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Measure & Dimension in Complexity Classes

This research field was established on 1987 with Jack Lutz’s PhD Thesis
titled Resource Bounded Category and Measure in Exponential Complexity
Classes.

Lutz has written more than 100 papers on the subject, with the following
being his most important milestones:

Resource-bounded Category (1987)

Resource-bounded Measure (1991)

Resource-bounded Dimension (2000)

In this talk we will concern ourselves with just the two last results.

...But let us start from the beginning; i.e., the motivation!
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Introduction: General Motivation

Lutz was primarily interested in:

the NP problem (What is the power of nondeterminism?)

the BPP problem (What is the power of randomness?)

complexity in analysis (especially geometric measure theory)

In trying to investigate these problems, he developed the three analytic
tools mentioned (Resource-bounded Category, Measure and Dimension).

These are complexity-theoretic generalizations of classical Baire category,
Lebesgue measure, and Hausdorff dimension (fractal dimension),
respectively. Each provides a mathematical means of quantifying the sizes
of subsets of various complexity classes.
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Introduction: Important Figures

Before we begin formally, I would like to present the most important
figures of this area:

Jack Lutz (1987 @ Caltech: Alexander S. Kechris)

Claus-Peter Schnorr (1967 @ Universitt des Saarlandes: Günter Hotz)

Charles H. Bennett (1970 @ Harvard: David Turnbull and Berni
Alder)

John Gill (1972 @ UC Berkeley: Manuel Blum and Robert W.
Robinson)

Klaus Wagner (D) (1976 @ Friedrich-Schiller-Universitt Jena: Karl
Dörge)

Heribert Vollmer (1994 @ Julius-Maximilians-Universität Wrzburg:
Klaus Wagner)

Ronald Vernon Book (D) (1969 @ Harvard: Sheila Adele Greibach)

Juris Hartmanis (1955 @ Caltech: Robert P. Dilworth)
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Introduction: Motivation (1)

Separations of complexity classes C ( D, although they may be very hard
to obtain, are in some sense not very pleasing. In principle, they only
establish the existence of a single language L in D which is not a member
of C. A more convincing argument would be to show that D is much
larger than C, i.e., that languages like L are frequent.

In the famous case of P versus NP, the above objection does not really
hold. Separating P from NP would prove that none of the hundreds of
NP-complete languages can be solved in polynomial time. But how can
we formalize a statement like “most languages in NP are NP-complete”?
More generally, we would like to have a measure for the frequency with
which a given property P occurs within a complexity class.
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Introduction: Motivation (2)

Towards this direction, let us define
∆ = {x0, x1, x2, ... | (∀i)[xi = 0 ∨ xi = 1]} = {0, 1}∞ the set of all infinite
binary sequences.

Moreover, we may view a language, L, as an infinite
binary sequence, by associating it with its characteristic sequence.

Then we can use the Lebesgue measure on {0, 1}∞ as a tool to provide
these answers.

Intuitively, one can think of the Lebesgue measure of a set A ⊆ {0, 1}∞ as
the probability that we end up with a sequence in A when we flip an
unbiased coin to determine each of the bits of the sequence independently.
We would say that a property P is frequent if the Lebesgue measure of the
class of characteristic sequences of languages that satisfy P is large.
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Introduction: Motivation (3)

The previous approach is also used in the so-called “random oracle
results”.

For example, the statement that P differs from NP relative to a
random oracle, means that the Lebesgue measure of the class of oracles R
such that PR 6= NPR equals 1.

The idea is to apply this notion to complexity classes. However there are
some drawbacks. First, as in the case of random oracle results, we should
not expect too much quantitative information. For example, membership
to a complexity class C and the validity of P are typically invariant under
finite changes in the characteristic sequence (adding / deleting / replacing
finitely many bits), and Kolmogorov’s zero-one law then states that the
Lebesgue measure of the subclass of C satisfying P is either 0 or 1 or else
undefined.

Since, our classes are all countable, therefore the Lebesgue measure
would always be 0.
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Introduction: Motivation (4)

The remedy to this situation was to consider a restriction of Lebesgue
measure in the mathematical sense and at the same time, keep the nice
properties of the Lebesgue measure: subset of a small set is small and that
the union of two small sets is small.

This approach is based on a characterization of Lebesgue zero measure
using martingales.
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Definition: Martingales (1)

A martingale is abstractly defined as a function d : {0, 1}∗ → [0,∞)
satisfying the following law:

d(w) =
d(w0) + d(w1)

2
, for every w ∈ {0, 1}∗,

where w0 is the concatenation of w and 0.

A martingale succeeds on a sequence ω ∈ {0, 1}∞ if:

d(ω) = lim sup
wvω,w→ω

d(w) =∞
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Definition: Martingales (2)

More intuitively, a martingale d describes a strategy for an infinite
one-person betting game.

At the beginning of the game, an infinite bit sequence ω is fixed but not
revealed. The player starts with initial capital d(λ), and in each round
guesses the next bit of ω and bets some of his capital on that outcome.
Then the actual value of the bit is revealed. On a correct guess, the player
earns the amount of money he bet; otherwise he loses it. The value of
d(w) equals the capital of the player after being revealed the sequence w.
The player wins on ω if he manages to make his capital arbitrarily high
during the game.
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Definition: Martingales (3)

In Lutz’s theory is that a string w ∈ {0, 1}∗ stands for an initial segment
of the characteristic sequence of a language A.

We say that a martingale
d succeeds on a language A if it succeeds on its characteristic sequence
χA. We denote the class of languages on which d succeeds by S∞[d], and
say that d covers a class C of languages if C ⊆ S∞[d].

Martingales yield the following characterization.
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Definition: Resource-bounded Measure (1)

Theorem

A class C has Lebesgue measure zero iff it can be covered by a martingale.

Lutz obtained a resource-bounded measure variant by putting resource
bounds on the martingales.

He showed that for certain classes of time bounds one loses no generality
by requiring that martingales themselves have values such that all digits
are output within the time bound. That means that, given any martingale
d meeting the original definition of computability within the time bound,
one can obtain a rational-valued d′ computable within that bound such
that S∞[d] ⊆ S∞[d′].

Definition

Let ∆ be a complexity class. A class C of languages has ∆-measure zero,
written µ∆(C) = 0, if there is a martingale d computable in ∆ such that
C ⊆ S∞[d].
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Definition: Resource-bounded Measure (2)

Lutz measured the time to compute d(w) in terms of the length N of w,
but one can also work in terms of the largest length n of a string in the
domain of w.

For N > 0, n = blog2Nc; all we really care about is that
n = Θ(logN) and N = 2Θ(n).

Because complexity bounds on languages we want to analyze will naturally
be stated in terms of n, we prefer to use n for the martingale complexity
bounds. The following correspondence is helpful:

Lutz’s “p” ∼ NO(1) = 2O(n) ∼ measure on E

Lutz’s “p2” ∼ 2logNO(1)
= 2n

O(n) ∼ measure on EXP
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Definition: Resource-bounded Measure (3)

Since we measure the time to compute d(w) in terms of n, we write “µE”
for E-measure and “µEXP” for EXP-measure, and generally µ∆ for any
∆. Similarly, we define:

Definition

A class C has measure ∆-measure one (µ∆(C) = 1), if µ∆(∆\C) = 0
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Applications

Theorem (Lutz 1990)

P/Poly [: PSIZE]
⋂

ESPACE is a measure 0 subset of ESPACE.

This means that the phenomenon of not having polynomial-size circuits is
very typical of problems in ESPACE, in the sense of measure.

Theorem (Lutz 1992)

Almost every problem in ESPACE has essentially maximum circuit-size
complexity almost everywhere.

This proves that the Shannon effect holds with full force in ESPACE.
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Resource-bounded Measure Limitations

In spite of the power of resource-bounded measure, there are certain
inherent limitations to the amount of quantitative information that it can
provide in computational complexity. One of these limitations arises from
the resource-bounded Kolmogorov zero-one law:

For any class C in which resource-bounded measure is defined, and for any
set X of languages that is closed under finite variations, the zero-one law
says that the measure of X in C must either be 0, 1 or undefined.

Another limitation arises from the simple fact that even a measure 0
subset of a complexity class may have internal structure that we would like
to elaborate on quantitatively.

Both of these limitations were already present in the classical Lebesgue
measure theory.
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Dimension comes into play

In 1919, Hausdorff augmented classical Lebesgue measure theory with a
theory of dimension.

This theory assigns to every subset X of a given metric space a real
number dimH(X), which is now called the Hausdorff dimension of X.

In this presentation, we are interested in the case where the metric space is
the Cantor space C, consisting of all decision problems (i.e., all languages
A ⊆ {0, 1}∗). In this case the Hausdorff dimension of a set X ⊆ C is a
real number dimH(X) ∈ [0, 1].

The Hausdorff dimension is monotone, with dimH(∅) = 0 and
dimH(C) = 1. Moreover, if dimH(X) < dimH(C), then X is a measure 0
subset of C . Hausdorff dimension thus overcomes both of the limitations
mentioned in the previous slide.
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Resource-bounded Dimension (1)

Based on the classical definition just given, Lutz defines resource-bounded
dimension, which is a complexity-theoretic generalization of classical
Hausdorff dimension.

This generalization takes place in two steps:

Initially, he proves a new characterization of classical Hausdorff
dimension in terms of gales, which are a natural generalization of the
martingales.

Consequently, he generalizes classical dimension by introducing a
resource bound ∆ and requires the gales to be ∆-computable.
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Resource-bounded Dimension (2)

The whole process to actually prepare the reader for the proper definition
of resource-bounded dimension is a lot longer than that of measure and
equally - if not more - technical.

You can read everything in details at “Dimension in Complexity Classes”
by J. Lutz 2000.

We will finish this chapter with a few understandable applications.
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Applications (1)

We will show that for each 0 ≤ s ≤ 1 there is a natural set X that has
dimension equal to s in each of the exponential classes E and EXP.

This
set X consists of those languages that asymptotically contain at most a of
all strings, where 0 ≤ a ≤ 1

2 and H(a) = s. Analytically:

For each nonempty string w ∈ {0, 1}+, let: freq(w) = #(1,w)
|w| , where

#(1, w) is the number of 1’s in w.
For each A ∈ C and n ∈ Z+, let: freqA(n) = freq(A[0..n− 1]).

That is, freqA(n) is the fraction of the first n strings in {0, 1}∗ that are
elements of A. For a ∈ [0, 1], we define the sets:

FREQ(a) = {A ∈ C | lim
n→∞

freqA(n) = a}

FREQ(≤ a) = {A ∈ C | lim inf
n→∞

freqA(n) = a}
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Applications (2)

The set FREQ(≤ a) is precisely the set X promised in the previous slide.

The results also use the binary entropy function defined by Shannon:

H : [0, 1]→ [0, 1] : H(a) = a log
1

2
+ (1− a) log

1

1− a
,

where H(0) = H(1) = 0.

In a long proof, Lutz showed that for every real number a ∈ [0, 1
2 ],

dim (FREQ(≤ a) |E) = H(a)

and

dim (FREQ(≤ a) |EXP) = H(a),
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Applications (3)

Theorem (Lutz 1990)

P/Poly [: PSIZE]
⋂

ESPACE is a meager subset of ESPACE.

This means that the phenomenon of not having polynomial-size circuits is
very typical of problems in ESPACE, in the sense of dimension.
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Applications (4)

These applications are interesting because they show that
resource-bounded dimension interacts informatively with information
theory and Boolean circuit-size complexity. However, they are clearly only
the beginning.

Classical Hausdorff dimension is a sophisticated mathematical theory that
has emerged as one of the most important tools for the investigation of
fractal sets. Many sets of interest in computational complexity seem to
have “fractal-like” structures. Resource-bounded dimension will be a
useful tool for the study of such sets.
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Thank you!
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