Hard Instances of Lattice Problems Average Case - Worst Case Connections

Christos Litsas

28 June 2012

Abstract

Lattices

The Random Class

Worst-Case - Average-Case Connection

Abstract

Hard Problems Already Exist

All Time Classic Hard Problems

- NP-Complete problems
- Factorization
- ► Discrete Logarithm reduces to average case: log_{a₂} t = (log_{a₁} g₂)(log_{a₁} t)⁻¹

Hard Problems Already Exist

All Time Classic Hard Problems

- NP-Complete problems
- Factorization
- ► Discrete Logarithm reduces to average case: log_{a₂} t = (log_{a₁} g₂)(log_{a₁} t)⁻¹

Worst-Case Hardness

Those problems are hard only under certain distributions. Often it is not clear how to find such a distribution.

One Step Further

Worst-Case Vs. Average-Case Hardness

A random class of lattices so that if the SVP is *easy* to solve then the above problems are easy in every lattice.

Lattices

Lattice Definition

Definition

Let $B \in \mathbb{R}^{m \times n}$, we consider the set $\mathcal{L} = \{y : y = B \cdot x \quad \forall x \in \mathbb{Z}^{1 \times n}\}$, that is the set of all integer linear combinations of *B*. We call every \mathcal{L} with the above properties a lattice.

Lattices

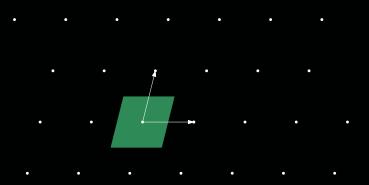


Figure: An example of a lattice and its basis.

Lattices

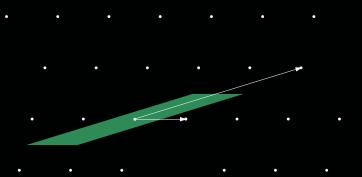


Figure: A lattice has more than one bases.

Properties

 Multiplication by a unimodular matrix produces a new basis.

Properties

- Multiplication by a unimodular matrix produces a new basis.
- Infinite (countable) different bases.

Properties

- Multiplication by a unimodular matrix produces a new basis.
- Infinite (countable) different bases.
- The only part of a lattice that is known is the place where the basis vectors lie.

Fundamental Parallelepiped

Definition

Let \mathcal{L} be a lattice, and let a basis for \mathcal{L} is $B = [b_1, ..., b_n]$, b_i are the column vectors of B, then we define the set

$$\mathcal{P}(B) = \{ y : y = \sum_{i=0}^{n} x_i \cdot b_i, \quad x_i \in [-\frac{1}{2}, \frac{1}{2}) \}.$$
 We call $\mathcal{P}(B)$ the fundamental parallelepiped of \mathcal{L} with respect to the basis B.

Mathematical Tools

• Equivalence relation, $\equiv \mod B$.

Mathematical Tools

- Equivalence relation, $\equiv \mod B$.
- Efficiently computable distinguished representatives as $t B \cdot \lceil B^{-1} \cdot t \rfloor$.

Mathematical Tools

- Equivalence relation, $\equiv \mod B$.
- Efficiently computable distinguished representatives as $t B \cdot \lceil B^{-1} \cdot t \rfloor$.
- Partition of the space \mathbb{R}^n by multiplies of fundamental parallelepiped.

Lattice Problems & Solutions

Classic Hard Problems

- P1 approximate SVP
- P2 approximate unique SVP
- P3 approximate SIVP (find a basis)

Lattice Problems & Solutions

Classic Hard Problems

- P1 approximate SVP
- P2 approximate unique SVP
- P3 approximate SIVP (find a basis)

Classic Algorithms and Bounds

- ► LLL Reduction Algorithm $(2^{\frac{n-1}{2}}sh(\mathcal{L}))$ approximation).
- Babai's Nearest Plane Algorithm.

Lattice Problems & Solutions

Classic Hard Problems

- P1 approximate SVP
- P2 approximate unique SVP
- P3 approximate SIVP (find a basis)

Classic Algorithms and Bounds

- ► LLL Reduction Algorithm $(2^{\frac{n-1}{2}}sh(\mathcal{L}))$ approximation).
- Babai's Nearest Plane Algorithm.

Bounds

Shor proved that in LLL the approximation factor can be replaced by $(1 + \epsilon)^n$.

 $\stackrel{\bullet}{\underset{(NTUA)}{\mathsf{Minkowski}}} \underbrace{\mathsf{Minkowski}}_{(\mathsf{Convex}} \underbrace{\mathsf{Body}}_{\operatorname{Average Case}} \underbrace{\mathsf{Theorems}}_{\operatorname{Case Connections}} sh(\mathcal{L}) \leq c \sqrt{n} \det(\mathcal{L})^{\frac{1}{n}}$

More on Lattices...

Definition (Dual Lattice)

Let \mathcal{L} be a lattice, we define the dual lattice to be the set $\mathcal{L}^* = \{y : \forall x \in \mathcal{L} \langle x, y \rangle \in \mathbb{Z}\}.$

More on Lattices...

Definition (Dual Lattice)

Let \mathcal{L} be a lattice, we define the dual lattice to be the set $\mathcal{L}^* = \{y : \forall x \in \mathcal{L} \langle x, y \rangle \in \mathbb{Z}\}.$

Definition (Smoothing Parameter)

For any n-dimensional lattice \mathcal{L} and $\epsilon \in \mathbb{R}^+$, we define its smoothing parameter $\eta_{\epsilon}(\mathcal{L})$ to be the smallest s such that $\rho_{1/s}(\mathcal{L}^* \setminus \{0\}) \leq \epsilon$.

Sampling

Lemma

For any s > 0, $c \in \mathbb{R}^n$ and lattice $\mathcal{L}(B)$, the statistical distance between $D_{s,c} \mod \mathcal{P}(B)$ and the uniform distribution over $\mathcal{P}(B)$ is at most $\frac{1}{2}\rho_{1/s}(\mathcal{L}(B)^* \setminus \{0\})$. In particular, for any $\epsilon > 0$ and any $s \ge \eta_{\epsilon}(B)$, holds that

$$\Delta(\mathit{D}_{s,c} \mod \mathcal{P}(\mathit{B}), \mathit{U}(\mathcal{P}(\mathit{B}))) \leq \epsilon/2$$

The Random Class

Definition of ${\cal L}$ and Λ

- 1. *L*: *q*-ary lattice.
- 2. A: the perpendicular lattice of \mathcal{L} .

Definition of ${\cal L}$ and Λ

Symbols

$$\blacktriangleright B = (u_1 : u_2 : \ldots : u_m), u_i \in \mathbb{Z}^n.$$

- Lattice: $\mathcal{L}(B, q) = \{ y : y = B \cdot x \mod q, \forall x \in \mathbb{Z}^{1 \times m} \}$ $(\mathcal{L}(B, q) \subseteq \mathbb{Z}^n).$
- ▶ Perpendicular Lattice: $\Lambda(B,q) = \{y : y \cdot B \equiv \mathbf{0} \mod q\}$ ($\Lambda(B,q) \subseteq \mathbb{Z}^n$).

Parameters

m = [*c*₁*n* log *n*]
q = [*n*^{*c*₂}]

Our Goal

Our Goal

1. Redefine the basis *B* so that if there is a PT algorithm that finds a shortest vector in Λ then it breaks P1, P2, P3 in any lattice.

First Step

Substitute *B* by λ'

Define $\lambda' = (v_1, \ldots, v_m)$, $v_i \in \mathbb{Z}_q^n$. Every v_i is chosen independently and with uniform distribution from the set of all vectors in \mathbb{Z}_q^n .

First Step

Substitute *B* by λ'

Define $\lambda' = (v_1, \ldots, v_m)$, $v_i \in \mathbb{Z}_q^n$. Every v_i is chosen independently and with uniform distribution from the set of all vectors in \mathbb{Z}_q^n .

Simultaneous Diophantine Equations

The problem of finding a SV in $\Lambda(\lambda', q)$ is equivalent to solve a linear simultaneous Diophantine equation.

First Step

Substitute *B* by λ'

Define $\lambda' = (v_1, \ldots, v_m)$, $v_i \in \mathbb{Z}_q^n$. Every v_i is chosen independently and with uniform distribution from the set of all vectors in \mathbb{Z}_q^n .

Simultaneous Diophantine Equations

The problem of finding a SV in $\Lambda(\lambda', q)$ is equivalent to solve a linear simultaneous Diophantine equation.

Theorem (Dirichlet)

If c_1 is sufficiently large with respect to c_2 then there is always a SV in $\Lambda(\lambda', q)$ which is sorter than n.

Problem :-(

$\Lambda(\lambda', q)$ is Unknown to Everybody (Crypto Only)

It seems that there is no way of constructing a shortest vector in $\Lambda(\lambda', q)$. So we don't have a trapdoor!

Second Step

Substitute λ' by λ

Define $\lambda = (v_1, \ldots, v_m)$, $\forall i \in \{1, \ldots, m-1\} v_i \in \mathbb{Z}_q^n$ also v_i is chosen independently and with uniform distribution from the set of all vectors in \mathbb{Z}_q^n . We also define $v_m = -\sum_{i=1}^{m-1} \delta_i v_i$. Where δ_i is a, randomly generated, sequence of 0 and 1's.

Second Step

Substitute λ' by λ

Define $\lambda = (v_1, \ldots, v_m)$, $\forall i \in \{1, \ldots, m-1\} v_i \in \mathbb{Z}_q^n$ also v_i is chosen independently and with uniform distribution from the set of all vectors in \mathbb{Z}_q^n . We also define $v_m = -\sum_{i=1}^{m-1} \delta_i v_i$. Where δ_i is a, randomly generated, sequence of 0 and 1's.

No Loss of Generality

The distribution of λ is exponentially close to the uniform distribution. $\sum_{x \in A} \left| P(\lambda = x) - \frac{1}{A} \right| \le \frac{1}{2^{cn}}$, where *A* is the set of all possible values of λ .

Worst-Case - Average-Case Connection

Main Theorem

Theorem

There are absolute constants c_1 , c_2 , c_3 so that the following holds:

Suppose that there is a PPT algorithm \mathcal{A} which given a value of the random variable λ_{n,c_1,c_2} as an input, with a probability of at least $\frac{1}{2}$ outputs a nonzero vector of $\Lambda(\lambda_{n,c_1,c_2}, [n^{c_1}])$ of length at most n.

Then, there is a PPT algorithm \mathcal{B} with the following properties: If the linearly independent vectors $a_1, \ldots, a_n \in \mathbb{Z}^n$ are given as an input then in polynomial time in $\sum \text{size}(a_i)$ gives the output (d_1, \ldots, d_n) so that with probability of greater than $1 - \frac{1}{2^{-\sum \text{size}(a_i)}}$ (d_1, \ldots, d_n) is a basis with $\max \|d_i\| \le n^{c_3} bl(\mathcal{L})$

Main Tool for the Proof

Easy Construction of a Basis

There is a polynomial time algorithm that from a set of *n* linearly independent vectors $r_1, \ldots, r_n \in \mathcal{L}$ can construct a basis s_1, \ldots, s_n of \mathcal{L} so that $\max \|s_i\| \le n \max \|r_i\|$

Main Tool for the Proof

Easy Construction of a Basis

There is a polynomial time algorithm that from a set of *n* linearly independent vectors $r_1, \ldots, r_n \in \mathcal{L}$ can construct a basis s_1, \ldots, s_n of \mathcal{L} so that $\max \|s_i\| \le n \max \|r_i\|$

Defining a new Goal

Construct a set of *n* linearly independent vectors of \mathcal{L} so that each of them is shorter than $n^{c_3-1}bl(\mathcal{L})$.

Proof of Main Theorem

Assume that we have the set of linearly independent vectors $a_1, \ldots, a_n \in \mathcal{L}$. Let $M = \max ||a_i||$

Proof of Main Theorem

Assume that we have the set of linearly independent vectors $a_1, \ldots, a_n \in \mathcal{L}$. Let $M = \max ||a_i||$

First Case (Trivial)

If $M \leq n^{c_3-1} bl(\mathcal{L})$ we are done.

Proof of Main Theorem

Assume that we have the set of linearly independent vectors $a_1, \ldots, a_n \in \mathcal{L}$. Let $M = \max ||a_i||$

First Case (Trivial)

If $M \leq n^{c_3-1} bl(\mathcal{L})$ we are done.

Second Case (Hmmm...)

If $M > n^{c_3-1}bl(\mathcal{L})$ we construct (?) a set of linearly independent vectors of $b_1, \ldots, b_n \in \mathcal{L}$ so that $\max \|b_i\| \leq \frac{M}{2}$. Then we repeat the algorithm with input the set b_1, \ldots, b_n . After $\log_2 M \leq 2 \sum size(a_i)$ steps we get a set of linearly independent vectors where each of them is shorter than $n^{c_3-1}bl(\mathcal{L})$.

$\max \|b_i\| \leq \frac{M}{2}$

- Starting from the set a₁,..., a_n ∈ L we construct a set of linearly independent vectors f₁,..., f_n ∈ L so that max||f_i|| ≤ n³M and also the parallelepiped W = P(f₁,..., f_n) is very close to a cube.
- 2. We cut *W* into q^n parallelepipeds each of the form $\sum \frac{t_i}{q} f_i + \frac{1}{q} W$, where $0 \le t_i < q$ is a sequence of integers.
- 3. We take a random sequence of lattice points

 $\xi_1, \ldots, \xi_m, m = \lfloor c_1 n \log n \rfloor$ from *W*. Let $\xi_j \in \sum \frac{t_j^{(j)}}{q} f_j + \frac{1}{q} W$ then we define $v_j = (t_1^{(j)}, \ldots, t_n^{(j)})$.

- 4. Apply A to the input $\lambda' = (v_1, \ldots, v_m)$ and get a vector $(h_1, \ldots, h_m) \in \mathbb{Z}^n$.
- 5. Then the vector $\sum h_j(\xi_j \eta_j) \in \mathcal{L}$ and its length is at most $\frac{M}{2}$, where $\eta_j = \sum \frac{t_i^{(j)}}{q} f_i$.

References

- Miklos Ajtai (1996). Generating Hard Instances of Lattice Problems (Extended Abstract). STOC '96, pp. 99–108.
- Daniele Micciancio, Oded Regev (2005). Worst-case to Average-case Reductions based on Gaussian Measures. FOCS'04.

References

- Ravindran Kannan (1987). Algorithmic Geometry of Numbers. Annual Review of Comp. Sci, pp. 231–267
- L. Babai (1986). On Lovasz lattice reduction and the nearest lattice point problem Proc. *STACS '85*, pp. 13–20.
- H.W. Lenstra, A.K. Lenstra, L. Lovasz (1982). Factoring polynomials with rational coefficients. *Mathematische Annalen*, pp. 515–534.

Thank you!!!