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Any proof of P 6= NP will have to overcome two barriers:

Relativization
T. Baker, J. Gill, and R. Solovay. Relativizations of the P =?NP
question. 1975

Natural Proofs
A. A. Razborov and S. Rudich. Natural proofs. 1997

Relativization was circumvented by Arithmetization
C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for
interactive proof systems. 1992
A. Shamir. IP=PSPACE. 1992
Any complexity class separation proved via diagonalization is
non-naturalizing.
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We now have circuit lower bounds that evade both barriers, by combining
arithmetization with diagonalization.

MAEXP 6⊂ P/poly [Buhrman, Fortnow, and Thierauf.
Nonrelativizing separations. 1998]

PP 6⊂ SIZE(nk) for every fixed k. [Vinodchandran. A note on the
circuit complexity of PP. 2004]

PromiseMA 6⊂ SIZE(nk) for fixed k. [Santhanam. Circuit lower
bounds for Merlin-Arthur classes. 2007]

Could arithmetization and diagonalization already suffice to prove
NEXP 6⊂ P/poly, or P 6= NP? Or is there a third barrier, to which even
the most recent results are subject? [Santhanam 2007]

Algebrization: A generalization of relativization where the simulating
machine gets access not only to an oracle A, but also a low-degree
extension Ã of A over a finite field or ring.
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Algebrization

Definition

The inclusion C ⊆ D relativizes if CA ⊆ DA for all oracles A.

Definition

Given an oracle A = {An} with An : {0, 1}n → {0, 1}, an extension Ã of
A is a collection of polynomials Ãn : Zn → Z satisfying:

Ãn(x) = An(x) for all Boolean x ∈ {0, 1}n,

deg(Ãn) = O(n),

size(Ãn(x)) ≤ p(size(x)) for some polynomial p, where

size(x) :=

n∑
i=1

d1 + log2|xi|e
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Algebrization

Definition

A complexity class inclusion C ⊆ D algebrizes if CA ⊆ DÃ for all
oracles A and all (low-degree) extensions Ã of A over a finite field or
ring.

A separation C 6⊂ D algebrizes if CÃ 6⊂ DA for all A, Ã.

Proving C ⊆ D requires non-algebrizing techniques if there exist

A, Ã such that CA 6⊂ DÃ.

Proving C 6⊂ D requires non-algebrizing techniques if there exist

A, Ã such that CÃ ⊆ DA.

Almost all known techniques in complexity theory algebrize.

Any proof of P 6= NP or P = RP or NEXP 6⊂ P/poly will require
non-algebrizing techniques.
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Proving that existing results algebrize

In Algebraic methods for interactive proof systems (1992), C. Lund, L.
Fortnow, H. Karloff, and N. Nisan show that coNP ⊆ IP .

In their protocol Arthur arithmetizes a Boolean formula φ to produce a
low-degree polynomial φ̃. Merlin wants to convince Arthur that∑

x∈{0,1}n φ̃(x) = 0.

In the last step Arthur checks that φ̃(r1, ..., rn) equals the value claimed by
Merlin for some r1, ..., rn randomly chosen earlier.
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How was the polynomial p produced in the LFKN protocol?

By starting from a Boolean circuit, then multiplying together terms that
enforce ’correct propagation’ at each gate:

Ã(x, y)g + (1− Ã(x, y))(1− g)

Arthur and Merlin then reinterpret p not as a Boolean function, but as a
polynomial over some larger field.

But what if the circuit contained oracle gates? Then how could Arthur
evaluate p over the larger field?
He’d almost need oracle access to a low-degree extension Ã of A.
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Suppose we want to prove coNPA ⊆ IP Ã.

Now Arthur’s formula ϕ will in general contain A gates, in addition to the
usual AND, OR, and NOT gates.

When Arthur arithmetizes ϕ to produce a low-degree polynomial ϕ̃, his
description of ϕ̃ will contain terms of the form A(z1, ..., zk).

Inputs z1, ..., zk can be non-Boolean.

Arthur calls the oracle Ã to get Ã(z1, ..., zk).
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Other Results That Algebrize

PSPACEA[poly] ⊆ IP Ã

NEXPA[poly] ⊆MIP Ã

PP Ã ⊂ PA/poly

NEXP Ã[poly] ⊂ PA/poly

MA
Ã[exp]
EXP 6⊂ PA/poly

PP Ã 6⊂ SIZEA(n)

PromiseMAÃ 6⊂ SIZEA(n)

∃ OWF secure against P Ã ⇒ NPA ⊆ CZKÃ
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Proving P 6= NP Will Require Non-Algebrizing Techniques

Theorem

There exists an oracle A, and an extension Ã, such that NP Ã ⊆ PA

Proof.

Let A be a PSPACE-complete language, and let Ã be the unique
multilinear extension of A. Then Ã is also PSPACE-complete [Babai,

Fortnow, Lund]. Hence NP Ã = PA = PSPACE.
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Proving P=RP Will Require Non-Algebrizing Techniques

Theorem

There exist A, Ã such that RPA 6⊂ P Ã.

We have to prove algebraic oracle separations.

Prove a concrete lower bound on the query complexity of some
function.

Use the query complexity lower bound to diagonalize against a class of
Turing machines.

The first step requires us to prove lower bounds in a new model of
algebraic query complexity.
An algorithm is given oracle access to a Boolean function
A : {0, 1}n → {0, 1}. It is trying to answer some question about A, by
querying A on various points. The algorithm can query not just A itself,
but also an adversarially-chosen low-degree extension Ã.
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Lemma

Let F be a field, and let Y ⊆ Fn be the set of points queried by the
algorithm. Then there exists a polynomial p : Fn → F , of degree at most
2n, such that

p(y) = 0 for all y ∈ Y .

p(z) = 1 for at least 2n − |Y | Boolean points z.

p(z) = 0 for the remaining Boolean points.
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Proof.

Given a Boolean point z, let δz be the unique multilinear polynomial that is
1 at z and 0 at all other Boolean points. Then we can express any
multilinear polynomial r as r(x) =

∑
z∈{0,1}n αzδz(x).

Requiring r(y) = 0 for all y ∈ Y , yields |Y | linear equations in 2n
unknowns. Hence there exists a solution r such that r(z) 6= 0 for at least
2n− |Y | Boolean points z. We now set

p(x) =
∑

z∈{0,1}n:r(z)6=0

r(x)δz(x)

r(z)

A standard diagonalization argument now yields the separation between P
and RP in the case of finite fields.
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Other Oracle Results We Can Prove By Building
Polynomials

∃A, Ã : NPA 6⊂ coNP Ã

∃A, Ã : NPA 6⊂ BPP Ã (only for finite fields, not integers)

∃A, Ã : NEXP Ã[exp] ⊂ PA/poly

∃A, Ã : NP Ã ⊂ SIZEA(n)
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From Algebraic Query Algorithms to Communication
Protocols

A : {0, 1}n → {0, 1}

A0(Alice) A1(Bob)

A(000) = 1 A(100) = 0
A(001) = 0 A(101) = 0
A(010) = 0 A(110) = 1
A(011) = 1 A(111) = 1

Alice and Bob’s Goal: Compute some property of A using minimal
communication.
Let Ã : Fn → F be the unique multilinear extension of A over finite field
F .

Theorem

If a problem can be solved using T queries to Ã, then it can also be solved
using O(Tnlog|F |) bits of communication between Alice and Bob.
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Proof.

Given any point y ∈ Fn, we can write Ã(y) as a linear combination of the
values taken by A on the Boolean cube

Ã(y) =
∑

x∈{0,1}n
A(x)δx(y) = Ã0(y) + Ã1(y)

Let y1 ∈ Fn be the first point queried. Then Alice computes the partial
sum Ã0(y1) =

∑
x∈{0,1}n−1 δ0x(y)A(0x) and sends (y1, Ã0(y1)) to Bob.

Bob computes Ã1(y1) =
∑

x∈{0,1}n−1 δ1x(y)A(1x) from which he learns

Ã1(y1) = Ã0(y1) + Ã1(y1). Bob computes Ã1(y2) and sends (y2, Ã1(y2)),
and so on for T rounds.
Each message uses O(nlog|F |) bits, from which it follows that the total
communication cost is O(Tnlog|F |).
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This argument works in the randomized world, the nondeterministic
world, the quantum world.

Any communication complexity lower bound leads to an algebraic
query complexity lower bound.

It yields multilinear extensions instead of multiquadratic ones.

It works just as easily over the integers as over finite fields.

The lower bounds one gets from communication complexity are more
contrived.
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Some Applications to Communication Complexity

Theorem

Let Alice and Bob hold 3SAT instances ϕA, ϕB respectively of size N.
Suppose there is no IP-protocol with communication cost O(polylogN), by
which Merlin can convince Alice and Bob that ϕA and ϕB have a common
satisfying assignment. Then NL 6= NP .

Theorem

Let ϕ be a 3SAT instance of size N. Suppose there is no bounded-error
randomized verifier that decides whether ϕ is satisfiable by

making O(polylogN) queries to a binary encoding of ϕ, and

exchanging O(polylogN) bits with a competing yes-prover and
no-prover, both of whom know ϕ and can exchange private messages
not seen by the other prover. Then P 6= NP .
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Separations in Communication Complexity Imply Algebraic
Oracle Separations

Ω(2n) randomized lower bound for

Disjointness [KS 1987] [Razborov 1990] ∃A, Ã : NPA 6⊂ BPP Ã

Ω(2
n
2 ) quantum lower bound for

Disjointness [Razborov 2002] ∃A, Ã : NPA 6⊂ BQP Ã

Ω(2
n
2 ) lower bound on MA-protocols

for Disjointness [Klauck 2003] ∃A, Ã : coNPA 6⊂MAÃ

Exponential separation between classical and

quantum communicat. complexities [Raz 1999] ∃A, Ã : BQPA 6⊂ BPP Ã

Exponential separation between MA and QMA

communication complexities [Raz-Shpilka 2004] ∃A, Ã : QMAA 6⊂MAÃ
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Conclusions

Arithmetization had a great run. It led to IP=PSPACE, the PCP Theorem,
non-relativizing circuit lower bounds.
Yet we showed it”s fundamentally unable to resolve barrier problems like P
vs. NP, or even P vs. BPP or NEXP vs. P/poly.

Why? It ’doesn’t pry open the black-box wide enough’.
I.e. it uses a polynomial-size Boolean circuit to produce a low-degree
polynomial, which it then evaluates as a black box. It doesn’t exploit the
small size of the circuit in any ’deeper’ way.

To reach this conclusion, we introduced a new model of algebraic query
complexity, which has independent applications (e.g. to communication
complexity) and lots of nooks and crannies to explore in its own right.

Algebrization provides nearly the precise limit on the non-relativizing
techniques of the last two decades. We speculate that going beyond this
limit will require fundamentally new methods.
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Open Problems

Develop non-algebrizing techniques.

Do there exist A, Ã such that coNPA 6⊂ AM Ã?

Improve PSPACEA[poly] ⊂ IP Ã to PSPACEÃ[poly] = IP Ã.

The power of ’double algebrization’.

Integer queries of unbounded size.

Algebraic query lower bounds ⇒ communication lower bounds?

Generalize to arbitrary error-correcting codes (not just low-degree
extensions)?

Test if a low-degree extension came from a small circuit?
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