Hard Instances of Lattice Problems Average Case - Worst Case Connections

Christos Litsas

28 June 2012

Outline

Abstract

Lattices

The Random Class

Worst-Case - Average-Case Connection

Abstract

Hard Problems Already Exist

All Time Classic Hard Problems

- NP-Complete problems
- Factorization
- Discrete Logarithm
reduces to average case: $\log _{g_{2}} t=\left(\log _{g_{1}} g_{2}\right)\left(\log _{g_{1}} t\right)^{-1}$

Hard Problems Already Exist

All Time Classic Hard Problems

- NP-Complete problems
- Factorization
- Discrete Logarithm reduces to average case: $\log _{g_{2}} t=\left(\log _{g_{1}} g_{2}\right)\left(\log _{g_{1}} t\right)^{-1}$

Worst-Case Hardness

Those problems are hard only under certain distributions. Often it is not clear how to find such a distribution.

One Step Further

Worst-Case Vs. Average-Case Hardness

A random class of lattices so that if the SVP is easy to solve then the above problems are easy in every lattice.

Lattice Definition

Definition

Let $B \in \mathbb{R}^{m \times n}$, we consider the set
$\mathcal{L}=\left\{y: y=B \cdot x \quad \forall x \in \mathbb{Z}^{1 \times n}\right\}$, that is the set of all integer linear combinations of B. We call every \mathcal{L} with the above properties a lattice.

Lattices

Figure: An example of a lattice and its basis.

Lattices

Figure: A lattice has more than one bases.

Properties

- Multiplication by a unimodular matrix produces a new basis.

Properties

- Multiplication by a unimodular matrix produces a new basis.
- Infinite (countable) different bases.

Properties

- Multiplication by a unimodular matrix produces a new basis.
- Infinite (countable) different bases.
- The only part of a lattice that is known is the place where the basis vectors lie.

Fundamental Parallelepiped

Definition

Let \mathcal{L} be a lattice, and let a basis for \mathcal{L} is $B=\left[b_{1}, \ldots, b_{n}\right]$, b_{i} are the column vectors of B, then we define the set
$\mathcal{P}(B)=\left\{y: y=\sum_{i=0}^{n} x_{i} \cdot b_{i}, \quad x_{i} \in\left[-\frac{1}{2}, \frac{1}{2}\right)\right\}$. We call $\mathcal{P}(B)$ the
fundamental parallelepiped of \mathcal{L} with respect to the basis B.

Mathematical Tools

Equivalence relation, $\equiv \bmod B$.

Mathematical Tools

$>$ Equivalence relation, $\equiv \bmod B$.

- Efficiently computable distinguished representatives as $t-B \cdot\left\lceil B^{-1} \cdot t\right\rfloor$.

Mathematical Tools

- Equivalence relation, $\equiv \bmod B$.
- Efficiently computable distinguished representatives as $t-B \cdot\left\lceil B^{-1} \cdot t\right]$.
- Partition of the space \mathbb{R}^{n} by multiplies of fundamental parallelepiped.

Lattice Problems \& Solutions

Classic Hard Problems

P1 approximate SVP
P2 approximate unique SVP approximate SIVP (find a basis)

Lattice Problems \& Solutions

Classic Hard Problems

P1 approximate SVP
P2 approximate unique SVP
P3 approximate SIVP (find a basis)

Classic Algorithms and Bounds

- LLL Reduction Algorithm ($2^{\frac{n-1}{2}} \operatorname{sh}(\mathcal{L})$ approximation).
- Babai's Nearest Plane Algorithm.

Lattice Problems \& Solutions

Classic Hard Problems

P1 approximate SVP
P2 approximate unique SVP
P3 approximate SIVP (find a basis)

Classic Algorithms and Bounds

- LLL Reduction Algorithm ($2^{\frac{n-1}{2}} \operatorname{sh}(\mathcal{L})$ approximation).
- Babai's Nearest Plane Algorithm.

Bounds

- Shor proved that in LLL the approximation factor can be replaced by $(1+\epsilon)^{n}$.
\searrow Minkowski (Convex Body Theorems) $\operatorname{sh}(\mathcal{L}) \leq c \sqrt{n} \operatorname{det}(\mathcal{L})^{\frac{1}{n}}$

More on Lattices...

Definition (Dual Lattice)

Let \mathcal{L} be a lattice, we define the dual lattice to be the set $\mathcal{L}^{*}=\{y: \forall x \in \mathcal{L}\langle x, y\rangle \in \mathbb{Z}\}$.

More on Lattices...

Definition (Dual Lattice)

Let \mathcal{L} be a lattice, we define the dual lattice to be the set $\mathcal{L}^{*}=\{y: \forall x \in \mathcal{L}\langle x, y\rangle \in \mathbb{Z}\}$.

Definition (Smoothing Parameter)

For any n-dimensional lattice \mathcal{L} and $\epsilon \in \mathbb{R}^{+}$, we define its smoothing parameter $\eta_{\epsilon}(\mathcal{L})$ to be the smallest s such that $\rho_{1 / s}\left(\mathcal{L}^{*} \backslash\{0\}\right) \leq \epsilon$.

Sampling

Lemma

For any $s>0, c \in \mathbb{R}^{n}$ and lattice $\mathcal{L}(B)$, the statistical distance between $D_{s, c} \bmod \mathcal{P}(B)$ and the uniform distribution over $\mathcal{P}(B)$ is at most $\frac{1}{2} \rho_{1 / s}\left(\mathcal{L}(B)^{*} \backslash\{0\}\right)$. In particular, for any $\epsilon>0$ and any $s \geq \eta_{\epsilon}(B)$, holds that
$\Delta\left(D_{s, c} \bmod \mathcal{P}(B), U(\mathcal{P}(B))\right) \leq \epsilon / 2$

The Random Class

Definition of \mathcal{L} and \wedge

1. $\mathcal{L}: q$-ary lattice.
2. \wedge : the perpendicular lattice of \mathcal{L}.

Definition of \mathcal{L} and \wedge

Symbols

$\triangleright B=\left(u_{1}: u_{2}: \ldots: u_{m}\right), u_{i} \in \mathbb{Z}^{n}$.

- Lattice: $\mathcal{L}(B, q)=\left\{y: y=B \cdot x \bmod q, \forall x \in \mathbb{Z}^{1 \times m}\right\}$ $\left(\mathcal{L}(B, q) \subseteq \mathbb{Z}^{n}\right)$.
> Perpendicular Lattice: $\wedge(B, q)=\{y: y \cdot B \equiv 0 \bmod q\}$ $\left(\wedge(B, q) \subseteq \mathbb{Z}^{n}\right)$.

Parameters
$>m=\left[c_{1} n \log n\right]$
$>q=\left[n^{c_{2}}\right]$

Our Goal

Our Goal

1. Redefine the basis B so that if there is a PT algorithm that finds a shortest vector in \wedge then it breaks P1, P2, P3 in any lattice.

First Step

Substitute B by λ^{\prime}

Define $\lambda^{\prime}=\left(v_{1}, \ldots, v_{m}\right), v_{i} \in \mathbb{Z}_{q}^{n}$. Every v_{i} is chosen independently and with uniform distribution from the set of all vectors in \mathbb{Z}_{q}^{n}.

First Step

Substitute B by λ^{\prime}

Define $\lambda^{\prime}=\left(v_{1}, \ldots, v_{m}\right), v_{i} \in \mathbb{Z}_{q}^{n}$. Every v_{i} is chosen independently and with uniform distribution from the set of all vectors in \mathbb{Z}_{q}^{n}.

Simultaneous Diophantine Equations

The problem of finding a SV in $\Lambda\left(\lambda^{\prime}, q\right)$ is equivalent to solve a linear simultaneous Diophantine equation.

First Step

Substitute B by λ^{\prime}

Define $\lambda^{\prime}=\left(v_{1}, \ldots, v_{m}\right), v_{i} \in \mathbb{Z}_{q}^{n}$. Every v_{i} is chosen independently and with uniform distribution from the set of all vectors in \mathbb{Z}_{q}^{n}.

Simultaneous Diophantine Equations

The problem of finding a SV in $\Lambda\left(\lambda^{\prime}, q\right)$ is equivalent to solve a linear simultaneous Diophantine equation.

Theorem (Dirichlet)
If c_{1} is sufficiently large with respect to c_{2} then there is always a SV in $\wedge\left(\lambda^{\prime}, q\right)$ which is sorter than n.

$\Lambda\left(\lambda^{\prime}, q\right)$ is Unknown to Everybody (Crypto Only)

It seems that there is no way of constructing a shortest vector in $\Lambda\left(\lambda^{\prime}, q\right)$. So we don't have a trapdoor!

Second Step

Substitute λ^{\prime} by

Define $\lambda=\left(v_{1}, \ldots, v_{m}\right), \forall i \in\{1, \ldots, m-1\} v_{i} \in \mathbb{Z}_{q}^{n}$ also v_{i} is chosen independently and with uniform distribution from the set of all vectors in \mathbb{Z}_{q}^{n}. We also define $v_{m}=-\sum_{i=1}^{m-1} \delta_{i} v_{i}$. Where δ_{i} is a, randomly generated, sequence of 0 and 1 's.

Second Step

Substitute λ^{\prime} by

Define $\lambda=\left(v_{1}, \ldots, v_{m}\right), \forall i \in\{1, \ldots, m-1\} v_{i} \in \mathbb{Z}_{q}^{n}$ also v_{i} is chosen independently and with uniform distribution from the set of all vectors in \mathbb{Z}_{q}^{n}. We also define $v_{m}=-\sum_{i=1}^{m-1} \delta_{i} v_{i}$. Where δ_{i} is a, randomly generated, sequence of 0 and 1 's.

No Loss of Generality

The distribution of λ is exponentially close to the uniform distribution. $\sum_{x \in A}\left|P(\lambda=x)-\frac{1}{A}\right| \leq \frac{1}{2^{c n}}$, where A is the set of all possible values of λ.

Worst-Case - Average-Case Connection

Main Theorem

Theorem
There are absolute constants c_{1}, c_{2}, c_{3} so that the following holds:
Suppose that there is a PPT algorithm \mathcal{A} which given a value of the random variable $\lambda_{n, c_{1}, c_{2}}$ as an input, with a probability of at least $\frac{1}{2}$ outputs a nonzero vector of $\Lambda\left(\lambda_{n, c_{1}, c_{2}},\left[n^{c_{1}}\right]\right)$ of length at most n.
Then, there is a PPT algorithm \mathcal{B} with the following properties: If the linearly independent vectors $a_{1}, \ldots, a_{n} \in \mathbb{Z}^{n}$ are given as an input then in polynomial time in $\sum \operatorname{size}\left(a_{i}\right)$ gives the output $\left(d_{1}, \ldots, d_{n}\right)$ so that with probability of greater than $1-\frac{1}{2^{-\sum \operatorname{size}\left(a_{i}\right)}}$ $\left(d_{1}, \ldots, d_{n}\right)$ is a basis with $\max \left\|d_{i}\right\| \leq n^{c_{3}} \operatorname{bl}(\mathcal{L})$

Main Tool for the Proof

Easy Construction of a Basis

There is a polynomial time algorithm that from a set of n linearly independent vectors $r_{1}, \ldots, r_{n} \in \mathcal{L}$ can construct a basis s_{1}, \ldots, s_{n} of \mathcal{L} so that $\max \left\|s_{i}\right\| \leq n \max \left\|r_{i}\right\|$

Main Tool for the Proof

Easy Construction of a Basis

There is a polynomial time algorithm that from a set of n linearly independent vectors $r_{1}, \ldots, r_{n} \in \mathcal{L}$ can construct a basis s_{1}, \ldots, s_{n} of \mathcal{L} so that $\max \left\|s_{i}\right\| \leq n \max \left\|r_{i}\right\|$

Defining a new Goal

Construct a set of n linearly independent vectors of \mathcal{L} so that each of them is shorter than $n^{c_{3}-1} b l(\mathcal{L})$.

Proof of Main Theorem

Assume that we have the set of linearly independent vectors $a_{1}, \ldots, a_{n} \in \mathcal{L}$. Let $M=\max \left\|a_{i}\right\|$

Proof of Main Theorem

Assume that we have the set of linearly independent vectors $a_{1}, \ldots, a_{n} \in \mathcal{L}$. Let $M=\max \left\|a_{i}\right\|$

First Case (Trivial)
If $M \leq n^{c_{3}-1} b /(\mathcal{L})$ we are done.

Proof of Main Theorem

Assume that we have the set of linearly independent vectors $a_{1}, \ldots, a_{n} \in \mathcal{L}$. Let $M=\max \left\|a_{i}\right\|$

First Case (Trivial)
If $M \leq n^{c_{3}-1} b /(\mathcal{L})$ we are done.

Second Case (Hmmm...)

If $M>n^{c_{3}-1} b l(\mathcal{L})$ we construct (?) a set of linearly independent vectors of $b_{1}, \ldots, b_{n} \in \mathcal{L}$ so that $\max \left\|b_{i}\right\| \leq \frac{M}{2}$. Then we repeat the algorithm with input the set b_{1}, \ldots, b_{n}.
After $\log _{2} M \leq 2 \sum \operatorname{size}\left(a_{i}\right)$ steps we get a set of linearly independent vectors where each of them is shorter than $n^{c_{3}-1} b l(\mathcal{L})$.

$\max \left\|b_{i}\right\| \leq \frac{M}{2}$

1. Starting from the set $a_{1}, \ldots, a_{n} \in \mathcal{L}$ we construct a set of linearly independent vectors $f_{1}, \ldots, f_{n} \in \mathcal{L}$ so that $\max \left\|f_{i}\right\| \leq n^{3} M$ and also the parallelepiped $W=\mathcal{P}\left(f_{1}, \ldots, f_{n}\right)$ is very close to a cube.
2. We cut W into q^{n} parallelepipeds each of the form $\sum \frac{t_{i}}{q} f_{i}+\frac{1}{q} W$, where $0 \leq t_{i}<q$ is a sequence of integers.
3. We take a random sequence of lattice points
$\xi_{1}, \ldots, \xi_{m}, m=\left\lfloor c_{1} n \log n\right\rfloor$ from W. Let $\xi_{j} \in \sum \frac{t_{i}^{(j)}}{q} f_{i}+\frac{1}{q} W$ then we define $v_{j}=\left(t_{1}^{(j)}, \ldots, t_{n}^{(j)}\right)$.
4. Apply \mathcal{A} to the input $\lambda^{\prime}=\left(v_{1}, \ldots, v_{m}\right)$ and get a vector $\left(h_{1}, \ldots, h_{m}\right) \in \mathbb{Z}^{n}$.
5. Then the vector $\sum h_{j}\left(\xi_{j}-\eta_{j}\right) \in \mathcal{L}$ and its length is at most $\frac{M}{2}$, where $\eta_{j}=\sum \frac{t_{j}^{(j)}}{q} f_{j}$.

References

Finiklos Ajtai (1996). Generating Hard Instances of Lattice Problems (Extended Abstract). STOC '96, pp. 99-108.
E. Daniele Micciancio, Oded Regev (2005). Worst-case to Average-case Reductions based on Gaussian Measures. FOCS'04.

References

E. Ravindran Kannan (1987). Algorithmic Geometry of Numbers. Annual Review of Comp. Sci, pp. 231-267
E. L. Babai (1986). On Lovasz lattice reduction and the nearest lattice point problem Proc. STACS '85, pp. 13-20.
E H.W. Lenstra, A.K. Lenstra, L. Lovasz (1982). Factoring polynomials with rational coefficients. Mathematische Annalen, pp. 515-534.

Thank you!!!

