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Hard Problems Already Exist

All Time Classic Hard Problems

I NP-Complete problems
I Factorization
I Discrete Logarithm

reduces to average case: logg2
t = (logg1

g2)(logg1
t)−1

Worst-Case Hardness
Those problems are hard only under certain distributions. Often
it is not clear how to find such a distribution.
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One Step Further

Worst-Case Vs. Average-Case Hardness

A random class of lattices so that if the SVP is easy to solve
then the above problems are easy in every lattice.
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Lattices
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Lattice Definition

Definition
Let B ∈ Rm×n, we consider the set
L = {y : y = B · x ∀x ∈ Z1×n}, that is the set of all integer
linear combinations of B. We call every L with the above
properties a lattice.
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Lattices

Figure: An example of a lattice and its basis.
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Lattices

Figure: A lattice has more than one bases.
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Properties

I Multiplication by a unimodular matrix produces a new
basis.

I Infinite (countable) different bases.
I The only part of a lattice that is known is the place where

the basis vectors lie.
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Fundamental Parallelepiped

Definition
Let L be a lattice, and let a basis for L is B = [b1, ...,bn], bi are
the column vectors of B, then we define the set

P(B) = {y : y =
n∑

i=0

xi · bi , xi ∈ [−1
2
,
1
2

)}. We call P(B) the

fundamental parallelepiped of L with respect to the basis B.
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Mathematical Tools

I Equivalence relation, ≡ mod B.

I Efficiently computable distinguished representatives as
t − B · dB−1 · tc.

I Partition of the space Rn by multiplies of fundamental
parallelepiped.
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Lattice Problems & Solutions
Classic Hard Problems

P1 approximate SVP
P2 approximate unique SVP
P3 approximate SIVP (find a basis)

Classic Algorithms and Bounds

I LLL Reduction Algorithm (2
n−1

2 sh(L) approximation).
I Babai’s Nearest Plane Algorithm.

Bounds

I Shor proved that in LLL the approximation factor can be
replaced by (1 + ε)n.

I Minkowski (Convex Body Theorems) sh(L) ≤ c
√

n det(L)
1
n
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More on Lattices...

Definition (Dual Lattice)

Let L be a lattice, we define the dual lattice to be the set
L∗ = {y : ∀x ∈ L〈x , y〉 ∈ Z}.

Definition (Smoothing Parameter)

For any n-dimensional lattice L and ε ∈ R+, we define its
smoothing parameter ηε(L) to be the smallest s such that
ρ1/s(L∗ \ {0}) ≤ ε.
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Sampling

Lemma
For any s > 0, c ∈ Rn and lattice L(B), the statistical distance
between Ds,c mod P(B) and the uniform distribution over P(B)
is at most 1

2ρ1/s(L(B)∗ \ {0}). In particular, for any ε > 0 and
any s ≥ ηε(B), holds that

∆(Ds,c mod P(B),U(P(B))) ≤ ε/2
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The Random Class
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Definition of L and Λ

1. L: q-ary lattice.
2. Λ: the perpendicular lattice of L.
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Definition of L and Λ

Symbols

I B = (u1 : u2 : . . . : um), ui ∈ Zn.
I Lattice: L(B,q) = {y : y = B · x mod q,∀x ∈ Z1×m}

(L(B,q) ⊆ Zn).
I Perpendicular Lattice: Λ(B,q) = {y : y · B ≡ 0 mod q}

(Λ(B,q) ⊆ Zn).

Parameters

I m = [c1n log n]

I q = [nc2 ]
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Our Goal

Our Goal

1. Redefine the basis B so that if there is a PT algorithm that
finds a shortest vector in Λ then it breaks P1, P2, P3 in any
lattice.
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First Step

Substitute B by λ′

Define λ′ = (v1, . . . , vm), vi ∈ Zn
q. Every vi is chosen

independently and with uniform distribution from the set of all
vectors in Zn

q.

Simultaneous Diophantine Equations

The problem of finding a SV in Λ(λ′,q) is equivalent to solve a
linear simultaneous Diophantine equation.

Theorem (Dirichlet)

If c1 is sufficiently large with respect to c2 then there is always a
SV in Λ(λ′,q) which is sorter than n.
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Problem :-(

Λ(λ′,q) is Unknown to Everybody (Crypto Only)

It seems that there is no way of constructing a shortest vector
in Λ(λ′,q). So we don’t have a trapdoor!
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Second Step

Substitute λ′ by λ

Define λ = (v1, . . . , vm), ∀i ∈ {1, . . . ,m − 1}vi ∈ Zn
q also vi is

chosen independently and with uniform distribution from the set

of all vectors in Zn
q. We also define vm = −

m−1∑
i=1

δivi . Where δi is

a, randomly generated, sequence of 0 and 1’s.

No Loss of Generality

The distribution of λ is exponentially close to the uniform

distribution.
∑
x∈A

∣∣∣∣P(λ = x)− 1
A

∣∣∣∣ ≤ 1
2cn , where A is the set of all

possible values of λ.
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Worst-Case - Average-Case
Connection
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Main Theorem

Theorem
There are absolute constants c1, c2, c3 so that the following
holds:
Suppose that there is a PPT algorithm A which given a value of
the random variable λn,c1,c2 as an input, with a probability of at
least 1

2 outputs a nonzero vector of Λ(λn,c1,c2 , [n
c1 ]) of length at

most n.
Then, there is a PPT algorithm B with the following properties:
If the linearly independent vectors a1, . . . ,an ∈ Zn are given as
an input then in polynomial time in

∑
size(ai) gives the output

(d1, . . . ,dn) so that with probability of greater than 1− 1
2−

∑
size(ai )

(d1, . . . ,dn) is a basis with max‖di‖ ≤ nc3bl(L)
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Main Tool for the Proof

Easy Construction of a Basis

There is a polynomial time algorithm that from a set of n linearly
independent vectors r1, . . . , rn ∈ L can construct a basis
s1, . . . , sn of L so that max‖si‖ ≤ n max‖ri‖

Defining a new Goal

Construct a set of n linearly independent vectors of L so that
each of them is shorter than nc3−1bl(L).
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Proof of Main Theorem

Assume that we have the set of linearly independent vectors
a1, . . . ,an ∈ L. Let M = max‖ai‖

First Case (Trivial)

If M ≤ nc3−1bl(L) we are done.

Second Case (Hmmm...)

If M > nc3−1bl(L) we construct (?) a set of linearly independent
vectors of b1, . . . ,bn ∈ L so that max‖bi‖ ≤ M

2 . Then we repeat
the algorithm with input the set b1, . . . ,bn.
After log2 M ≤ 2

∑
size(ai) steps we get a set of linearly

independent vectors where each of them is shorter than
nc3−1bl(L).
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max‖bi‖ ≤ M
2

1. Starting from the set a1, . . . ,an ∈ L we construct a set of
linearly independent vectors f1, . . . , fn ∈ L so that
max‖fi‖ ≤ n3M and also the parallelepiped
W = P(f1, . . . , fn) is very close to a cube.

2. We cut W into qn parallelepipeds each of the form∑ ti
q fi + 1

q W , where 0 ≤ ti < q is a sequence of integers.
3. We take a random sequence of lattice points

ξ1, . . . , ξm,m = bc1n log nc from W . Let ξj ∈
∑ t(j)i

q fi + 1
q W

then we define vj = (t(j)1 , . . . , t(j)n ).
4. Apply A to the input λ′ = (v1, . . . , vm) and get a vector

(h1, . . . ,hm) ∈ Zn.
5. Then the vector

∑
hj(ξj − ηj) ∈ L and its length is at most

M
2 , where ηj =

∑ t(j)i
q fi .
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Thank you!!!
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