Complexity Classes of Counting Problems

Andreas-Nikolas Göbel

National Technical University of Athens, Greece

April 2012
(1) Counting Classes

- The Class \#P
- Other Counting Related Complexity Classes
- Superclasses of \#P
(2) The Computational Power of \#P
- The Valiant Vazirani Theorem
- Toda's Theorem
(3) Subclasses of \#P (I)
- Path Counting
- Interval Size Functions

4. Subclasses of \#P (II)

- Connecting the two Approaches

Counting problems

- \#SAT: the function that counts the number of satisfying assignments of a given formula.
- \#HamiltonPaths: the function that counts the number of Hamilton paths of a given graph.
- \#DIV: the function that counts the number of divisors of a given number
- \#PRDIV: the function that counts the number of prime divisors of a given number
- \#PerfectMatchings: the function that counts the perfect matchings of a given bipartite graph.
- \#CycleCover: the function that counts the cycle covers of a given directed graph with self loops.
- $(0,1)$-Permanent: The permanent of a given matrix with elements from $\{0,1\}$
Remark: The last 3 are equivalent

Cycle Covers

Adjacency Matrix

1	0	1
1	1	1
0	1	1

(1,1),(2,2),(3,3)

Cycle Covers

(1,1),(2,2),(3,3)

Adjacency Matrix

1	0	1
1	1	1
0	1	1

Cycle Covers

$$
(1,1),(2,3),(3,2)
$$

Adjacency Matrix

1	0	1
1	1	1
0	1	1

Cycle Covers

$(1,3),(2,1),(3,2)$

Adjacency Matrix

1	0	1
1	1	1
0	1	1

$(1,3),(2,1),(3,2)$

Definition (Valiant '79)

\#P is the class of functions that can be computed by NDTM's of polynomial time complexity.

$$
\# P=\left\{f: f(x)=\operatorname{acc}_{M}(x)\right\}
$$

Or
The class of functions that count the number of witnesses (or certificates) of NP problems.

Def. $f \in \# P: \exists$ pred. $Q \in P, \forall x: f(x)=\#\{y \mid Q(x, y)\}$

PP

Definition (Wagner '86)

PP is the class of all languages L such that there exists a poly-NDTM M and an FP function f such that
$L=\left\{x: \operatorname{acc}_{M}(x)>f(x)\right\}$

- Originally defined by Gill '74 as a probabilistic class
- From the above definition we can show: $\mathrm{P}^{\# \mathrm{P}}=\mathrm{P}^{\mathrm{PP}}$
- $\mathrm{P}^{\mathrm{NP}[/ o g]} \subseteq \mathrm{PP}$ (Beigel, Hemaspaandra, and Wechsung '89)

Definition (Wagner '89)

$\mathrm{C}_{=} \mathrm{P}$ is the class of all languages L such that there exists a poly-NDTM M and an FP function f such that

$$
L=\left\{x: \operatorname{acc}_{M}(x)=f(x)\right\}
$$

Definition (Papadimitriou and Zachos '82)

$\oplus \mathrm{P}$ is the class of all languages L such that there exists a poly-NDTM M such that

$$
L=\left\{x: \operatorname{acc}_{M}(x) \text { is odd }\right\}
$$

Definition (Allender '86)

For any language $L, L \in$ FewP if and only if there exist a NDTM M and a polynomial p such that:

$$
\begin{aligned}
& \operatorname{acc}_{M}(x) \leq p(|x|) \\
& x \in L \Leftrightarrow \operatorname{acc} M(x)>0
\end{aligned}
$$

Definition (Cai and Hemaspaandra '90)

For any language $L, L \in$ Few if and only if there exist a NDTM M and a polynomial p and a polynomial time computable predicate $A(x, y)$ such that:

$$
\begin{aligned}
& \operatorname{acc}_{M}(x) \leq p(|x|) \\
& x \in L \Leftrightarrow A\left(x, \operatorname{acc}_{M}(x)\right)
\end{aligned}
$$

- $\oplus \mathrm{P}^{\oplus \mathrm{P}}=\oplus \mathrm{P}\left(\mathrm{PZ}{ }^{\prime} 82\right)$
- $\operatorname{Mod}_{k} \mathrm{P}^{\operatorname{Mod}_{k} \mathrm{P}}=\operatorname{Mod}_{k} \mathrm{P}$ holds if k is a prime (BGH '90)
- FewP \subseteq NP
- This is not known for Few but Few $\subseteq \mathrm{P}^{\mathrm{NP}[/ o g]}$
- Few $\subseteq \oplus \mathrm{P}$ (CH '90),

Few $\subseteq \mathrm{C}_{=} \mathrm{P}$ (KSTT '89),
Few $\subseteq \operatorname{Mod}_{k} \mathrm{P}$, for each prime k (BGH '90)

- Few is low for the classes PP, $\mathrm{C}_{=} \mathrm{P}$ and $\oplus \mathrm{P}$ (KSTT '89)
- That is $\mathrm{PP}^{\mathrm{Few}}=\mathrm{PP}$

Only Positive?

- The counting classes defined so far may only contain positive functions.
- For a NDTM M we denote with \bar{M} the machine identical to M but with the accepting and rejecting states interchanged
- $\operatorname{gap}_{M}(x)=\operatorname{acc}_{M}(x)-\operatorname{acc}_{M}(x)$

Definition
 GapP $=\left\{\operatorname{gap}_{M}: M\right.$ is a poly-NDTM $\}$

- $\# \mathrm{P} \subseteq \mathrm{GapP}=\# \mathrm{P}-\# \mathrm{P}=\# \mathrm{P}-\mathrm{FP}=\mathrm{FP}-\# \mathrm{P}$

SPP

Definition

SPP is the class of all languages L, such that there exists a poly-NDTM M, such that for all x

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{gap}_{M}(x)=1 \\
& x \notin L \Rightarrow \operatorname{gap}_{M}(x)=0
\end{aligned}
$$

Köbler, Schöning and Torán ('92) showed that Graph Automorphism is in SPP
Arvind and Kurur ('02) showed that Graph Isomorphism is in SPP

Valiant's Framework

Definition

For every complexity class \mathcal{C} of decision problems we define $\# \mathcal{C}=\bigcup_{A \in \mathcal{C}}(\# \mathrm{P})^{A}$, where $\# \mathrm{P}^{A}$ is the collection of all functions that count the accepting paths of polynomially bounded NDTM's having A as their oracle.
$\# \mathcal{C}=\# \mathrm{co} \mathcal{C}$ holds for every complexity class

Span and Operators

Definition (Hemaspaandra Vollmer '95)

For any class \mathcal{C}, define $\# \cdot \mathcal{C}$ to be the class of functions f, such that for some \mathcal{C}-computable 2-ary predicate (relation) R and some polynomial p, for every string x it holds that:

$$
f(x)=\|\{y: p(|x|)=|y| \text { and } R(x, y)\} \|,
$$

where " $\|A\|$ " denotes the cardinality of the set A.

Definition (Köbler, Shöning, Torán '89)

For a non-deterministic transducer M define the function $\operatorname{span}_{M}: \Sigma^{*} \rightarrow \mathbb{N}$ such that $\operatorname{span}_{M}(x)$ is the number of different valid outputs that occur in the nondeterministic computation tree induced by M on input x.
Define SpanP $=\left\{f: f=\operatorname{span}_{M}\right.$ and M is a poly-NDTM $\}$

Superclasses of \#P

Definition

$\operatorname{span}_{M-N}(x)$ is the number of different outputs that $M(x)$ can produce and $N(x)$ can't.

$$
\begin{aligned}
& \text { Lemma } \\
& \# N P=\left\{f: f=\operatorname{span}_{M-N}\right\}, M, N \text { PNTM's } \\
& \# \mathrm{NP} \subseteq \# \cdot \mathrm{NP}-\# \cdot \mathrm{NP}
\end{aligned}
$$

Superclasses of \#P

Some Results

- $\# \mathrm{NP}=\# \cdot \mathrm{P}^{\mathrm{NP}}$ (from definitions)
- $\# \mathrm{NP}=(\# \mathrm{P})^{\mathrm{NP}[1]}$ (KST '89)
- \#P $\subseteq \# \cdot \mathrm{NP} \subseteq \# \mathrm{NP}$ (KST ' ${ }^{\prime} 9$)
- \#P = \# • NP if and only if UP = NP (KST '89)
- \# $\cdot \mathrm{NP}=$ \#NP if and only if NP $=\mathrm{coNP}($ KST '89)

Superclasses of \#P

Toda's Result (Ph.D.'92)

Theorem

$\# \cdot \operatorname{coNP}=\# N P$

- Generalizing to the \#PH we have:

$$
\# \cdot \Sigma_{k}^{p} \subseteq \# \Sigma_{k}^{p}=\# \cdot \Pi_{k}^{p}
$$

- Thus, $\# \mathrm{PH}=\bigcup \# \Sigma_{k}^{p}=\bigcup \# \cdot \Pi_{k}^{p}=\# \cdot \mathrm{PH}$

Valian-Vazirani Theorem

- For every known NP-complete problem the number of solutions of its instances varies from zero to exponentially many.
- Does this cause the inherent intractability of these problems?

Theorem (Valiant Vazirani '86)

There exists a probabilistic polynomial time algorithm f s.t. for every n-variable Boolean formula φ

$$
\begin{gathered}
\varphi \in \mathrm{SAT} \Rightarrow \operatorname{Pr}[f(\varphi) \in \mathrm{USAT}] \geq \frac{1}{8 n} \\
\varphi \notin \mathrm{SAT} \Rightarrow \operatorname{Pr}[f(\varphi) \in \mathrm{SAT}]=0
\end{gathered}
$$

Therefore the above answer is no unless $N P_{\square}=R P$

Pairwise Independent Hash Functions

Definition (Pairwise Independent Hash Functions)

Let $\mathcal{H}_{n, k}$ be a collection of functions from $\{0,1\}^{n}$ to $\{0,1\}^{k}$. We say that $\mathcal{H}_{n, k}$ is pairwise independent if for every $x, x^{\prime} \in\{0,1\}^{n}$ with $x \neq x^{\prime}$ and for every $y \neq y^{\prime} \in\{0,1\}^{k}$,
$\operatorname{Pr}_{h \in_{R} \mathcal{H}_{n, k}}\left[h(x)=y \wedge h\left(x^{\prime}\right)=y^{\prime}\right]=2^{-2 k}$
Lemma: Let $\mathcal{H}_{n, k}$ be a pairwise independent hash function collection from $\{0,1\}^{n}$ to $\{0,1\}^{k}$ and $S \subseteq\{0,1\}^{n}$ s.t. $2^{k-2} \leq|S| \leq 2^{k-1}$. Then

$$
\operatorname{Pr}_{h \in_{R} \mathcal{H}_{n, k}}\left[\text { there is a unique } x \in S \text { satisfying } h(x)=0^{k}\right] \geq \frac{1}{8}
$$

proof on board

Proof of Valiant Vazirani Theorem

- Given φ on n variables, choose k at random from $\{2, \ldots, n+1\}$ and a random hash function $h \in_{R} \mathcal{H}_{n, k}$.
- The statement $\exists_{x \in\{0,1\}^{n}} \varphi(x) \wedge\left(h(x)=0^{k}\right)$ is false if φ is unsatisfiable, and with probability $1 / 8 n$ has a unique satisfying assignment if φ is satisfiable.
- If S is the set of satisfying assignments of φ, with probability $1 / n, k$ satisfies $2^{k-2} \leq|S| \leq 2^{k-1}$.
- With probability $1 / 8$ there is a unique x such that

$$
\varphi(x) \wedge h(x)=0^{k}
$$

- The implementation is based on Cook's reduction, and expresses tha deterministic computation inside the \exists sign as a formula τ on variables $x, y \in\{0,1\}^{\text {poly }(n)}$, s.t. $h(x)=0$ iff there exists a unique y such that $\tau(x, y)=1$. Output

$$
\psi=\varphi(x) \wedge \tau(x, y)
$$

Toda's Theorem

What is the complexity of \#P compared to Decision Classes?

```
Theorem (Papadimitriou Zachos '82)
\(P^{N P[/ o g]} \subseteq P^{\# P[1]}\)
```

Theorem (Toda '91)

$$
P H \subseteq P^{\# P}
$$

Proof

Lemma (Randomized Reduction from PH to \oplus SAT)

There exists a prob. poly-time algo A s.t. given a parameter m and any QBF ψ of size n with c levels of alternations, runs in poly (n, m) and satsisfies:

$$
\begin{gathered}
\psi \text { is true } \Rightarrow \operatorname{Pr}[A(\psi) \in \oplus \mathrm{SAT}] \geq 1-2^{-m} \\
\psi \text { is false } \Rightarrow \operatorname{Pr}[A(\psi) \in \oplus \mathrm{SAT}] \leq 2^{-m}
\end{gathered}
$$

Proof on board

- By derandomizing the above lemma the proof of Toda's theorem is concluded.

Hard To Count - Easy to Decide

- Surprisingly enough, some problems in P have counting versions that are complete for $\# P$ under less restrictive reductions.
- Cook reductions ($f \leq_{T}^{p} g: f \in \mathrm{FP}^{g}$ - aka poly-time Turing).
- Examples: \#Perfect Matchings, \#DNFSat, \#MonSat
- They cannot be complete for \#P under parsimonious reductions unless $\mathrm{P}=\mathrm{NP}$.
- Note that \#P is not closed (under likely assumptions) under Cook reductions.
Therefore these problems are Cook-complete also for superclasses (and subclasses!) of \#P.
- Hard to count - easy to decide problems neither are well represented by \#P, nor are well classified by means of Cook reductions.

Further Motivation for Studying HCED Problems

- Three degrees of approximability within problems of \#P [DGGJ'00]:
- Solvable by an FPRAS: \#Perfect Matchings, \#DNFSat, ...
- AP-interreducible with SAT: SAT, \#IS, ...
- An Intermediate Class (AP-Interreducible with \#BIS) \#BIS, ...

Hard to Count Easy to Decide

- \#P contains counting versions of known NP problems
- there exist other \#P problems with decision version in P

Definition (Pagourtzis '01)

Let \#PE be the class that contains functions of \#P whose related language is in P.

Definition (Kiayias, Pagourtzis, Sharma and Zachos)

$$
\operatorname{TotP}=\left\{\operatorname{tot}_{M}: M \text { is a poly-NDTM }\right\}
$$

$$
\operatorname{tot}_{M}(x)=(\text { The number of paths of } M \text { on input } x)-1
$$

Inclusions among \#P,\#PE, and TotP

- $\# \mathrm{P} \subseteq \operatorname{Tot} \mathrm{P}-\mathrm{FP}$
- $\mathrm{FP} \subseteq \operatorname{Tot} \mathrm{P} \subseteq \# \mathrm{PE} \subseteq \# \mathrm{P}$.

These inclusions are proper unless $\mathrm{P}=\mathrm{NP}$

- From these propositions we get the following Corollaries:
- TotP, \#PE and \#P are not Karp equivalent unless P=NP.
- The above classes are Cook[1] interreducible:

$$
\mathrm{FP}^{\mathrm{TotP}[1]}=\mathrm{FP}^{\# \mathrm{PE}[1]}=\mathrm{FP}^{\# \mathrm{P}[1]}
$$

- Combining the latter with Toda's result we have

$$
\mathrm{PH} \subseteq \mathrm{P}^{\mathrm{TotP}[1]}=\mathrm{P}^{\# \mathrm{PE}[1]}
$$

\#Perfect Matchings is in TotP

Sketch of the proof:

- It can be decided in polynomial time whether a graph G has any perfect matchings.
- Let $e=(v, u)$ be an edge of G. Then, the set of perfect matchings of G can be partitioned into two subsets, S_{0} and S_{1}, where S_{0} consists of those perfect matchings that match u and v through e, and S_{1} consists of the remaining perfect matchings.
- Each S_{i} has the same cardinality with the set of of perfect matchings of an appropriate subgraph G_{i} of G.

Path Counting

Self-reducibility of \#DNF-SAT

Select a variable x and construct formulae $\phi_{0}:=\left.\phi\right|_{x=0}$,
$\phi_{1}:=\left.\phi\right|_{x=1}$. Clearly:
$\left[\# \operatorname{DFSAT}(\phi)=\right.$ \#DNFSAT $\left(\phi_{0}\right)+$ \#DNFSAT $\left(\phi_{1}\right)$]

Corollary

\#DNFSAT is in TotP.

Path Counting

Self-reducibility for well-known problems that are therefore in TotP

- \#PerfectMatchings (equiv. Permanent and CycleCover)
- \#DNF-SAT
- \#2-SAT
- \#NonCliques
- \#NonIndSETS
- \#IndSETsAll
- Ranking

They are all Cook[1]-complete for TotP.

TotP $=$ Karp-closure $\left(\# \mathrm{PE}_{\mathrm{SR}}\right)$

Self Reducibility

A function $f: \Sigma^{*} \rightarrow \mathbb{N}$ is called poly-time self-reducible, if there exist polynomials r and q and polynomial time computable functions $h: \Sigma^{*} \rightarrow \mathbb{N}, g: \Sigma^{*} \rightarrow \mathbb{N}$ and $t: \Sigma^{*} \rightarrow \mathbb{N}$, such that for all $x \in \Sigma^{*}$
(1) $f(x)=t(x)+\sum_{i=0}^{r(|x|)} g(x, i) f(h(x, i))$, that is, f can be processed recursively by reducing x to $h(x, i)$, $(0 \leq i \leq r(|x|))$, and
(2) the recursion terminates after at most polynomial depth (that is, the value of f on instance $h\left(\ldots h\left(h\left(x, i_{1}\right), i_{2}\right) \ldots, i_{q(|x|)}\right)$ can be computed deterministically in polynomial time).

Theorem (Pagourtzis, Zachos)

TotP is exactly the closure under Karp reductions of $\# P E_{S R}$

Some Definitions

- A is a Partial Order $\left(x \leq_{A} y\right)$
- reflexive
- antisymmetric
- transitive
- A is a Total Order
- partial order
- all strings comparable
- A is a p-order
$\exists q, \forall x, y$ with $x<_{A} y: \quad|x| \leq q(|y|)$
(i.e. lengths of all strings are polynomially related)
- A has Efficient Adjacency Checks (a feasibility constraint) We can check efficiently (in P) whether:

$$
\left(x<_{A} y\right) \wedge\left(\nexists z: x<_{A} z<_{A} y\right)
$$

Interval Size Functions

Interval-size Function Classes

Definition

- $\mathrm{IF}_{\mathrm{p}}\left(\mathrm{IF}_{\mathrm{t}}\right)$ is the class of all functions $f: \Sigma^{*} \rightarrow \mathbb{N}$ for which there exists a partial (total) p -order $A \in \mathbf{P}$, with $f(x)=\left\|\left\{z: I(x)<_{A} z<_{A} u(x)\right\}\right\|$, for every $x \in \Sigma^{*}$, where $l, u \in \mathrm{FP}$.
- $\mathrm{IF}_{\mathrm{p}}^{\prec}\left(\mathrm{IF}_{\mathrm{t}}^{\prec}\right)$ is the class of all functions $f: \Sigma^{*} \rightarrow \mathbb{N}$ for which there exists a partial (total) p -order $A \in \mathbf{P}$, with $f(x)=\left\|\left\{z: I(x)<_{A} z<_{A} u(x)\right\}\right\|$, for every $x \in \Sigma^{*}$, where $I, u \in \mathrm{FP}$, and A has efficient adjacency checks.
- $\mathrm{IF}_{\mathrm{p}}^{\prec}$ contains \#DIV and \#PRDIV
- $\mathrm{IF}_{\mathrm{t}}^{\prec}$ contains \#MonSat (also Cook-complete for this class). (A monotone CNF formula contains no \neg)

Interval Size Functions

Example: an $\mathrm{IF}_{\mathrm{t}}^{\prec}$ computation for \#MoNSAT

$$
F=\operatorname{enc}\left[\left(x_{0} \vee x_{2}\right) \wedge\left(x_{0} \vee x_{1} \vee x_{3}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2} \vee x_{3}\right)\right]
$$

Interval Size Functions

Interval-size Function Classes (cont.)

Theorem (Hemaspaandra, Homan, Kosub, Wagner '01)

For any function f the following are equivalent:
(1) $f \in \# \boldsymbol{P}$.
(2) There exist a partial p-order $\boldsymbol{A} \in \boldsymbol{P}$ with $f(x)=\left\|\left\{z: I(x)<_{A} z<_{A} u(x)\right\}\right\|$, for all $x \in \Sigma^{*}$, for some $l, u \in \mathrm{FP}$.
(3) There exist a total p-order $\boldsymbol{A} \in \boldsymbol{P}$ with
$f(x)=\left\|\left\{z: I(x)<_{A} z<_{A} u(x)\right\}\right\|$, for all $x \in \Sigma^{*}$, for some $I, u \in$ FP with $I(x)<_{A} u(x)$.

Corollary: $\# \mathrm{P}=\mathrm{IF}_{\mathrm{t}}=\mathrm{IF}_{\mathrm{p}}$.

Some Inclusions

- $\mathrm{IF}_{\mathrm{p}}^{\prec}=\# \mathrm{PE}$ [Hemaspaandra et. al.'01]
- $\# \mathrm{P} \subseteq \mathrm{IF}_{\mathrm{t}}^{\prec}-\mathrm{FP}$
- $\mathrm{FP}^{\mathrm{IF}_{\mathrm{t}}^{\prec}}=\mathrm{FP}^{-\mathrm{F}_{\mathrm{p}}^{\prec}}=\mathrm{FP}{ }^{\#} \mathrm{P}$
- $\mathrm{FP} \subseteq \mathrm{IF}_{\mathrm{t}}^{\prec} \subseteq \mathrm{IF}_{\mathrm{p}}^{\prec} \subseteq \# \mathrm{P}=\mathrm{IF}_{\mathrm{t}}=\mathrm{IF}_{\mathrm{p}}$
- The inclusion $\mathrm{FP} \subseteq \mathrm{IF}_{\mathrm{t}}^{\prec}$ is proper unless $\mathrm{FP}=\# \mathrm{P}$.

Summarizing Earlier Results

Other Feasibility Constraints

Consider other polynomial time feasibility constraints, besides efficient adjacency checks.
Def: $\mathrm{IF}_{\mathrm{t}}^{\mathrm{LN}}$: Lexicographical Nearest Function (Given a string compute the lex-nearest string within a defined interval)
Theorem: $\mathrm{IF}_{\mathrm{t}}^{\mathrm{LN}}=\mathrm{TotP}$
Def: $\mathrm{IF}_{\mathrm{t}}^{\text {med }}$: median function.
(Fact: $\mathrm{IF}_{\mathrm{t}}^{\mathrm{med}}=\mathrm{FP}$)
Def: $\mathrm{IF}_{\mathrm{t}}^{\text {rmed: }}$: "relaxed" median function (there is a whole family of such).
(Fact: Contains the problem $\#$ SAT $_{+2^{n}}$)
Corollary:
$\mathrm{FP}=\mathrm{IF}_{\mathrm{t}}^{\text {med }} \subseteq \mathrm{IF}_{\mathrm{t}}^{\mathrm{rmed}} \subseteq \mathrm{IF}_{\mathrm{t}}^{\mathrm{LN}}=\mathrm{TotP}$

Connecting the two Approaches

The Results [Bampas G. Pagourtzis Tentes '09]

The Results (cont.)

- Interval size characterizations: $\operatorname{TotP}=\mathrm{IF}_{\mathrm{t}}^{\mathrm{LN}}$ (also FP $=\mathrm{IF}_{\mathrm{t}}^{\mathrm{med}}$).
- $\operatorname{TotP} \subseteq \mathrm{IF}_{\mathrm{t}}^{\prec}$; the inclusion is proper unless $\mathrm{P}=\mathrm{UP} \cap$ coUP.
- A new interval size class, $\mathrm{IF}_{\mathrm{t}}^{\mathrm{rmed}}$, s.t. $\mathrm{FP} \subseteq \mathrm{IF}_{\mathrm{t}}^{\text {rmed }} \subseteq \mathrm{TotP}$, the inclusions being proper unless $\mathrm{FP}=\# \mathrm{P}$ and $\mathrm{P}=\mathrm{NP}$ resp.
- $\# S A T_{+2^{n}} \in \mathrm{IF}_{\mathrm{t}}^{\mathrm{rmed}}$. Does $\mathrm{IF}_{\mathrm{t}}^{\text {rmed }}$ contain natural "easy to decide - hard to count" problems?

Interval size characterizations

- The main idea is to consider new polynomial time feasibility constraints, other than efficient adjacency checks.
- For FP we consider the median function $\operatorname{med}_{A}(x, y)$
- For TotP:
- Lexicographical Nearest Function on a p-order A :
$\mathrm{LN}_{A}(x, y, w)$ returns the string $z \in(x, y)_{A}$, which is the lex nearest to w among strings in $(x, y)_{A}$.
- Captures the property that given a NPTM M and a string of non-deterministic choices, we can find the lex nearest string that encodes a computation path of M.
- All \#PE self reducible problems(i.e. TotP) can be expressed as interval size functions with lex-nearest function in P
- And vice versa

$\operatorname{TotP}=\mathrm{IF}_{\mathrm{t}}^{\mathrm{LN}}$

- $\operatorname{TotP} \subseteq \mathrm{IF}_{\mathrm{t}}^{\mathrm{LN}}$
- Let M be a TotP machine.
- The boundary functions b, t are set according to $p(|x|)$, where p is the polynomial bounding the length of M 's computation.
- An appropriate order A is defined, such that for each path of M, a string is contained in $(b(x), t(x))_{A}$ iff it encodes a valid computation path of $M(x)$.
- The computation of LN_{A} is based on the property that given a string x, we can verify efficiently whether it encodes a computation path of M and if not, we can efficiently find the encoding of a path y, that is lex-nearest to x.

$\mathrm{TotP}=\mathrm{IF}_{\mathrm{t}}^{\mathrm{LN}}($ concl. $)$

- $\mathrm{IF}_{\mathrm{t}}^{\mathrm{LN}} \subseteq \operatorname{Tot} \mathrm{P}$
- We construct an NPTM M s.t. on input x, $\operatorname{tot}_{M}(x)=\left\|(b(x), t(x))_{A}\right\|$.
- We use the LN_{A} function in order to re-arrange strings in $(b(x), t(x))_{A}$ lexicographically.
- The lex-first and last strings of $(b(x), t(x))_{A}$, say f, I are computed first.
- Then, the lex-nearest to the lex-median of $(f, I)_{A}$ is computed, say m.
- The process is repeated recursively by splitting (into two computation paths) as long as (f, m) and ($m, /$) are nonempty.

$\mathrm{IF}_{\mathrm{t}}^{\mathrm{LN}} \subseteq \mathrm{TotP}$

- If we can compute LN_{A} efficiently then we can also compute LN_{A}^{+}and LN_{A}^{-}efficiently.
- We use LN_{A} function in order to re-arrange strings in $(b(x), t(x))_{A}$ lexicographically.

Functions-to-Languages Operators

- We define class operators that produce appropriate decision versions of counting problems.
- We observe that by using efficient adjacency checks $\left(\mathrm{IF}_{t}^{\prec}\right)$ we can only tell (efficiently) whether there are any strings in the interval.
- On the other hand, in a TotP computation we can decide whether there are more than one paths.

Definition

Let \mathcal{F} be a function class; then $\mathcal{C}_{>1} \cdot \mathcal{F}$ is the following class of languages:

$$
\mathcal{C}_{>1} \cdot \mathcal{F}=\{L \mid \exists f \in \mathcal{F} \forall x(x \in L \Longleftrightarrow f(x)>1)\} .
$$

Connecting the two Approaches

$\operatorname{TotP} \subsetneq \mathrm{IF}_{\mathrm{t}}^{\prec}$ if $\mathrm{P} \neq \mathrm{UP} \cap \operatorname{coUP}$

- $\mathcal{C}_{>1} \cdot \operatorname{Tot} \mathrm{P} \subseteq \mathrm{P}$
- UP $\cap \operatorname{coUP} \subseteq \mathcal{C}_{>1} \cdot \mathrm{IF}_{\mathrm{t}}^{\prec}$

- If $\mathrm{IF}_{\mathrm{t}}^{\prec} \subseteq \mathrm{TotP}$, then $\mathrm{UP} \cap \operatorname{coUP} \subseteq \mathcal{C}_{>1} \cdot \mathrm{IF}_{\mathrm{t}}^{\prec} \subseteq \mathcal{C}_{>1} \cdot \operatorname{TotP} \subseteq \mathrm{P}$

Open Problems

- Can the Karp closure of \#Perfect Matchings, \#DNFSAT, etc., be described in terms of interval size functions? In terms of path counting functions?
- Are there complete problems for the studied classes under Karp reductions? Under other suitable reductions?
- Can the approximation subclasses of \#P (DGGJ'00) be related to interval size functions or to path counting functions?

Connecting the two Approaches

