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Introduction to Expander Graphs

An expander is a (sparse) graph with strong connectivity
properties.

We determine these properties by “measuring” the edge, or
the spectral expansion!

Very significant applications:

Network Design
Pseudorandom Constructions (Extractors, PRGs)
L = SL (O. Reingold, STOC 2005)
Second Proof of the PCP Theorem (I. Dinur, STOC 2006)
Hash functions construction!
Good error correcting codes
Metric embeddings

We’ll see three indicative problems solved by expander graphs.
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Three Motivating Problems

Problem 1: Hardness of Linear Transformations

Let A be an n × n matrix over the field F . What is the least
number of gates in a circuit that computes the linear
transformation x 7→ Ax?
Each gate is specified with two field elements a and b. Such a gate
receives two inputs x and y and outputs ax + by .
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Three Motivating Problems

Problem 2: Construction of good Error-Correcting Codes

Alice and Bob communicate over a noisy channel. A fraction p of
the bits sent through the channel may be alerted. What is the
smallest number of bits Alice can send, assuming she wants to
communicate an arbitrary k-bit message, so that Bob should be
able to unambiguously recover the original message?
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Three Motivating Problems

Problem 3: Deterministic Error Amplification for RP

Assume that L ⊆ {0, 1}∗ has a (1-sided error) randomized
polynomial-time membership algorithm. How many random bits
are needed in order to reduce the probability of error in order to be
≤ ε? (This bound should apply to every input!)
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Magical Graphs

Theorem

Let G = (L,R,E ) be a bipartite graph. We say that G is an
(n, dm, d)-magical graph if |L| = n, |R| = m and every left vertex
has d neighbors and the following two hold:

1 |N(S)| ≥ 5d
8 · |S |, for every S ⊆ L with |S | ≤ n

10d .

2 |N(S)| ≥ |S |, for every S ⊆ L with n
10d < |S | ≤

n
2 .

Using the Probabilistic Method, we can prove that such a
graph exists, and also that most graphs are magical!

Theorem (Pinsker, 1973)

There exists a n0 ∈ N such that for every d ≥ 32, n ≥ n0,
m ≥ 3n/4 there exists an (n,m, d)-magical graph.
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Introduction to Expander Graphs

Three motivating problems

Proof:

Suppose that each left vertex connects to randomly chosen d
vertices on the right.

We claim that G is a magical graph with high probability!

For property (1):

Let S ⊆ L with s = |S | ≤ n
10d , and T ⊆ R with t = |T | < 5ds

8 .

Let XS,T be the i.r.v. for : “All the edges from S go to T ”.

Pr[
∑
S,T

XS,T > 0] ≤
∑
S,T

Pr [XS,T = 1] =
∑
S,T

( t

m

)sd
≤

(on board)
· · · <

1

10

For property (2):

Let S ⊆ L with n
10d < s ≤ n

2 , and T ⊆ R with t < s.

Let YS,T be the i.r.v. for : “All the edges from S go to T ”.

Pr[
∑
S,T

YS,T > 0] ≤
∑
S,T

Pr [YS,T = 1] =
∑
S,T

( t

n

)sd
≤

(on board)
· · · <

1

10

�
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Expansion & Eigenvalues

Definitions

The Edge Boundary of a set S ⊆ V , denoted by ∂S , is
∂S = E (S , S), i.e. the number of edges emanating from the
set S to its complement.

Definition

The expansion ration of G , denoted as h(G ) is defined as:

h(G ) = min
S :|S |≤ n

2

|∂S |
|S |

Definition

A sequence of d-regular graphs {Gi}i∈N of size increasing with i is
a Family of Expander Graphs if:

∃ε > 0∀i ∈ N : h(Gi ) ≥ ε
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Introduction to Expander Graphs

Expansion & Eigenvalues

Examples

Example

A family of 8-regular graphs Gm for every integer m.
The vertex set is Vm = Zm × Zm.
The neighbours of each vertex (x , y) are
(x + y , y),(x − y , y),(x , y + x),(x , y − x),(x + y + 1, y),(x − y +
1, y),(x , y + x + 1),(x , y − x + 1) (all operations are mod m).

Example

A family of 3-regular p-vertex graphs for every prime p.
Here Vp = Zp, and a vertex x is connected to x + 1,x − 1 and to
its inverse x−1 (operations are mod p, and we define 0−1 ≡ 0).
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Expansion & Eigenvalues

Reminder

Let A = A(G ) the Adjacency Matrix of a graph G , i,e, a
n × n matrix whose Auv entry is the number of edges in G
between u and v .

A has n real eigenvalues which we denote λ1 ≥ λ2 · · · ≥ λn.

The set of eigenvalues of G is called the Spectrum of G .

From the spectrum we can “read” many properties:

Theorem

Let G be a d-regular graph, with spectrum {λ1, . . . , λn}. Then:

λ1 = d, and the corresponding eigenvector is

v1 = 1
n =

(
1√
n
, . . . , 1√

n

)
The graph is connected if λ1 > λ2.

The graph is bipartite if λ1 = −λn.
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Expansion & Eigenvalues

The graph’s second eigenvalue is closely related to the
expansion parameter:

Theorem

Let G be a d-regular graph with spectrum λ1 ≥ · · · ≥ λn. Then:

d − λ2
2

≤ h(G ) ≤
√

2d(d − λ2)

This theorem is due to Cheeger (1970) and Buser (1982) in
the continuous case, and Dodziuk (1984) and indepedently by
Alon-Milman (1985) in the discrete case.

The parameter d − λ2 is known as the Spectral Gap,
provides an estimation of the expansion of a graph:
A d-regular graph has an expansion ratio h(G ) bounded
away from zero iff its spectral gap d − λ2 is bounded
away from zero.
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Expansion & Eigenvalues

Let λ = λ(G ) = max{|λ2|, |λn|}.
The following Lemma shows that a small second eigenvalue
implies that the edges are “spread out”:

Theorem (Expander Mixing Lemma)

Let G be a d-regular graph with n vertices and set λ = λ(G ).
Then, for all S ,T ⊆ V :∣∣∣∣E (S ,T )− d |S ||T |

n

∣∣∣∣ ≤ λ√|S ||T |
Note that d |S||T |

n is the expected number of edges between S
and T in a random graph of edge density d/n.

A small λ implies that this deviation (or discrepancy as it is
sometimes called) is small, so the graph is nearly random in
this sense!
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Expansion & Eigenvalues

Proof:

Let 1S , 1T the characteristic vectors of S ,T .

Then, 1S =
∑

i αivi and 1T =
∑

j βjvj . (Recall: v1 = 1/
√

n)

|E (S ,T )| = 1SA1T = (
∑

i αivi )A(
∑

j βjvj) =
∑

i λiαiβi .

Since αi = 〈1S ,
1√
n
〉 = |S|√

n
, βi = 〈1T ,

1√
n
〉 = |T |√

n
and λ1 = d :

|E (S ,T )| = d
|S ||T |

n
+

n∑
i=2

λiαiβi

⇒
∣∣∣∣|E (S ,T )| − d

|S ||T |
n

∣∣∣∣ = |
n∑

i=2

λiαiβi | ≤
n∑

i=2

|λiαiβi | ≤

≤ λ
n∑

i=2

|αiβi |
C−S
≤ λ‖α‖2‖β‖2 = λ‖1S‖2‖1T‖2 = λ

√
|S ||T |

�
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Basic Properties

Theorem (Converse of the Expander Mixing Lemma)

Let G be a d-regular graph with n vertices and suppose that:∣∣∣∣E (S ,T )− d |S ||T |
n

∣∣∣∣ ≤ ρ√|S ||T |
holds for every two disjoint sets S ,T and for some positive ρ.
Then:

λ ≤ O
(
ρ ·
(

1 + log
d

ρ

))
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Expansion & Eigenvalues

It is convinient to consider a normalized 2nd eigenvalue
λ(G )/d .

For λ(G )/d < α, we have an “(n, d , α)-graph”

Example

An indepedent set S has |E (S , S)| = 0. From Expander Mixing
Lemma, we have that an indepedent set in a (n, d , α)-graph has
cardinality at most αn.

Example

A k-coloring of a graph G = (V ,E ) is a mapping
c : V → {1, . . . , k} such that c(x) 6= c(y) for any two adjacent
vertices x , y . The chromatic number χ(G ) is the smallest k for
which G has a k-coloring.
The set c−1(j) is an indepedent set ∀k ≥ j ≥ 1.
So, χ(G ) ≥ 1/α for an (n, d , α)-graph.
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Expansion & Eigenvalues

How big can the spectral gap be?

Theorem (Alon-Boppana)

For every (n, d)-graph:

λ ≥ 2
√

d − 1− on(1)

on(1) is a quantity that tends to zero for every fixed d as
n→∞.
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Introduction to Expander Graphs

Expansion & Eigenvalues

Discussion

Four perspectives on expansion

Extremal: How large/small can the pertinent expansion
parameters be?

Typical: How are these parameters distributed over random
graphs?

Explicit Construction: Can we construct graphs for which
these parameters (nearly) attain their optimum?

Algorithmic: Given a graph, can one efficiently estimate or
evaluate its expansion parameters?
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Random Walks on Expanders

Definitions and Basic Properties

Definition

A random walk on a finite graph G = (V ,E ) is a discrete-time
stochastic process (X0,X1, . . . ) taking values in V . The vertex X0

is sampled from some initial distribution on V , and Xi+1 is chosen
uniformly at random from the neighbors of Xi .

Normalized Adjacency Matrix: Â = 1
d A.

The random walk on G is a Markov Chain with state set V
and transition matrix Â.

Â is real, symmetric and doubly stochastic.

If λ̂1 ≥ · · · ≥ λ̂n are Â’s eigenvalues, then λ̂1 = 1 and
max{λ̂2, λ̂n} ≤ α.
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Random Walks on Expanders

Definitions and Basic Properties

The corresponding eigenvectors are the same eigenvectors of
A.

The experiment: “Sample a vertex x from some distribution p
on V and then move to a random neighbor of x.” is
equivalent to sampling a vertex from the distribution Âp.

The stationary distribution of a random walk on G is the
uniform distribution: uÂ = Âu = u (this uses the symmetry
of Â).

Ât is the transition matrix of the Markov Chain defined by
random walks of length t.
That is, (Ât)ij is the probability a random walk starting at i is
at j after t steps.
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Random Walks on Expanders

Convergence in norms

Recall that...

〈x, y〉 =
∑n

i=1 xiyi

‖x‖1 =
∑n

i=1 |xi |

‖x‖2 =
√∑n

i=1 x2
i =

√
〈x, x〉

‖x‖∞ = max1≤i≤n |xi |

Theorem

Let G be an (n, d , α)-graph with normalized adjacency matrix Â.
Then, for any distribution vector p and any positive integer t:

‖Âtp− u‖1 ≤
√

n · αt
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Random Walks on Expanders

Convergence in norms

Theorem

Let G be an (n, d , α)-graph with normalized adjacency matrix Â.
Then, for any distribution vector p and any positive integer t:

‖Âtp− u‖2 ≤ ‖p− u‖2αt ≤ αt

Proof (for t = 1):

u is invariant under the action of Â.

p− u is orthogonal to u and shrinks the l2 norm under the
action of Â.

So, we have:

‖Âp− u‖2 = ‖Â(p− u)‖2 ≤ α ‖p− u‖2︸ ︷︷ ︸
≤1

≤ α

�



Expander Graphs and Applications to Complexity

Introduction to Expander Graphs

Random Walks on Expanders

Convergence in entropy

Recall that...

Shannon Entropy: H(p) = −
∑n

i=1 pi log pi

Rényi 2-entropy: H2(p) = −2 log (‖p‖2)

Min entropy: H∞(p) = − log (‖p‖∞)

Proposition

H∞(p) ≤ H2(p) ≤ 2H∞(p)

H(p) ≥ 0 (equality iff the distribution is concentrated on a single

element)

H(p) ≤ log n (equality iff the distribution is uniform)

H(X p) ≥ H(p), for any doubly stochastic matrix (equality iff p

is uniform)

So, entropy increases with every step of the random walk!
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Random Walks resemble Indepedent Sampling

Sampling problem: An unknown set B in a universe of size n
is “bad”, and we try to avoid it while sampling the universe.

We can choose a small sample using a random walk on an
expander graph.

Recall the Expander Mixing Lemma:∣∣∣∣d |S ||T |n
− |E (S ,T )|

∣∣∣∣ ≤ λ√|S ||T | ≤ αdn

↓∣∣∣∣ |S ||T |n2
− |E (S ,T )|

dn

∣∣∣∣ ≤ α
If we consider the two fractions as probabilities, the Lemma
says that despite the different nature of the experiments, the
success probabilities will only differ by a small constant α.
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Random Walks resemble Indepedent Sampling

Let G = (V ,E ) be an (n, d , α)-graph, and B ⊂ V with
|B| = βn. We consider the experiment:
We pick X0 ∈ V u.a.r. and start from it a random walk
X0, . . . ,Xt on G .

Denote by (B, t) the event that this random walk is confined
to B (i.e. Xi ∈ B∀ i). Then:

Theorem

Let G be an (n, d , α)-graph and B ⊂ V with |B| = βn. Then:

Pr [(B, t)] ≤ (β + α)t



Expander Graphs and Applications to Complexity

Introduction to Expander Graphs

Random Walks on Expanders

Random Walks resemble Indepedent Sampling

Proof:

Let P the orthogonal projection on the subspace of
coordinates belonging to B. (i.e. Pij = 1 if i = j ∈ B and 0
otherwise)

Lemma 1: Pr [(B, t)] = ‖(PÂ)tPu‖1
Lemma 2: ‖PÂPv‖2 ≤ (β + α) · ‖v‖2, for any vector v

So, we have:

Pr [(B, t)] = ‖(PÂ)tPu‖1 ≤
√

n · ‖(PÂ)tPu‖2 =

=
√

n · ‖(PÂP)tu‖2 ≤
√

n· (β + α)t‖u‖2 = (β + α)t

�
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Random Walks on Expanders

Random Walks resemble Indepedent Sampling

“Time depedent” versions of the previous Theorem:

Theorem

For every subset K ⊂ {0, . . . , t} and vertex subset B of density β:

Pr [Xi for all i ∈ K ] ≤ (β + α)|K |−1
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Another Proof of the PCP Theorem

PCP Definitions

Definition

PCP Verifiers Let L be a language and q, r : N→ N. We say that
L has an (r(n), q(n))-PCP verifier if there is a probabilistic
polynomial-time algorithm V (the verifier) satisfying:

Efficiency: On input x ∈ {0, 1}∗ and given random oracle access to
a string π ∈ {0, 1}∗ of length at most q(n) · 2r(n) (which we call the
proof), V uses at most r(n) random coins and makes at most q(n)
non-adaptive queries to locations of π. Then, it accepts or rejects.
Let V π(x) denote the random variable representing V ’s output on
input x and with random access to π.

Completeness: If x ∈ L, then ∃π ∈ {0, 1}∗ : Pr [V π(x) = 1] = 1

Soundness: If x /∈ L, then ∀π ∈ {0, 1}∗ : Pr [V π(x) = 1] ≤ 1
2

We say that a language L is in PCP(r(n), q(n)) if L has a
(O(r(n)),O(q(n)))-PCP verifier.



Expander Graphs and Applications to Complexity

Applications to Complexity Theory

Another Proof of the PCP Theorem

Main Results

Obviously:

PCP(0, 0) = ?
PCP(0, poly) = ?
PCP(poly , 0) = ?

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

The PCP Theorem

NP = PCP(log n, 1)
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Another Proof of the PCP Theorem

Constraint Satisfaction Problems

Definition (CSPs)

For q ∈ N, then a qCSP instance φ is a collection of functions
φ1, φ2, . . . , φm called constraints, where φi : {0, 1}n → {0, 1}
such that each function φi depends on at most q of its input
locations. We call q the arity of φ. That is:
For every i ∈ [m], ∃ j1, . . . , jq ∈ [n] and f : {0, 1}q → {0, 1} such
that for every u ∈ {0, 1}n : φi (u) = f (uj1 , . . . , ujq).

We say that an assignment u ∈ {0, 1}n satisfies constraint
φi (u) if φi (u) = 1.

The fraction of constraints satisfied by u is
∑m

i=1 φi (u)
m .

We denote by val(φ) the max of this value over all
u ∈ {0, 1}n.

We say that φ is satisfiable if val(φ) = 1.
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Another Proof of the PCP Theorem

Example

The problem 3SAT is the subcase of qCSP where q = 3, and the
constraints are ∨’s of the involved literals!

Definition (Gap CSPs)

For every q ∈ N, ρ ≤ 1, define ρ-GAPqCSP to be the problem of
determining for an instance φ whether:

1 val(φ) = 1 (YES instance of ρ-GAPqCSP)

2 val(φ) < ρ (NO instance of ρ-GAPqCSP)

We say that a ρ-GAPqCSP is NP-hard for every L ∈ NP if ∃f
(pol-time) mapping strings to (representations of) qCSP instances
satisfying:

Completeness: x ∈ L⇒ val(f (x)) = 1

Soundness: x /∈ L⇒ val(f (x)) < ρ
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Applications to Complexity Theory

Another Proof of the PCP Theorem

Equivalent view of the PCP Theorem

Theorem (PCP Theorem)

There exist constants q ∈ N, ρ ∈ (0, 1) such that ρ-GAPqCSP is
NP-hard.

Classic View HoA View
PCP verifier (V ) ←→ CSP instance (φ)
PCP proof (π) ←→ Assignment of variables (u)
Length of proof ←→ Number of variables (n)
Number of queries (q) ←→ Arity of constraints (q)
Number of random bits (r) ←→ Log of # constraints (log m)
Soundness parameter (1/2) ←→ max val(φ) for a NO instance
NP ⊆ PCP[log n, 1] ←→ ρ-GAPqCSP is NP-hard.
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Applications to Complexity Theory

Another Proof of the PCP Theorem

Dinur’s proof outline

Let ρ = 1− ε.
If φ is unsatisfiable, then val(φ) ≤ 1− 1/m.

The idea is to (iteratively) show that 1− ε-GAPqCSP is
NP-hard for larger and larger values of ε, until ε is as large as
some absolute constant indepedent of m:

Definition (Complete Linear-blowup reductions)

Let f be a function mapping CSP instances to CSP instances. We
say that f is an CL-reduction if it is pol-time computable, and:

Completeness: If φ satisfiable so is f (φ).

Soundness: If m the constraints of φ, then f (φ) has at most
Cm constraints and alphabet (constraints [W ]q → {0, 1}) W ,
where C and W can depend on the arity and the alphabet
size of φ.
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Applications to Complexity Theory

Another Proof of the PCP Theorem

Main Lemma

There exists constants q0 ≥ 3, ε0 > 0 and a CL-reduction f such
that for every q0CSP-instance φ with binary alphabet, and every
ε < ε0, the instance ψ = f (φ) is a q0CSP (over binary alphabet)
satisfying:

val(φ) ≤ 1⇒ val(ψ) ≤ 1− 2ε

Constraints: m→ Cm

Value: 1− ε→ 1− 2ε
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Applications to Complexity Theory

Another Proof of the PCP Theorem

Proof Sketch of the PCP Theorem via the Main Lemma:

We can observe that q0CSP is NP-hard.

Let φ be a q0CSP instance and m the number of constraints in
φ.

If φ satisfiable, then val(φ) = 1, otherwise val(φ) = 1− 1/m

Apply Main Lemma’s f log m times.

We get an instance ψ such that if φ is satisfiable, then so is
ψ, otherwise val(ψ) = 1− 2ε0.

The size of ψ is at most C logmm = poly(m).

Thus, we have obtained a gap-preserving reduction from L to
1− 2ε0-GAPqCSP, and the PCP Theorem is proved.

�
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Random Graphs

We introduce probability spaces whose elements are graphs.

Any graph parameter then becomes a random variable.

In order to understand G (n, p), start with n vertices.
Independently, for every pair of vertices, define an edge with
probability p ∈ (0, 1).

Regular graphs have only a tiny probability in the G (n, p)
model.

We want to study how the eigenvalues of such graphs “look
like”!
Firstly, we’ll see the “bulk of the spectrum” (where most
eigenvalues tend to be),
and after, the extreme eigenvalues (those that define
expansion).

The following is the eigenvalue distribution of a 2000× 2000
symmetric matrix with independent standard normal entries:
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The above can be formalized by “Wigners semicircle law”, which states

that, under some conditions, the eigenvalues of a large random symmetric

matrix with independent entries are distributed close to a semicircle:
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Theorem (Wigner 1958)

Let An be an n × n real symmetric matrix, where off-diagonal
entries are sampled independently from the distribution F , and
the diagonal entries from the distribution G . Furthermore, assume
that V [F ] = V [G ] = σ2, and that F and G have finite moments,
i.e.

∫
|x |kdF (x),

∫
|x |kdF (x) <∞, ∀k.

We define the empirical eigenvalue distribution as:

Wn(x) =
1

n
|{i : λi (An) ≤ x}|

where λ1(An) ≥ λ2(An) ≥ . . . λn(An) are the eigenvalues of An.
Then, for every x:

W (x) = lim
x→∞

Wn(2xσ
√

n) =
2

π

∫ x

−1

√
1− u2 du



Expander Graphs and Applications to Complexity

Additional Topics

Spectrum of Random Graphs

Random Graphs

But what happens when the graph is d-regular?
The following depicts the eigenvalue distribution of a d
regular graph with 2000 vertices!
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As we saw, Wigner’s theorem doesn’t hold for d-regular
random graphs.

Nevertheless, for large d , the distribution does approach a
semicircle.

Theorem (McKay 1981)

Let Gn be an infinite sequence of d-regular graphs such that
Ck(Gn) = o(|V (Gn)|) for all k ≥ 3. Define the empirical
eigenvalue distribution as:

F (Gn, x) =
1

|V (Gn)|
|{i : λi (Gn) ≤ x}|.

Then, for every x:

F (x) = lim
n→∞

F (Gn, x) =

∫ x

−2
√
d−1

d
√

4(d − 1)− z2

2π(d2 − z2
)dz
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What about the extreme eigenvalues?

Theorem (Füredi-Kolmós 1981, Vu 2005)

Let A = An be an n × n real symmetric matrix with indepedent
entries from a distribution F that has zero expectation, variance
σ2, and is supported on [−K ,K ] for some constant K . Then, with
probability 1− on(1), all eigenvalues of A satisfy:

|λi | < 2σ
√

n +O(n
1
3 log n)

The proof is based on the trace method (a.k.a. the moment
method):
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Theorem (Broder-Shamir 1987)

The largest non-trivial eigenvalue of almost every 2d-regular graph
G satisfies: λ(G ) = O(d3/4).

Proof:

Let G be a random 2d-regular graph on n vertices in the
permutation model.

Let P be the transition matrix of the random walk on G
(which is 1

2d Adj(G )).

Let 1 = µ1 ≥ µ2 ≥ · · · ≥ µn ∈ σ(P), and ρ = max{|µ2|, |µn|}.
Then, for every k: ρ2k ≤ tr(P2k)− 1.

So, using Jensen’s inequality, we have:

E [ρ] ≤
(

E
[
ρ2k
])1/2k

≤
(

E
[
tr(P2k)

]
− 1
)1/2k
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Proof: (cont.)

The above inequality bounds the eigenvalues by estimating
the trace of powers of the matrix.

Traces are combinatorial objects (counting the number of
closed paths of length 2k in the random graph).

The paths in G starting at vertex 1 are in 1-1 correspodence
with Σ∗ = {π1, π−11 , . . . πd , π

−1
d }

∗.

We can think that (v , πi (v)) is labeled by πi , and “interpret”
a word as a sequence of directed edge labels to follow. We
have:

E
[
tr(P2k)

]
= E [fp(ω)] = n · Pr [ω(1) = 1]

We can consider ω as an element of a free group in d
generators.
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Thank You!
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