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µΠλ∀

June 2012



Motivation Three Restrictions of #P Dichotomies for Counting Problems Holographic Algorithms End

1 Motivation
Decision Problems
Counting Problems

2 Three Restrictions of #P
Graph Homomorphisms
Constraint Satisfaction Problem
Holant Problems

3 Dichotomies for Counting Problems
Graph Homomorphism
Constraint Satisfaction Problem
Holant Problems

4 Holographic Algorithms
Holographic Reductions
Problems
More about Holographic Algorithms

5 End



Motivation Three Restrictions of #P Dichotomies for Counting Problems Holographic Algorithms End

Decision Problems

Ladner’s Theorem

Theorem (Ladner)

If P 6= NP, then there are problems in NP that are neither in P
nor NP-complete.

Natural candidates: Graph Isomorphism, Integer Factorization

Despite Ladner’s theorem, most natural problems are either in
P or NP-complete.

Our goal is to find big classes of natural problems such that
each problem in these classes is either tractable or very hard
and it is easy to decide which of these cases holds.
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Decision Problems

Dichotomies for Decision Problems

The H-Coloring Problem:

- An H-coloring of G is just a homomorphism G → H.
The H-coloring problem is in P if H is bipartite, otherwise it is
NP-complete (Hell, Nešeťril ’90).

Constraint Satisfaction Problem

- Given a set of constraints over subsets of n variables, find an
assignment that satisfies all the constraints.
We have a dichotomy when the range of the variables is the
Boolean Domain {0, 1} (Shaeffer ’78).
A dichotomy also holds when the range of the variables has
three elements {0, 1, 2} (Bulatov ’03).
The general case (Feder-Vardi conjecture ’93) remains yet
unresolved.
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Counting Problems

Ladner’s Theorem for Counting Problems

Ladner’s theorem can be extended to counting problems as well:

Theorem (Ladner)

If FP 6= #P, then there are problems in #P that are neither in FP
nor #P-complete.

Natural candidates: #Div

Like the decision case we are interested in finding broad
classes of natural problems such that each problem in these
classes is either tractable or very hard and it is easy to decide
which of these cases holds.
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Graph Homomorphisms

Graph Homomorphism

Definition

Let A = (Ai ,j) ∈ Cq×q be a complex matrix.
The graph homomorphism problem EVAL(A) is:
Input: A graph G = (V ,E ).
Output: The partition function

ZA(G ) =
∑

σ:V→[q]

∏
(u,v)∈E

Aσ(u),σ(v).

If A is symmetric and G is an undirected graph, then we have the
undirected graph homomorphism problem.
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Graph Homomorphisms

Examples

The function ZA(G ) can express many interesting properties.

Let A =

(
0 1
1 1

)
, then ZA(G ) counts the number of vertex

covers in G .

Let A =

 0 1 1
1 0 1
1 1 0

, then ZA(G ) counts the number of

3-colorings in G .
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Graph Homomorphisms

More Examples

k-colorings: A =


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

.

Counting the number of induced subgraphs of G with an even

number of edges: A =

(
1 1
1 −1

)
.
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Constraint Satisfaction Problem

#CSP

Definition

Let [q] be a domain set.
A constraint language F is a finite set of functions {f1, · · · , fh} in
which fi : [q]ri → C is an ri -ary function for some ri ≥ 1.
The #CSP(F) is:
Input: Let x = (x1, · · · , xn) be a set of n variables. The input is a
collection I of m tuples (f , i1, · · · , ir ) in which f is an r -ary
function in F and i1, · · · , ir ∈ [n].
Output:

ZF (I ) =
∑

x∈[q]n

∏
(f ,i1,··· ,ir )∈I

f (xi1 , · · · , xir ).

If the functions in F have as range the set {0, 1}, then we can see
them as relations and we have the unweighted #CSP(F).
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Constraint Satisfaction Problem

Example

Let [q] = {0, 1} and F = {f0, f1, f2, f3}, where

f0(x , y , z) = x ∨ y ∨ z ,

f1(x , y , z) = x̄ ∨ y ∨ z ,

f2(x , y , z) = x̄ ∨ ȳ ∨ z ,

f3(x , y , z) = x̄ ∨ ȳ ∨ z̄ ,

then #CSP(F) is the #3SAT problem.
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Constraint Satisfaction Problem

Why is it a generalization of Graph Homomorphism?

Let F contain a single binary function expressed by the matrix
A.

Also, let the variables x1, · · · , xn correspond to the vertices of
the graph G and the constraints in I correspond to the edges
of G .

Then we can clearly see that Graph Homomorphism is a
special case of #CSP.
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Holant Problems

Holant framework

Definition

Let [q] be a domain set and F be a finite set of complex-valued
functions over [q].
The Holant(F ) problem is:
Input: A signature grid Ω = (G ,F , π), where G = (V ,E ) is a
labeled graph and π labels each vertex v ∈ V with a function
fv ∈ F so that the arity of fv is the same as the degree of v .
Output:

HolantΩ =
∑

σ:E→[q]

∏
v∈V

fv (σ |E(v)).
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Holant Problems

Examples

Perfect Matchings:

Let [q] = {0, 1} and F contain all the ExactOne functions.
At every vertex of G we attach the ExactOne function with
the appropriate arity.

The product
∏
v∈V

fv (σ |E(v)) evaluates to 1 if σ−1(1) ⊆ E is a

perfect matching and it evaluates to 0 otherwise.
Hence in this case, HolantΩ counts the number of perfect
matchings.
Perfect Matchings can’t be expressed as Graph
Homomorphism. (Freedman, Lovász, Schrijver ’07)

If we use the AtMostOne function at every vertex, then we
are counting all (not necessarily perfect) matchings.
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Holant Problems

Freely available variables

Definition

Let A be a set of functions. We can define a sub-framework
HolantA of Holant as

HolantA(F) = Holant(F ∪A).

In this sub-framework, we call the functions in A, freely available
functions.

If all equality functions are assumed to be freely available, then the
sub-framework which is created is exactly the #CSP problem, i.e.

#CSP(F) = Holant(F ∪ Equalities).
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Holant Problems

Why is it a generalization of #CSP?

Represent an instance of #CSP by a bipartite graph where
the LHS is labeled by variables and the RHS is labeled by
constraints (functions).

The signature grid Ω is as follows: Every variable node on
LHS is attached an Equality function and every constraint
node on RHS has the given constraint function.

The Equality function on each variable node forces the
incident edges to take the same value; this effectively reduces
edge assignments to vertex assignments assigning values to
each variable on LHS as in #CSP.
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Holant Problems

Holant? and Holantc

Definition

Let U denote the set of all unary functions. Then,

Holant?(F) = Holant(F ∪ U).

Definition

Let ∆i be the unary function which gives value 1 on inputs i ∈ [q],
and 0 on all other inputs. Then,

Holantc(F ) = Holant(F ∪ {∆1, · · · ,∆q}).

Clearly, Holantc is a super framework of Holant?.

Holantc can be also viewed as a super framework of #CSP
(Dyer, Goldberg, and Jerrum ’07).
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Holant Problems
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Graph Homomorphism

Undirected (Symmetric) Graph Homomorphisms

Dyer, Greenhill ’00

The counting Graph Homomorphisms problem of an undirected
graph HA is in P if every connected component of HA is complete
or complete bipartite. Otherwise, the problem is #P-complete.

Bulatov and Grohe ’05 extended the result to the
non-negatively weighted setting.

Goldberg, Grohe, Jerrum and Thurley provided a dichotomy
theorem for all reall valued symmetric matrices, 73 pages long.

Cai, Chen, Lu ’10

Let A be a symmetric complex matrix. Then counting graph
Homomorphisms to HA either can be computed in polynomial time
or is #P-hard.
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Graph Homomorphism

Directed Graph Homomorphisms

Dyer, Goldberg and Paterson ’07 proved a dichotomy for an
acyclic family of graphs.

Cai and Chen ’10 solved the problem for all acyclic graphs
with non-negative weighted.

As discussed on previous slides, Graph Homomorphism is a
special case of #CSP, therefore the remaining cases are
included in the #CSP dichotomiy theorems.
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Constraint Satisfaction Problem

Boolean #CSP

If the function is unweighted (relation) then the only tractable
problems for #CSP is the ones that contain only affine relations.

For the weighted case we will need the following definitions:

We generalize the affine relations to pure affine functions by scaling
them by a factor c.

Let P the the class of functions expressible as a product of unary

functions, binary equality functions and binary disequality functions.

Dyer, Goldberg, Jerrum ’07

Let F be a set of non-negative functions over Boolean domain. Then
#CSP(F) is #P-hard unless all the functions in F are pure affine or of
the product type P, in which case the problem is in P.

Cai, Lu, Xia ’09 and independently Bulatov, Dyer, Goldberg,
Jalsenius and Richerby ’09 finaly proved the dichotomy for complex
weighted Boolean #CSP.
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Constraint Satisfaction Problem

#CSP: The General Case

For the unweighted setting Bulatov ’08, with a proof using
universal algebra, showed that #CSP(F) is in FP, if F
satisfies a citerion called congruence singularity, otherwise it is
#P-complete.

Dyer and Richerby ’10 gave an alternative proof, w/o the use
of universal algebra, providing an equivalent dichotomy
criterion, and proving its decidability.

Bulatov, Dyer, Goldberg, Jalsenius, Jerrum, and Richerby ’10
showed that the above criterion can be extended to include
positive rational weights.
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Constraint Satisfaction Problem

#CSP: The General Case (concl.)

The previous results were improved by Cai, Chen, Lu ’11,
where a dichotomy was provided for the non-negative
weighted case.

Finally the comlexity of #CSP with complex weights was
resolved by Cai and Chen ’12:

The dichotomy criterion consists of 3 conditions. Any problem
satisfying all 3 of them is in FP. Otherwise if either of them is
violated then the problem is #P complete.
The decidability of the above 3 conditions remains open.

Be sure not to miss Stelios’s final talk on the details of the
latter!
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Holant Problems

Dichotomies for Holant Problems

Cai, Lu and Xia ’09 gave a dichotomy for symmetric complex
weighted boolean Holant?;
They completed the dichotomy for boolean (not only
symmetric) Holant? in ’11.

In the same paper the gave a dichotomy for symmetric
real-valued boolean Holantc ;
This was extended to the complex valued case by Cai, Huang
and Lu ’10
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Holant Problems

Summary
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Holographic Reductions

Perfect Matchings

Definition

The #PerfMatch problem is:
Input: A weighted undirected graph G = (V ,E ,W ).
Output:

PerfMatch(G ) =
∑
E ′

∏
(i ,j)∈E ′

wi ,j ,

where the summation is over all perfect matchings E ′ of G .

If the weigths are all equal to 1, then PerfMatch(G ) counts
the number of perfect matchings in G .

The decision version of the problem is in P, but the counting
version is #P-complete (Valiant ’79, Jerrum ’87).
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Holographic Reductions

FKT algorithm

For planar graphs, #PerfMatch is in FP (Fisher, Kasteleyn,
Temberley ’61).

Theorem

There is a polynomial time computable function f that given a
planar embedding of a planar graph G = (V ,E ,W ) defines
f : E → {−1, 1} such that for the antisymmetric matrix M defined
so that for all i < j

if (i , j) 6∈ E then Mi ,j = Mj ,i = 0, and

if (i , j) ∈ E then Mi ,j = f (i , j) · wi ,j and Mj ,i = −f (i , j) · wi ,j ,

it is the case that PerfMatch(G ) =
√

Det(M).
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Holographic Reductions

Holographic reductions

Our strategy for a holographic reduction is the following:

The individual components of an instance I of a counting
problem (e.g. nodes and edges) will be replaced by gadgets
that we call matchgates.

Therefore, we transform the instance I to an instance Ω of
what we call a matchgrid.

The weigted sum of the perfect matchings of Ω will equal the
number of solutions of I .
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Holographic Reductions

Matchgates

Definition

A planar matchgate Γ is a triple (G ,X ,Y ) where G is a
planar embedding of a planar graph (V ,E ,W ), where X ⊆ V
is a set of input nodes, Y ⊆ V is a set of output nodes, and
X ∩ Y = ∅.
The arity of the matchgate is |X |+ |Y |.
The standard signature of Γ with respect to a set Z ⊆ X ∪ Y
is PerfMatch(G − Z ).

The standard signature of Γ is the 2|X | × 2|Y | matrix u(Γ)
whose elements are the standard signatures of Γ with respect
to Z for all possible choices of Z .
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Holographic Reductions

Bases

Definition

A basis (of size 1) is a set of two distinct nonzero vectors,
which we call n and p.

The basis b0 = [n, p] = [(0, 1), (1, 0)] is called the standard
basis.

In general, the vectors in a basis do not need to be
independent.

From now on we will use as an example the basis
b1 = [n, p] = [(−1, 1), (1, 0)].
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Holographic Reductions

Tensor product

Definition

If we have two vectors q, r of length l ,m, respectively, then we
shall denote the tensor product s = q ⊗ r to be the vector s of
length l ·m in which si ·m+j = qi · rj .

Thus, for example, for the basis b1, n ⊗ p = (−1, 0, 1, 0).
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Holographic Reductions

Generators and Recognizers

Definition

We say that a matchgate is a generator if it has zero input nodes
and nonzero output nodes.
Similarly, we say that a matchgate is a recognizer if it has zero
output nodes and nonzero input nodes.



Motivation Three Restrictions of #P Dichotomies for Counting Problems Holographic Algorithms End

Holographic Reductions

Example of a generator

A generator mathgate Γ for basis b1 with output nodes {1, 2} and
one edge of weight -1:

The standard signature u(Γ) is the vector (-1,0,0,1).

Therefore, it generates n ⊗ n + n ⊗ p + p ⊗ n.

The signature of this generator with respect to the basis b1
will then be (1,1,1,0).

For x ∈ {n, p}2 we shall denote by valG (Γ, x) the signature
element corresponding to x .

Thus, for the current example, valG (Γ, n ⊗ p) = 1 and
valG (Γ, p ⊗ p) = 0.
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Holographic Reductions

Example of a recognizer

A recognizer mathgate for basis b1 with input nodes v1, v2, · · · , v5

and edge weights w1,w2, · · · ,w5:

Let us suppose a recognizer like the above but with k inputs.

The purpose of such recognizers is to have PerfMatch take on
appropriate values as the inputs range over 2k possible tensor
product values x = x1 ⊗ x2 ⊗ · · · ⊗ xk , where xi ∈ {n, p}.
If vector u is the standard signature of Γ, then valR(Γ, x) is
the inner product of u and x .
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Holographic Reductions

Example of a recognizer (cont.)

Proposition

For all k > 0 and for all w1, · · · ,wk there exists a k − input
recognizer matchgate Γ such that on input
x = x1 ⊗ x2 ⊗ · · · ⊗ xk ∈ {n, p}k over basis b1, valR(Γ, x) equals:

−(w1 + · · ·+ wk) if x1 = · · · = xk = n,

wi if xi = p, and xj = n for every j 6= i ,

0 otherwise.
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Holographic Reductions

Matchgrid

We define a matchgrid over a basis b to be a weighted undirected
planar graph G that consists of:

a set B of g generator matchgates B1, · · · ,Bg ,

a set A of r recognizer matchgates A1, · · · ,Ar , and

a set C of f connecting edges C1, · · · ,Cf where each Ci edge
has weight one and joins an output node in a generator with
an input node of a recognizer.

Consider such a matchgrid Ω = (A,B,C ) and denote by
X = bf = (n, p)f the set of 2f possible combinations of the basis
elements n, p that can be transmitted simultaneously along the f
connecting edges in the matchgrid.
The value of the matchgrid at x is the quantity

Holant(Ω) =
∑
x∈bf

[
∏

1≤j≤g
valG (Bj , xj)] · [

∏
1≤i≤r

valG (Ai , x)].
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Holographic Reductions

Valiant’s theorem

Theorem (Valiant ’04)

For any matchgrid Ω over any basis b if Ω has weighted graph G
then

Holant(Ω) = PerfMatch(G ).
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Problems

#X-Matchings

Consider the problem #X-Matchings:

Input: A Plannar Wighted Bipartite Graph
G = {V = (V1,V2),E ,W }, and the nodes in V1 have degree 2.

Output:
∑

M mass(M), where M is a (not necessarily perdect)
matching and

mass(M) =
∏

(i,j)∈M

wi,j

∏
i unsat

[−
∑
j∼i

wi,j ]

Construct a matchgrid H over b1 by replacing:
v ∈ V1 with the generator matchgate of the example and
u ∈ V2 with the recognizer matchgate of the example of proper
degree.

For each edge (u, v) connect an output of the generator matchgate
of u to an input of the recognizer matchgate for v .

Holant(ΩH) = #X-Matchings(G )
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Problems

Other Problems

#Pl-3-Nae-Sat: Plannar not-all-equal 3 satisfiability
(CNF).

#7Pl-Rtw-Mon-3-Cnf:

Input: A plannar 3CNF Boolean formula where each variable
appears positively and in exactly two clauses (Plannar,
Read-twice, monotone, 3CNF).
Output: Number of sat. assignments.

The suprising about the latter is that solving it mod 2 is
⊕P-complete!
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More about Holographic Algorithms

Constructing a Holographic Algorithm

In order to design a Holographic Algorithm for a combinatorial
problem, one has to do the following:

1 Find suitable basis vectors.

2 Find the suitable matchgates.

A series of results by Cai, Choudhary, Lu, Xia explore the realizable
signatures, that is the functions for wich we can find a matchgate
with the proper values under the relevant basis.
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More about Holographic Algorithms

Not only plannar and relation to HolantΩ

A Holographic Algorithm uses plannar perfect mathcings on a
plannar matchgrid in order to compute the output.

This usually restricts the problem to plannar combinatorial
instances.

Cai, Lu, Xia ’08 extended the Holographic algorithms by
introducing a new gadget in order to realize signatures called
fibonacci gate.

Some new problems that can be solved in polynomial time are
the following:

Given a 3-regular graph, compute the number of even colorings
minus the number of odd colorings. (2-coloring on the edges,
even when even edges are colored black).
Given a Rtw-Cnf formula, compute the number of even lying
assignments minus the number of odd lying assignments. (A
variable is lying when it is incosistent).
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More about Holographic Algorithms

Relation to Holant problems and the Ising Model

The HolantΩ′ (Ω′ = (G ,F , π)) problem defined in a previous
section is actually the HolantΩ function defined by Valant.

Every vertex v of HolantΩ′ problem can be replaced by a
matchgate, with value equal to fv .
The degree of v equals to the number of output nodes of the
matchgate.
Assignments to edges of G corresponds to vectors of the basis
used by the matchgrid.

The Ising Model from statistical Physics Can be formulated as
a Holant problem

For planar graphs, the Ising model is exactly solvable by a
holographic reduction to the FKT algorithm.
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More about Holographic Algorithms

Computational Power

Hard for Plannar Graphs

Hard for General Graphs

but Tra
table for Plannar Graphs

Tra
table for general graphs

Pre
isely Captured

by Holographi
 Algorithms

#CSP
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To Be Continued

In Our next and hopefully final talks we will discuss the
following:

Stelios: Technical Details for some of the forementioned
Dichotomies. July 20th ?
Andreas: Approximating #CSP. July 23rd ?

We encourage everyone to be there!
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THANK YOU!!

Till Next Time!


	Motivation
	Decision Problems
	Counting Problems

	Three Restrictions of #P
	Graph Homomorphisms
	Constraint Satisfaction Problem
	Holant Problems

	Dichotomies for Counting Problems
	Graph Homomorphism
	Constraint Satisfaction Problem
	Holant Problems

	Holographic Algorithms
	Holographic Reductions
	Problems
	More about Holographic Algorithms

	End

