
Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Complexity Classes of Counting Problems

Andreas-Nikolas Göbel

National Technical University of Athens, Greece

April 2012

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

1 Counting Classes
The Class #P
Other Counting Related Complexity Classes
Superclasses of #P

2 The Computational Power of #P
The Valiant Vazirani Theorem
Toda’s Theorem

3 Subclasses of #P (I)
Path Counting
Interval Size Functions

4 Subclasses of #P (II)
Connecting the two Approaches

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

The Class #P

Counting problems

#SAT: the function that counts the number of satisfying
assignments of a given formula.
#HAMILTONPATHS: the function that counts the number of
Hamilton paths of a given graph.
#DIV: the function that counts the number of divisors of a
given number
#PRDIV: the function that counts the number of prime
divisors of a given number
#PERFECTMATCHINGS: the function that counts the perfect
matchings of a given bipartite graph.
#CYCLECOVER: the function that counts the cycle covers
of a given directed graph with self loops.
(0,1)-PERMANENT: The permanent of a given matrix with
elements from {0,1}

Remark: The last 3 are equivalent

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

The Class #P

Perfect Matchings

1

2

3

1

2

3

(1,1),(2,2),(3,3)
(1,1),(2,3),(3,2)
(1,3),(2,1),(3,2)

Cycle Covers

1 2

3

(1,1),(2,2),(3,3)
(1,1),(2,3),(3,2)
(1,3),(2,1),(3,2)

Adjacency Matrix

1 0 1
1 1 1
0 1 1

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

The Class #P

Perfect Matchings

1

2

3

1

2

3

(1,1),(2,2),(3,3)

(1,1),(2,3),(3,2)
(1,3),(2,1),(3,2)

Cycle Covers

1 2

3

(1,1),(2,2),(3,3)

(1,1),(2,3),(3,2)
(1,3),(2,1),(3,2)

Adjacency Matrix

1 0 1
1 1 1
0 1 1

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

The Class #P

Perfect Matchings

1

2

3

1

2

3

(1,1),(2,2),(3,3)

(1,1),(2,3),(3,2)

(1,3),(2,1),(3,2)

Cycle Covers

1 2

3

(1,1),(2,2),(3,3)

(1,1),(2,3),(3,2)

(1,3),(2,1),(3,2)

Adjacency Matrix

1 0 1
1 1 1
0 1 1

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

The Class #P

Perfect Matchings

1

2

3

1

2

3

(1,1),(2,2),(3,3)
(1,1),(2,3),(3,2)

(1,3),(2,1),(3,2)

Cycle Covers

1 2

3

(1,1),(2,2),(3,3)
(1,1),(2,3),(3,2)

(1,3),(2,1),(3,2)

Adjacency Matrix

1 0 1
1 1 1
0 1 1

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

The Class #P

Definition (Valiant ’79)
#P is the class of functions that can be computed by NDTM’s of
polynomial time complexity.

#P = {f : f (x) = accM(x)}

Or
The class of functions that count the number of witnesses (or
certificates) of NP problems.

Def. f ∈ #P : ∃ pred. Q ∈ P, ∀x : f (x) = #{y | Q(x , y)}

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Other Counting Related Complexity Classes

PP

Definition (Wagner ’86)

PP is the class of all languages L such that there exists a
poly-NDTM M and an FP function f such that
L = {x : accM(x) > f (x)}

Originally defined by Gill ’74 as a probabilistic class
From the above definition we can show: P#P = PPP

PNP[log] ⊆ PP (Beigel, Hemaspaandra, and Wechsung ’89)

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Other Counting Related Complexity Classes

Definition (Wagner ’89)

C=P is the class of all languages L such that there exists a
poly-NDTM M and an FP function f such that

L = {x : accM(x) = f (x)}

Definition (Papadimitriou and Zachos ’82)
⊕P is the class of all languages L such that there exists a
poly-NDTM M such that

L = {x : accM(x) is odd}

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Other Counting Related Complexity Classes

Definition (Allender ’86)
For any language L, L ∈ FewP if and only if there exist a NDTM
M and a polynomial p such that:

accM(x) ≤ p(|x |)
x ∈ L⇔ accM(x) > 0

Definition (Cai and Hemaspaandra ’90)
For any language L, L ∈ Few if and only if there exist a NDTM
M and a polynomial p and a polynomial time computable
predicate A(x , y) such that:

accM(x) ≤ p(|x |)
x ∈ L⇔ A(x , accM(x))

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Other Counting Related Complexity Classes

⊕P⊕P = ⊕P (PZ ’82)
Modk PModk P = Modk P holds if k is a prime (BGH ’90)
FewP ⊆ NP

This is not known for Few but Few ⊆ PNP[log]

Few ⊆ ⊕P (CH ’90),
Few ⊆ C=P (KSTT ’89),
Few ⊆ Modk P, for each prime k (BGH ’90)
Few is low for the classes PP, C=P and ⊕P (KSTT ’89)

That is PPFew = PP

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Other Counting Related Complexity Classes

Only Positive?

The counting classes defined so far may only contain
positive functions.
For a NDTM M we denote with M the machine identical to
M but with the accepting and rejecting states interchanged
gapM(x) = accM(x)− accM(x)

Definition
GapP = {gapM : M is a poly-NDTM}

#P ⊆ GapP = #P−#P = #P− FP = FP−#P

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Other Counting Related Complexity Classes

SPP

Definition
SPP is the class of all languages L, such that there exists a
poly-NDTM M, such that for all x

x ∈ L ⇒ gapM(x) = 1,
x /∈ L ⇒ gapM(x) = 0.

Köbler, Schöning and Torán (’92) showed that Graph
Automorphism is in SPP
Arvind and Kurur (’02) showed that Graph Isomorphism is in SPP

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Superclasses of #P

Valiant’s Framework

Definition
For every complexity class C of decision problems we define
#C =

⋃
A∈C(#P)A, where #PA is the collection of all functions

that count the accepting paths of polynomially bounded
NDTM’s having A as their oracle.

#C = #coC holds for every complexity class

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Superclasses of #P

Span and Operators

Definition (Hemaspaandra Vollmer ’95)
For any class C, define # · C to be the class of functions f , such
that for some C-computable 2-ary predicate (relation) R and
some polynomial p, for every string x it holds that:

f (x) = ‖{y : p(|x |) = |y | and R(x , y)}‖,

where “‖A‖” denotes the cardinality of the set A.

Definition (Köbler, Shöning, Torán ’89)

For a non-deterministic transducer M define the function
spanM : Σ∗ → N such that spanM(x)is the number of different
valid outputs that occur in the nondeterministic computation
tree induced by M on input x .
Define SpanP = {f : f = spanM and M is a poly-NDTM}

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Superclasses of #P

Definition
spanM−N(x) is the number of different outputs that M(x) can
produce and N(x) can’t.

Lemma
#NP = {f : f = spanM−N}, M,N PNTM’s

#NP ⊆ # · NP−# · NP

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Superclasses of #P

Some Results

#NP = # · PNP (from definitions)
#NP = (#P)NP[1] (KST ’89)
#P ⊆ # · NP ⊆ #NP (KST ’89)
#P = # · NP if and only if UP = NP (KST ’89)
· NP = #NP if and only if NP = coNP (KST ’89)

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Superclasses of #P

Toda’s Result (Ph.D.’92)

Theorem
· coNP = #NP

Generalizing to the #PH we have:

· Σp
k ⊆ #Σp

k = # · Πp
k

Thus, #PH =
⋃

#Σp
k =

⋃
· Πp

k = # · PH

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

The Valiant Vazirani Theorem

Valian-Vazirani Theorem

For every known NP-complete problem the number of
solutions of its instances varies from zero to exponentially
many.
Does this cause the inherent intractability of these
problems?

Theorem (Valiant Vazirani ’86)
There exists a probabilistic polynomial time algorithm f s.t. for
every n-variable Boolean formula ϕ

ϕ ∈ SAT ⇒ Pr[f (ϕ) ∈ USAT] ≥ 1
8n

ϕ /∈ SAT ⇒ Pr[f (ϕ) ∈ SAT] = 0

Therefore the above answer is no unless NP = RP

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

The Valiant Vazirani Theorem

Pairwise Independent Hash Functions

Definition (Pairwise Independent Hash Functions)

Let Hn,k be a collection of functions from {0,1}n to {0,1}k . We
say that Hn,k is pairwise independent if for every x , x ′ ∈ {0,1}n
with x 6= x ′ and for every y 6= y ′ ∈ {0,1}k ,
Prh∈RHn,k [h(x) = y ∧ h(x ′) = y ′] = 2−2k

Lemma: Let Hn,k be a pairwise independent hash function
collection from {0,1}n to {0,1}k and S ⊆ {0,1}n s.t.
2k−2 ≤ |S| ≤ 2k−1. Then

Prh∈RHn,k [there is a unique x ∈ S satisfying h(x) = 0k] ≥ 1
8

proof on board

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

The Valiant Vazirani Theorem

Proof of Valiant Vazirani Theorem

Given ϕ on n variables, choose k at random from
{2, . . . ,n + 1} and a random hash function h ∈R Hn,k .
The statement ∃x∈{0,1}nϕ(x) ∧ (h(x) = 0k) is false if ϕ is
unsatisfiable, and with probability 1/8n has a unique
satisfying assignment if ϕ is satisfiable.

If S is the set of satisfying assignments of ϕ, with
probability 1/n, k satisfies 2k−2 ≤ |S| ≤ 2k−1.
With probability 1/8 there is a unique x such that
ϕ(x) ∧ h(x) = 0k

The implementation is based on Cook’s reduction, and
expresses tha deterministic computation inside the ∃ sign
as a formula τ on variables x , y ∈ {0,1}poly(n), s.t. h(x) = 0
iff there exists a unique y such that τ(x , y) = 1. Output

ψ = ϕ(x) ∧ τ(x , y)

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Toda’s Theorem

What is the complexity of #P compared to Decision
Classes?

Theorem (Papadimitriou Zachos ’82)

PNP[log] ⊆ P#P[1]

Theorem (Toda ’91)

PH ⊆ P#P

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Toda’s Theorem

Proof

Lemma (Randomized Reduction from PH to ⊕SAT)
There exists a prob. poly-time algo A s.t. given a parameter m
and any QBF ψ of size n with c levels of alternations, runs in
poly(n,m) and satsisfies:

ψ is true ⇒ Pr[A(ψ) ∈ ⊕SAT] ≥ 1− 2−m

ψ is false ⇒ Pr[A(ψ) ∈ ⊕SAT] ≤ 2−m

Proof on board

By derandomizing the above lemma the proof of Toda’s
theorem is concluded.

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Path Counting

Hard To Count - Easy to Decide

Surprisingly enough, some problems in P have counting
versions that are complete for #P under less restrictive
reductions.

Cook reductions (f ≤p
T g : f ∈ FPg — aka poly-time Turing).

Examples: #PERFECT MATCHINGS, #DNFSAT, #MONSAT

They cannot be complete for #P under parsimonious
reductions unless P = NP.
Note that #P is not closed (under likely assumptions)
under Cook reductions.
Therefore these problems are Cook-complete also for
superclasses (and subclasses!) of #P.
Hard to count - easy to decide problems neither are well
represented by #P, nor are well classified by means of
Cook reductions.

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Path Counting

Further Motivation for Studying HCED Problems

Three degrees of approximability within problems of #P
[DGGJ’00]:

Solvable by an FPRAS:
#PERFECT MATCHINGS, #DNFSAT, ...
AP-interreducible with SAT:
SAT, #IS, ...
An Intermediate Class (AP-Interreducible with #BIS)
#BIS, ...

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Path Counting

Hard to Count Easy to Decide

#P contains counting versions of known NP problems
there exist other #P problems with decision version in P

Definition (Pagourtzis ’01)

Let #PE be the class that contains functions of #P whose
related language is in P.

Definition (Kiayias, Pagourtzis, Sharma and Zachos)

TotP = {totM : M is a poly-NDTM}

totM(x) = (The number of paths of M on input x)− 1

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Path Counting

Inclusions among #P,#PE, and TotP

#P ⊆ TotP− FP

FP ⊆ TotP ⊆ #PE ⊆ #P.
These inclusions are proper unless P = NP
From these propositions we get the following Corollaries:

- TotP,#PE and #P are not Karp equivalent unless P=NP.
- The above classes are Cook[1] interreducible:

FPTotP[1] = FP#PE[1] = FP#P[1]

- Combining the latter with Toda’s result we have

PH ⊆ PTotP[1] = P#PE[1]

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Path Counting

#PERFECT MATCHINGS is in TotP

Sketch of the proof:

It can be decided in polynomial time whether a graph G
has any perfect matchings.
Let e = (v ,u) be an edge of G. Then, the set of perfect
matchings of G can be partitioned into two subsets, S0 and
S1, where S0 consists of those perfect matchings that
match u and v through e, and S1 consists of the remaining
perfect matchings.
Each Si has the same cardinality with the set of of perfect
matchings of an appropriate subgraph Gi of G.

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Path Counting

stop

stop

stop stop

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Path Counting

Self-reducibility of #DNF-SAT

Select a variable x and construct formulae
φ0 := φ|x=0,
φ1 := φ|x=1. Clearly:
[#DNFSAT(φ) = #DNFSAT(φ0) + #DNFSAT(φ1)]

Corollary

#DNFSAT is in TotP.

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Path Counting

Self-reducibility for well-known problems that are
therefore in TotP

#PERFECTMATCHINGS (equiv. PERMANENT and CYCLECOVER)

#DNF-SAT

#2-SAT

#NONCLIQUES

#NONINDSETS

#INDSETSALL

RANKING

They are all Cook[1]-complete for TotP.

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Path Counting

TotP = Karp-closure(#PESR)

Self Reducibility
A function f : Σ∗ → N is called poly-time self-reducible, if there
exist polynomials r and q and polynomial time computable
functions h : Σ∗ → N, g : Σ∗ → N and t : Σ∗ → N, such that for
all x ∈ Σ∗

1 f (x) = t(x) +
∑r(|x |)

i=0 g(x , i)f (h(x , i)), that is, f can be
processed recursively by reducing x to h(x , i),
(0 ≤ i ≤ r(|x |)), and

2 the recursion terminates after at most polynomial depth
(that is, the value of f on instance
h(. . . h(h(x , i1), i2) . . . , iq(|x |)) can be computed
deterministically in polynomial time).

Theorem (Pagourtzis, Zachos)

TotP is exactly the closure under Karp reductions of #PESR

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Interval Size Functions

Some Definitions

A is a Partial Order (x ≤A y)

- reflexive
- antisymmetric
- transitive

A is a Total Order
- partial order
- all strings comparable

A is a p-order
∃q,∀x , y with x <A y : |x | ≤ q(|y |)
(i.e. lengths of all strings are polynomially related)
A has Efficient Adjacency Checks (a feasibility constraint)
We can check efficiently (in P) whether:
(x <A y) ∧ (@z : x <A z <A y)

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Interval Size Functions

Interval-size Function Classes

Definition
IFp (IFt) is the class of all functions f : Σ∗ → N for which
there exists a partial (total) p-order A ∈ P, with
f (x) = ‖{z : l(x) <A z <A u(x)}‖, for every x ∈ Σ∗, where
l ,u ∈ FP.
IF≺p (IF≺t) is the class of all functions f : Σ∗ → N for which
there exists a partial (total) p-order A ∈ P, with
f (x) = ‖{z : l(x) <A z <A u(x)}‖, for every x ∈ Σ∗, where
l ,u ∈ FP, and A has efficient adjacency checks.

IF≺p contains #DIV and #PRDIV
IF≺t contains #MONSAT (also Cook-complete for this class).
(A monotone CNF formula contains no ¬)

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Interval Size Functions

Example: an IF≺t computation for #MONSAT

A

t(x) = 1|F |0F105b(x) = 1|F |0F06

1|F |0F001100

1|F |0F001110
the rest strings of length 2|F |+ 7

in lexiographi order

F = enc[(x0 ∨ x2) ∧ (x0 ∨ x1 ∨ x3) ∧ (x1) ∧ (x2 ∨ x3)]

1|F |0F011010

1|F |0F011110

1|F |0F011100

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Interval Size Functions

Interval-size Function Classes (cont.)

Theorem (Hemaspaandra, Homan, Kosub, Wagner ’01)

For any function f the following are equivalent:
1 f ∈ #P.
2 There exist a partial p-order A ∈ P with

f (x) = ‖{z : l(x) <A z <A u(x)}‖, for all x ∈ Σ∗, for some
l ,u ∈ FP.

3 There exist a total p-order A ∈ P with
f (x) = ‖{z : l(x) <A z <A u(x)}‖, for all x ∈ Σ∗, for some
l ,u ∈ FP with l(x) <A u(x).

Corollary: #P = IFt = IFp.

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Interval Size Functions

Some Inclusions

IF≺p = #PE [Hemaspaandra et. al.’01]

#P ⊆ IF≺t − FP

FPIF≺
t = FPIF≺

p = FP#P

FP ⊆ IF≺t ⊆ IF≺p ⊆ #P = IFt = IFp

The inclusion FP ⊆ IF≺t is proper unless FP = #P.

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Connecting the two Approaches

Summarizing Earlier Results

P 6= NP

IF≺
t

#P

#DIV

P 6= PP

UP 6= PH

IF≺
p

P 6= NPP 6= NP

#Sat

TotP #MonSat#PM

#PE#Sat+1 =

FP

P 6= NP

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Connecting the two Approaches

Other Feasibility Constraints

Consider other polynomial time feasibility constraints,
besides efficient adjacency checks.

Def: IFLN
t : Lexicographical Nearest Function (Given a string

compute the lex-nearest string within a defined interval)
Theorem: IFLN

t = TotP

Def: IFmed
t : median function.

(Fact: IFmed
t = FP)

Def: IFrmed
t : “relaxed” median function (there is a whole family of

such).
(Fact: Contains the problem #SAT+2n)

Corollary:
FP = IFmed

t ⊆ IFrmed
t ⊆ IFLN

t = TotP

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Connecting the two Approaches

The Results [Bampas G. Pagourtzis Tentes ’09]

P 6= NP

IF≺
t

#P

#DIV

P 6= PP

UP 6= PH

IF≺
p

P 6= NPP 6= NP

#Sat

TotP #MonSat#PM

#PE#Sat+1 =

FP

P 6= NP

→

IFsucc
t

IF≺
t

#P

FP = IFmed
t

P 6= NP

UP 6= PH

?

P 6= UP ∩ coUP

P 6= NP

#P 6= FP

TotP = IFLN
t

IFrmed
t #Sat+2n

#PM

#Sat+1IF≺
p = #PE #Div

#MonSat

#Sat

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Connecting the two Approaches

The Results (cont.)

IFsucc
t

IF≺
t

#P

FP = IFmed
t

P 6= NP

UP 6= PH

?

P 6= UP ∩ coUP

P 6= NP

#P 6= FP

TotP = IFLN
t

IFrmed
t #Sat+2n

#PM

#Sat+1IF≺
p = #PE #Div

#MonSat

#Sat

Interval size characterizations:
TotP = IFLN

t (also FP = IFmed
t).

TotP ⊆ IF≺t ; the inclusion is proper
unless P = UP ∩ coUP.
A new interval size class, IFrmed

t , s.t.
FP ⊆ IFrmed

t ⊆ TotP, the inclusions being
proper unless FP = #P and P = NP
resp.
#SAT+2n ∈ IFrmed

t . Does IFrmed
t contain

natural “easy to decide - hard to count”
problems?

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Connecting the two Approaches

Interval size characterizations

The main idea is to consider new polynomial time feasibility
constraints, other than efficient adjacency checks.
For FP we consider the median function medA(x , y)

For TotP:
Lexicographical Nearest Function on a p-order A:
LNA(x , y ,w) returns the string z ∈ (x , y)A, which is the lex
nearest to w among strings in (x , y)A.
Captures the property that given a NPTM M and a string of
non-deterministic choices, we can find the lex nearest
string that encodes a computation path of M.
All #PE self reducible problems(i.e. TotP) can be expressed
as interval size functions with lex-nearest function in P
And vice versa

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Connecting the two Approaches

TotP = IFLN
t

TotP ⊆ IFLN
t

Let M be a TotP machine.
The boundary functions b, t are set according to p(|x |),
where p is the polynomial bounding the length of M ’s
computation.
An appropriate order A is defined, such that for each path
of M, a string is contained in (b(x), t(x))A iff it encodes a
valid computation path of M(x).
The computation of LNA is based on the property that given
a string x , we can verify efficiently whether it encodes a
computation path of M and if not, we can efficiently find the
encoding of a path y , that is lex-nearest to x .

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Connecting the two Approaches

TotP = IFLN
t (concl.)

IFLN
t ⊆ TotP

We construct an NPTM M s.t. on input x ,
totM(x) = ‖(b(x), t(x))A‖.
We use the LNA function in order to re-arrange strings in
(b(x), t(x))A lexicographically.
The lex-first and last strings of (b(x), t(x))A, say f , l are
computed first.
Then, the lex-nearest to the lex-median of (f , l)A is
computed, say m.
The process is repeated recursively by splitting (into two
computation paths) as long as (f ,m) and (m, l) are
nonempty.

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Connecting the two Approaches

IFLN
t ⊆ TotP

If we can compute LNA efficiently then we can also
compute LN+

A and LN−A efficiently.
We use LNA function in order to re-arrange strings in
(b(x), t(x))A lexicographically.

−lex min
−lex maxv = LNA(b, t, 0

p(|t|)+1)
u = LNA(b, t, ǫ)

b v t A

u

z− = LN−
A(u, v, z)

z = medlex(u, v)

u

lex

z+ = LN+
A(u, v, z)

v

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Connecting the two Approaches

Functions-to-Languages Operators

We define class operators that produce appropriate
decision versions of counting problems.
We observe that by using efficient adjacency checks (IF≺t)
we can only tell (efficiently) whether there are any strings
in the interval.
On the other hand, in a TotP computation we can decide
whether there are more than one paths.

Definition
Let F be a function class; then C>1 · F is the following class of
languages:

C>1 · F = {L | ∃f ∈ F ∀x (x ∈ L ⇐⇒ f (x) > 1)} .

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Connecting the two Approaches

TotP (IF≺t if P 6= UP ∩ coUP

C>1 · TotP ⊆ P

UP ∩ coUP ⊆ C>1 · IF≺t

x01z

x10z

A

t(x) = x110p(|x|)

y s.t. |y| = |x|+ p(|x|+ 2)

b(x) = x0p(|x|)+2

if z enodes the aepting path

If IF≺t ⊆ TotP, then UP ∩ coUP ⊆ C>1 · IF≺t ⊆ C>1 · TotP ⊆ P

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Connecting the two Approaches

Open Problems

Can the Karp closure of #PERFECT MATCHINGS,
#DNFSAT, etc., be described in terms of interval size
functions? In terms of path counting functions?
Are there complete problems for the studied classes under
Karp reductions? Under other suitable reductions?
Can the approximation subclasses of #P (DGGJ’00) be
related to interval size functions or to path counting
functions?

Counting Classes The Computational Power of #P Subclasses of #P (I) Subclasses of #P (II)

Connecting the two Approaches

THANK YOU!!

	Counting Classes
	The Class #P
	Other Counting Related Complexity Classes
	Superclasses of #P

	The Computational Power of #P
	The Valiant Vazirani Theorem
	Toda's Theorem

	Subclasses of #P (I)
	Path Counting
	Interval Size Functions

	Subclasses of #P (II)
	Connecting the two Approaches

