・ヨト

Trying to find a circuit lower bound for 3SAT...

So if we prove this way that $\mu(3SaT)$ is super-polynomial we define a natural predicate $\mathcal{P}(f) = 1 \Leftrightarrow \mu(f) > n^c$

Usefulness: $\mathcal{P}(3SAT) = 1$, if $g \in SIZE(n^c)$ then $\mathcal{P}(g) = 0$ Largeness: we just proved it

・ロト ・回ト ・ヨト ・ヨト

Trying to find a circuit lower bound for 3SAT...

So if we prove this way that $\mu(3SaT)$ is super-polynomial we define a natural predicate $\mathcal{P}(f) = 1 \Leftrightarrow \mu(f) > n^c$

Usefulness: $\mathcal{P}(3SAT) = 1$, if $g \in SIZE(n^c)$ then $\mathcal{P}(g) = 0$

Largeness: we just proved it 🗸

Constructiveness: easy from the truth table 🗸

イロン イヨン イヨン イヨン

Trying to find a circuit lower bound for 3SAT...

So if we prove this way that $\mu(3SaT)$ is super-polynomial we define a natural predicate $\mathcal{P}(f) = 1 \Leftrightarrow \mu(f) > n^c$

Usefulness: $\mathcal{P}(3SAT) = 1$, if $g \in SIZE(n^c)$ then $\mathcal{P}(g) = 0$

Largeness: we just proved it 🗸

Constructiveness: easy from the truth table 🗸

That means that if one way functions exist we cannot prove P \neq *NP* that way

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Overview				

- 2 What is a natural proof?
- 3 The theorem
- 4 The weakness

æ

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

• Can we prove circuit lower bounds using unnatural proofs?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Can we prove circuit lower bounds using unnatural proofs?
- We can use old simple diagonalization!

- Can we prove circuit lower bounds using unnatural proofs?
- We can use old simple diagonalization!
- Diagonalization is an inherently unnatural technique because it focuses on a specific function, so it violates the largeness condition

- Can we prove circuit lower bounds using unnatural proofs?
- We can use old simple diagonalization!
- Diagonalization is an inherently unnatural technique because it focuses on a specific function, so it violates the largeness condition
- Alternatively, one can also view a diagonalization proof as showing that a function has the property that it disagrees with every small circuit on some input - a property that satisfies largeness but not constructiveness.

- Can we prove circuit lower bounds using unnatural proofs?
- We can use old simple diagonalization!
- Diagonalization is an inherently unnatural technique because it focuses on a specific function, so it violates the largeness condition
- Alternatively, one can also view a diagonalization proof as showing that a function has the property that it disagrees with every small circuit on some input - a property that satisfies largeness but not constructiveness.
- But diagonalization is a relativizing proof technique...

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Promise p	roblems			

• A promise problem is a partially defined function $f: \{0,1\}^* \rightarrow \{0,1,\bot\}$

(日) (部) (目) (日) (日) (日)

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Promise pr	chlomo			

- A promise problem is a partially defined function
 - $f:\{0,1\}^* \rightarrow \{0,1,\bot\}$
 - An algorithm A solves a promise problem f iff
 ∀x(f(x) ∈ {0,1} ⇒ A(x) = f(x)) (⊥ represents undefined so when f(x) = ⊥ there is no guarantee for A's output)

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Promise	e problems			

- - A promise problem is a partially defined function
 - $f: \{0, 1\}^* \to \{0, 1, \bot\}$
 - An algorithm A solves a promise problem f iff $\forall x(f(x) \in \{0, 1\} \Rightarrow A(x) = f(x)) \ (\perp \text{ represents undefined so})$ when $f(x) = \bot$ there is no guarantee for A's output)
 - We can define *promiseC* for every complexity class C

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Promise	problems			

- A promise problem is a partially defined function
 - $f: \{0, 1\}^* \to \{0, 1, \bot\}$
- An algorithm A solves a promise problem f iff $\forall x(f(x) \in \{0, 1\} \Rightarrow A(x) = f(x)) \ (\perp \text{ represents undefined so})$ when $f(x) = \bot$ there is no guarantee for A's output)
- We can define *promiseC* for every complexity class C

Definition (promiseMA)

Let f be a promise problem. $f \in promiseMA$ if for every $x \in \{0, 1\}^*$ \exists polynomials p,q and a polynomial time algorithm A s.t.: $f(\mathbf{x}) = 1 \Rightarrow \exists \mathbf{y} \in \{0, 1\}^{q(|\mathbf{x}|)}, \exists \mathbf{z} \in \{0, 1\}^{p(|\mathbf{x}|)} \Pr[A(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 1] \ge 2/3$ $f(\mathbf{x}) = 0 \Rightarrow \exists \mathbf{y} \in \{0, 1\}^{q(|\mathbf{x}|)}, \exists \mathbf{z} \in \{0, 1\}^{p(|\mathbf{x}|)} \Pr[A(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 1] \leq 1/3$

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Unnatur	al proofs			

$PSPACE \subseteq SIZE(n^c)$

▲ロ → ▲圖 → ▲ 国 → ▲ 国 → 一

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Unnatur	al proofs			

 $PSPACE \subseteq SIZE(n^c)$

Theorem (R. Santhanam, 2007)

promiseMA \subseteq *SIZE*(*n*^c)

æ

イロン イヨン イヨン

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Unnatur	al proofs			

 $PSPACE \subseteq SIZE(n^c)$

Theorem (R. Santhanam, 2007)

promiseMA \subseteq *SIZE*(*n*^c)

æ

イロン イヨン イヨン

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Unnatural	proofs			

 $PSPACE \subseteq SIZE(n^c)$

Theorem (R. Santhanam, 2007)

promiseMA \subseteq *SIZE*(n^c)

the proof of the first theorem uses diagonalization and the proof of the second theorem uses the first result

æ

イロン イヨン イヨン -

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Moral				

 We showed that we can use a natural property (one that holds for a nonnegligible fraction of boolean functions and can easily be checked) to distinguish a pseudorandom function from a truly random function

I ∃ ≥

• □ ▶ • □ ▶ • □ ▶

	at is a natural proof? The theorem The weakness Epilogu	ogue
Moral		

- We showed that we can use a natural property (one that holds for a nonnegligible fraction of boolean functions and can easily be checked) to distinguish a pseudorandom function from a truly random function
- So, we cannot use natural proofs to prove circuit lower bounds in complexity classes where pseudorandom generators exist, like NC¹(parallel log-time and polynomial number of processors) or TC⁰ (constant depth, polynomial size, unbounded-fanin)

・ロト ・回ト ・ヨト ・ヨト

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Moral				

- We showed that we can use a natural property (one that holds for a nonnegligible fraction of boolean functions and can easily be checked) to distinguish a pseudorandom function from a truly random function
- So, we cannot use natural proofs to prove circuit lower bounds in complexity classes where pseudorandom generators exist, like NC¹(parallel log-time and polynomial number of processors) or TC⁰ (constant depth, polynomial size, unbounded-fanin)
- It is interesting that we used computational complexity to shed light on a metamathematical question about computational complexity

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Moral				

- We showed that we can use a natural property (one that holds for a nonnegligible fraction of boolean functions and can easily be checked) to distinguish a pseudorandom function from a truly random function
- So, we cannot use natural proofs to prove circuit lower bounds in complexity classes where pseudorandom generators exist, like NC¹(parallel log-time and polynomial number of processors) or TC⁰ (constant depth, polynomial size, unbounded-fanin)
- It is interesting that we used computational complexity to shed light on a metamathematical question about computational complexity
- But remember that we used a condition (existence of one-way functions) that is stronger than P ≠ NP...

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Bios				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Bios				

Alexander Razborov (1963-) Nevanlinna Prize (Approximation method, 1990), Gödel Prize (Natural Proofs, 2007)

University of Chicago

・ロ・・ (日・・ (日・・ (日・)

æ

Bios

Alexander Razborov (1963-) Nevanlinna Prize (Approximation method, 1990), Gödel Prize (Natural Proofs, 2007)

University of Chicago

Steven Rudich (1961-) Gödel Prize (Natural Proofs, 2007)

Carnegie Mellon University

ヘロト ヘヨト ヘヨト

-≣->

Introduction	What is a natural proof?	The theorem	The weakness	Epilogue
Reference	S			

æ

- A.Razborov, S. Rudich. Natural Proofs, J. Comput. Syst. Sci. 55(1): 24-35 (1997)
- Timothy Y. Chow. What is a natural proof?, Notices of the AMS Volume 58, Number 11, December 2011

- A.Razborov, S. Rudich. Natural Proofs, J. Comput. Syst. Sci. 55(1): 24-35 (1997)
- **Timothy Y. Chow**. What is a natural proof?, Notices of the AMS Volume 58, Number 11, December 2011
- Sanjeev Arora, Boaz Barak. Computational Complexity: A modern Approach, Cambridge University Press 2009

- A.Razborov, S. Rudich. Natural Proofs, J. Comput. Syst. Sci. 55(1): 24-35 (1997)
- **Timothy Y. Chow**. What is a natural proof?, Notices of the AMS Volume 58, Number 11, December 2011
- Sanjeev Arora, Boaz Barak. Computational Complexity: A modern Approach, Cambridge University Press 2009

- A.Razborov, S. Rudich. Natural Proofs, J. Comput. Syst. Sci. 55(1): 24-35 (1997)
- **Timothy Y. Chow**. What is a natural proof?, Notices of the AMS Volume 58, Number 11, December 2011
- Sanjeev Arora, Boaz Barak. Computational Complexity: A modern Approach, Cambridge University Press 2009

THANK YOU!