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The Class #P

Counting problems

@ #SAT: the function that counts the number of satisfying
assignments of a given formula.

@ #HAMILTONPATHS: the function that counts the number of
Hamilton paths of a given graph.

@ #DIV: the function that counts the number of divisors of a
given number

@ #PRDIV: the function that counts the number of prime
divisors of a given number

@ #PERFECTMATCHINGS: the function that counts the perfect
matchings of a given bipartite graph.

@ #CYCLECOVER: the function that counts the cycle covers
of a given directed graph with self loops.

@ (0,1)-PERMANENT: The permanent of a given matrix with
elements from {0,1}

Remark: The last 3 are equivalent
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The Class #P

Definition (Valiant ’79)

#P is the class of functions that can be computed by NDTM’s of
polynomial time complexity.

#P = {f: f(x) = accy(x)}

Or
The class of functions that count the number of witnesses (or
certificates) of NP problems.

Def. fe #P :Jpred. Qe P, Vx: f(x)=#{y | Q(x,y)}
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Other Counting Related Complexity Classes

PP

Definition (Wagner '86)

PP is the class of all languages L such that there exists a
poly-NDTM M and an FP function f such that
L= {x:accy(x) > f(x)}

@ Originally defined by Gill ‘74 as a probabilistic class
@ From the above definition we can show: P#P = PFP
e PNPllod] C pp (Beigel, Hemaspaandra, and Wechsung '89)
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Other Counting Related Complexity Classes

Definition (Wagner '89)

C_P is the class of all languages L such that there exists a
poly-NDTM M and an FP function f such that

L ={x:accy(x)=f(x)}

Definition (Papadimitriou and Zachos '82)

@P is the class of all languages L such that there exists a
poly-NDTM M such that

L = {x :accy(x) is odd}
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Other Counting Related Complexity Classes

Definition (Allender '86)

For any language L, L € FewP if and only if there exist a NDTM
M and a polynomial p such that:

acep(x) < p(|x|)
x € LS acey(x) >0

A

Definition (Cai and Hemaspaandra ’90)

For any language L, L € Few if and only if there exist a NDTM
M and a polynomial p and a polynomial time computable
predicate A(x, y) such that:

acem(x) < p(|x|)
x € L& A(x,accy(x))




Other Counting Related Complexity Classes

o ©P% = oP (PZ'82)
@ Mod,PMoP — Mod,P holds if k is a prime (BGH '90)
@ FewP C NP
@ This is not known for Few but Few C PNPl/od]
@ Few C @P (CH '90),
Few C C_P (KSTT '89),
Few C ModP, for each prime k (BGH ’90)

@ Few is low for the classes PP, C_P and &P (KSTT '89)
e That is PP*" = PP
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Other Counting Related Complexity Classes

Only Positive?

@ The counting classes defined so far may only contain
positive functions.

@ For a NDTM M we denote with M the machine identical to
M but with the accepting and rejecting states interchanged

@ gapy(x) = accp(x) — accyi(X)
Definition
GapP = {gap,, : M is a poly-NDTM }

@ #P C GapP = #P — #P = #P — FP = FP — #P
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Other Counting Related Complexity Classes

SPP

Definition

SPP is the class of all languages L, such that there exists a
poly-NDTM M, such that for all x

xel = gapy(x)=1,
x¢L = gapy(x)=0.

Kébler, Schéning and Toran (’92) showed that Graph
Automorphism is in SPP
Arvind and Kurur ('02) showed that Graph Isomorphism is in SPP
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Superclasses of #P

Valiant’s Framework

Definition

For every complexity class C of decision problems we define
#C = Upcc(#P)*, where #PA is the collection of all functions
that count the accepting paths of polynomially bounded
NDTM’s having A as their oracle.

#C = #£coC holds for every complexity class
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Superclasses of #P

Span and Operators

Definition (Hemaspaandra Vollmer '95)

For any class C, define # - C to be the class of functions f, such
that for some C-computable 2-ary predicate (relation) R and
some polynomial p, for every string x it holds that:

f(x) = Il{y : p(|x]) = |yl and R(x;, y)} I,

where “|| A||” denotes the cardinality of the set A.

Definition (Kdbler, Shéning, Toran ’89)

For a non-deterministic transducer M define the function
spany, : ©* — N such that spany,(x)is the number of different
valid outputs that occur in the nondeterministic computation
tree induced by M on input x.

Define SpanP = {f : f = span,, and M is a poly-NDTM}
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Superclasses of #P

Definition
spany,_n(x) is the number of different outputs that M(x) can
produce and N(x) can't.

#NP = {f : f = spany,_n}, M\N PNTM’s

#NP C # - NP — # - NP



Superclasses of #P

Some Results

@ #NP = # - PNP (from definitions)

@ #NP = (#P) Pl (KST ’89)

@ #P C # - NP C #NP (KST '89)

@ #P = # - NP if and only if UP = NP (KST '89)

@ # - NP = #NP if and only if NP = coNP (KST ’'89)
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Superclasses of #P

Toda’s Result (Ph.D."92)

# - coNP = #NP \

@ Generalizing to the #PH we have:

#-TRCHIL=#-T;

@ Thus, #PH = J#XP =U#-NP = #.PH
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The Valiant Vazirani Theorem

Valian-Vazirani Theorem

@ For every known NP-complete problem the number of
solutions of its instances varies from zero to exponentially
many.

@ Does this cause the inherent intractability of these
problems?

Theorem (Valiant Vazirani '86)

There exists a probabilistic polynomial time algorithm f s.t. for
every n-variable Boolean formula ¢

¢ € SAT = Pr[f(p) € USAT] > %

© ¢ SAT = Pr[f(p) € SAT]| =0

Therefore the above answer is no unless NP-= RP



Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (Il)
000000000000 00 0@000 0000000000000 0 000000000000

The Valiant Vazirani Theorem

Pairwise Independent Hash Functions

Definition (Pairwise Independent Hash Functions)

Let H,, x be a collection of functions from {0, 1}" to {0, 1}k, We
say that #, « is pairwise independent if for every x, x’ € {0,1}"
with x # x’ and for every y # y’ € {0, 1},

Pre i, o [N(X) = y A h(X) = y'] = 272K

Lemma: Let H,, x be a pairwise independent hash function
collection from {0,1}"to {0,1}¥and S C {0,1}" s.t.
2k=2 < 18] < 2k=1. Then

oo| —

Pracan, [there is a unique x € S satisfying h(x) = 0f] >

proof on board
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The Valiant Vazirani Theorem

Proof of Valiant Vazirani Theorem

@ Given ¢ on nvariables, choose k at random from
{2,...,n+ 1} and a random hash function h €g H «.

@ The statement 3,¢ o 13n(X) A (h(x) = 0F) is false if ¢ is
unsatisfiable, and with probability 1/8n has a unique
satisfying assignment if o is satisfiable.

o If Sis the set of satisfying assignments of ¢, with
probability 1/n, k satisfies 2k—2 < |S| < 2k~ 1,

e With probability 1/8 there is a unique x such that
(x) A h(x) = 0%

@ The implementation is based on Cook’s reduction, and
expresses tha deterministic computation inside the 3 sign
as a formula = on variables x, y € {0,1}?°%(") st h(x) =0
iff there exists a unique y such that 7(x, y) = 1. Output

b =p(X)AT(X,y)
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Toda’s Theorem

What is the complexity of #P compared to Decision
Classes?

Theorem (Papadimitriou Zachos ’82)
PNPllog] C p#P[1]

Theorem (Toda ’91)
PH C p#F
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Toda’s Theorem

Proof

Lemma (Randomized Reduction from PH to ©&SAT)

There exists a prob. poly-time algo A s.t. given a parameter m
and any QBF ) of size n with c levels of alternations, runs in
poly(n, m) and satsisfies:

Y is true = Pr[A(y) € @SAT] >1-277

W is false = Pr[A(¢) € @SAT] <277

Proof on board

@ By derandomizing the above lemma the proof of Toda’s
theorem is concluded.
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Path Counting

Hard To Count - Easy to Decide

@ Surprisingly enough, some problems in P have counting
versions that are complete for #P under less restrictive
reductions.

e Cook reductions (f <% g : f € FPY — aka poly-time Turing).

@ Examples: #PERFECT MATCHINGS, #DNFSAT, #MONSAT

@ They cannot be complete for #P under parsimonious
reductions unless P = NP.

@ Note that #P is not closed (under likely assumptions)
under Cook reductions.
Therefore these problems are Cook-complete also for
superclasses (and subclasses!) of #P.

@ Hard to count - easy to decide problems neither are well
represented by #P, nor are well classified by means of
Cook reductions.



Path Counting

Further Motivation for Studying HCED Problems

@ Three degrees of approximability within problems of #P
[DGGJ00]:
e Solvable by an FPRAS:
#PERFECT MATCHINGS, #DNFSAT, ...
o AP-interreducible with SAT:
SAT, #IS, ...

e An Intermediate Class (AP-Interreducible with #BIS)
#BIS, ...
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Path Counting

Hard to Count Easy to Decide

@ #P contains counting versions of known NP problems
@ there exist other #P problems with decision version in P

Definition (Pagourtzis '01)

Let #PE be the class that contains functions of #P whose
related language is in P.

Definition (Kiayias, Pagourtzis, Sharma and Zachos)

TotP = {toty : M is a poly-NDTM}

totys(x) = (The number of paths of M on input x) — 1
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Path Counting

Inclusions among #P,#PE, and TotP

@ #P C TotP — FP
@ FP C TotP C #PE C #P.
These inclusions are proper unless P = NP

@ From these propositions we get the following Corollaries:

- TotP,#PE and #P are not Karp equivalent unless P=NP.
- The above classes are Cook[1] interreducible:

FPTOtP[1] — FP#PE[1] — FP#P“]
- Combining the latter with Toda’s result we have

PH C PTOtP[1] — P#PE[1]
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Path Counting

#PERFECT MATCHINGS is in TotP

Sketch of the proof:

@ It can be decided in polynomial time whether a graph G
has any perfect matchings.

@ Let e = (v, u) be an edge of G. Then, the set of perfect
matchings of G can be partitioned into two subsets, Sy and
S1, where S, consists of those perfect matchings that
match u and v through e, and S; consists of the remaining
perfect matchings.

@ Each S; has the same cardinality with the set of of perfect
matchings of an appropriate subgraph G; of G.
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Path Counting

Self-reducibility of #DNF-SAT

Select a variable x and construct formulae

¢0 = ¢|X=O!

¢1 := ¢|x=1. Clearly:

[#DNFSAT(¢) = #DNFSAT(¢g) + #DNFSAT(¢1)]

#DNFSAT /s in TotP.




Path Counting

Self-reducibility for well-known problems that are
therefore in TotP

@ #PERFECTMATCHINGS (equiv. PERMANENT and CYCLECOVER)
@ #DNF-SAT

@ #2-SAT

@ #NONCLIQUES

@ #NONINDSETS

@ #INDSETSALL

@ RANKING

They are all Cook[1]-complete for TotP.

u]
o)
I
ul
it
N
»
?



Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (Il)
000000000000 00 00000 0000000000000 000000000000

Path Counting

TotP = Karp-closure(#PEgg)

Self Reducibility
A function f : X* — N is called poly-time self-reducible, if there
exist polynomials r and g and polynomial time computable
functions h: ¥* - N,g:¥* - Nand t: X* — N, such that for
allx e *
Q 1(x) = t(x) + 21X g(x, iYf(h(x, i)), that is, f can be
processed recursively by reducing x to h(x, i),
(0 <i<r(|x])),and
@ the recursion terminates after at most polynomial depth
(that is, the value of f on instance
h(... h(h(x,i1),i2) - .., ig(x)) can be computed
deterministically in polynomial time).

Theorem (Pagourtzis, Zachos)

TotP is exactly the closure under Karp reductions of #PEsg




Interval Size Functions

Some Definitions

@ Ais a Partial Order (x <4 y)
- reflexive

- antisymmetric
- transitive
@ Ais a Total Order
- partial order

- all strings comparable
@ Ais a p-order

dq,vx,y with x <ay - x| < q(ly)
(i.e. lengths of all strings are polynomially related)

@ A has Efficient Adjacency Checks (a feasibility constraint)
We can check efficiently (in P) whether:
(X<ay)AN{Fz:x<az<ay)
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Interval Size Functions

Interval-size Function Classes

@ IF, (IF,) is the class of all functions f : ¥* — N for which
there exists a partial (total) p-order A € P, with
f(x)=|{z:I(x) <a z <a u(x)}|, for every x € ¥*, where
I,u € FP.

@ IF; (IF) is the class of all functions f : ¥* — N for which
there exists a partial (total) p-order A € P, with
f(x)=|l{z: I(x) <a z <a u(x)}|, for every x € ¥*, where
I,u € FP, and A has efficient adjacency checks.

Qo IF];< contains #DIV and #PRDIV

@ IF contains #MONSAT (also Cook-complete for this class).
(A monotone CNF formula contains no —)



Example: an IF;* computation for #MONSAT

F =enc|(zgV x2) A (T Va1 V a3) A (z1) A (22 V 23)]

1Fl0F011110
11107011100

1F10F011010
10001110 the rgst stl.'lngs of \.ength 2|F|+7
in lexicographic order
1710F001100 \
A

|

b(x) = 11FloF08

t(x) = 1FloF10°

DA
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Interval Size Functions

Interval-size Function Classes (cont.)

Theorem (Hemaspaandra, Homan, Kosub, Wagner ’01)

For any function f the following are equivalent:

Q fe#P.

@ There exist a partial p-order A € P with
f(x)=|l{z : l(x) <a z <a u(x)}|, for all x € *, for some
l,u € FP.

© There exist a total p-order A € P with
f(x)=|l{z : (x) <a z <a u(x)}|, for all x € *, for some
I, u € FP with I(x) <a u(x).

Corollary: #P = IF, = IF,.



Some Inclusions

o IF = #PE [Hemaspaandra et. al.01]

@ #P CIF® — FP

e FPF" — FPy’ — Fp#Pp

@ FP C IF] QIF; C #P =1F =1F,

@ The inclusion FP C IF is proper unless FP = #P.

DA



#P #SAT

P # NP P #NP
#SAT,, #PE = IFy #DIV
P #NP UP +# PH
#PM TotP IFS #MONSAT
P # NP

P #£PP

DA
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Connecting the two Approaches

Other Feasibility Constraints

Consider other polynomial time feasibility constraints,
besides efficient adjacency checks.

Def: IFIN: Lexicographical Nearest Function (Given a string
compute the lex-nearest string within a defined interval)
Theorem: IFEN = TotP

Def: TF™ed: median function.

(Fact: IF™ed = FP)

Def: IF™4: “relaxed” median function (there is a whole family of
such).

(Fact: Contains the problem #SAT  2n)

Corollary:
FP = IFmed C [Fmed C FEN = TotP



The Results [Bampas G. Pagourtzis Tentes ’09]

4P #SAT
P4 / xm)
HSAT,; #PE IF5 #DIV
5 R S
4PN TotP IFS #MONSAT
FP

#P #SAT
P # NP

FSAT
TP = #PE Lpn

UP # PH

P # UP N coUP
IFe
?

N #PM
TotP = IFy #MONSAT
P #£NP

IFI™ HSAT o0

#P #FP

A



Connecting the two Approaches

The Results (cont.)

4P #SAT

P # NP

@ Interval size characterizations:
TotP = IF-N (also FP = IFMed).

@ TotP C IF;*; the inclusion is proper

R unless P = UP N coUP.

: @ A new interval size class, IF™9, s.t.
| FP C IF™4 C TotP, the inclusions being
proper unless FP = #P and P = NP

<#PM resp.

_ FSAT
IF) = #PE Lpn"

UP # PH

Esuee
t

5

TotP = IF{Y #MONSAT
@ #SAT o0 € IF™4, Does IF™ contain

P # NP
— natural “easy to decide - hard to count”
problems?
#P #FlI
FP = IFp

I

I

|

I

I

I

I

I

I

I

I

I

I
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I

I
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Connecting the two Approaches

Interval size characterizations

@ The main idea is to consider new polynomial time feasibility
constraints, other than efficient adjacency checks.
@ For FP we consider the median function meda(x, y)
@ For TotP:
e Lexicographical Nearest Function on a p-order A:
LNa(x, y, w) returns the string z € (x, y)a, which is the lex
nearest to w among strings in (x, ¥)a.
o Captures the property that given a NPTM M and a string of
non-deterministic choices, we can find the lex nearest
string that encodes a computation path of M.
o All #PE self reducible problems(i.e. TotP) can be expressed
as interval size functions with lex-nearest function in P
e And vice versa
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Connecting the two Approaches

TotP = IF-N

@ TotP C IF-N

o Let M be a TotP machine.

e The boundary functions b, t are set according to p(|x|),
where p is the polynomial bounding the length of M’s
computation.

e An appropriate order A is defined, such that for each path
of M, a string is contained in (b(x), t(x))a iff it encodes a
valid computation path of M(x).

e The computation of LN, is based on the property that given
a string x, we can verify efficiently whether it encodes a
computation path of M and if not, we can efficiently find the
encoding of a path y, that is lex-nearest to x.
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Connecting the two Approaches

TotP = IF-N (concl.)

@ IF-N C TotP

e We construct an NPTM M s.t. on input x,
totm(x) = [|(b(x), t(x))all-

o We use the LNy function in order to re-arrange strings in
(b(x), t(x))a lexicographically.

e The lex-first and last strings of (b(x), t(x))a, say f,/ are
computed first.

e Then, the lex-nearest to the lex-median of (f,/)4 is
computed, say m.

e The process is repeated recursively by splitting (into two
computation paths) as long as (f, m) and (m, /) are
nonempty.



Connecting the two Approaches

IF-N C TotP

@ If we can compute LNy efficiently then we can also
compute LN and LN, efficiently.

@ We use LNy, function in order to re-arrange strings in
(b(x), t(x))a lexicographically.

v = LN4(b,t,0°00D+1) —lex max
(’ w=LNg(bt,e)

—lex min
b

z = medjex(u, v)
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Connecting the two Approaches

Functions-to-Languages Operators

@ We define class operators that produce appropriate
decision versions of counting problems.

@ We observe that by using efficient adjacency checks (IF*)

we can only tell (efficiently) whether there are any strings
in the interval.

@ On the other hand, in a TotP computation we can decide
whether there are more than one paths.

Definition

Let F be a function class; then C ; - F is the following class of
languages:

Cor- F={L|IfeFVx(xel = f(x)>1)} .




TotP C IF if P # UP N coUP

@ UPNcoUP CC.y-IF

oz yst. lyl = lal +p(la] +2)
@z) 5 codes the accepting path
A

b(z) = 2opl)+2

t(z) = x1107(D

o If IF7 C TotP, then UP N coUP C C~¢-IF C Cs¢-TotP C P

[m]

=

DA
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Connecting the two Approaches

Open Problems

@ Can the Karp closure of #PERFECT MATCHINGS,
#DNFSAT, etc., be described in terms of interval size
functions? In terms of path counting functions?

@ Are there complete problems for the studied classes under
Karp reductions? Under other suitable reductions?

@ Can the approximation subclasses of #P (DGGJ’00) be
related to interval size functions or to path counting
functions?



THANK YOU!!
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