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Overview
• 1936: Turing machine
• early 60’s: birth of computational 

complexity
• early 70’s: NP-completeness, P?=?NP
• 70’s: different models of computation
• 80’s: finite models (eg. circuits)
• 90’s: new models of computation (quantum 

computers, propositional proof system)



  

Early History
• Ancient Greek (?!?!?!), Chinese
• 1936: Turing
• 1960: Myhill (linear bounded automata)
• 1962: Yamada (real-time computable 

functions)

• specific time and space bounded machines,  
but no general approach to measuring 
complexity



  

Birth of CC
• 1965: Hartmanis, Stearns

– definition of multitape TM, time, space
– measured time/space as a function of the input
– first results of form “given more time/space more things 

computed”
– s1(n)=o(s2(n)) there are problems solvable in s2(n), but not 

in s1(n)
• 1963: Rabin (two-taped TMs)
• 1966: Hennie, Stearns 

– 2-tape vs. single tape TM: log factor more time
– Time Hierarchy Th: separation if t1(n)logt1(n)=o(t2(n))



  

Nondeterminism (Space)
• cannot use straightforward diagonalization
• 1970: Savitch’s Theorem (problems solved in 

nondeterministic s(n) can be solved in 
deterministic s2(n))

• 1972: Ibarra (there exist problems computable in 
nondet space na, but not space nb, a>b≥1)

• 1988: Immerman, Szelepcsenyi (nondet space is 
close under complement implying that 
NSPACE=co-NSPACE)



  

Nondeterminism (Time)
• 1973: Cook (problems computable in nondet space 

na, but not stime nb, a>b≥1)
• 1978: Seiferas, Fischer, Meyer (ntime hierarchy 

th separation if t1(n+1)=o(t2(n)))
• 1967:Blum (Speed-up th: for any computable, 

unbounded r(n) there exists a computable L s.t. 
for any TM accepting L in t(n) there is another 
TM accepting L in r(t(n)))
– note: t(n) is not necessarily time constructible

• 1972: Borodin, also Trakhtenbrot 1964 (Gap Th: 
there is recursive f from nonnegatives to 
nonnegatives s.t. TIME(f(n)=TIME(2f(n))))



  

P=NP

• 1965: Edmonds (MATCHING є P)
– is poly time efficient?
– informal desciption of nondeterministic 

poly time



  

NP-completeness
• captures the combinatorial difficulty of 

many efficient solution resisting problems
• method for proving that a combinatorial 

problem is as intractsbleas any NP problem
• TSP, Scheduling, LP: many possible solutions, 

brute-force search
• no evidence neither that there is no poly 

time solution nor that are difficult for the 
same reasons



  

NP-completeness
• 1956: Godel set the question (proofs in 

first-order logic)
• 1971: Cook (SAT is NP-complete)
• 1973: Levin (tiling problem is NP-complete)
• 1972: Karp (8 combinatorial problems are 

NP-complete)
– introduced techniques



  

Completeness

• PSPACE: Garey, Johnson 1979
– hex/checkers games (unbounded finite 

size)
• EXPTIME: Garey, Johnson 1979

– small number of complete problems



  

early 70’s
• relationship between complexity 

classes (mainly LOGSPACE and 
PSPACE)

• properties of problems in within the 
principal classes (mainly NP)



  

• Isomorphism Conjecture
• Polynomial Hierarchy
• Alternation
• Logspace
• Oracles



  

Isomorphism Conjecture
• 1977, 1978: Berman, Hartmanis
• all NP sets are P isomorphic (via poly time 

computable and invertible isomorphisms)
• proved that all known NP-complete sets 

are P isomorphic
• still open today
• what happens if the conjecture holds?



  

Polynomial Hierarchy
• 1976: Meyer, Stockmeyer
• classes between P and PSPACE
• 0 level: P
• 1st level: NP, coNP 
• 2nd level: problems in NP related with 

NP oracle, etc
• if P=PSPACE PH collapses!!!



  

Alternation
• 1980: Kozen, Chandra, Stockmeyer
• classify combinatorial problems using an 

alternating TM
– TM in which the computational tree has inner 

nodes ^ or v and the number of alternations in 
each path is bounded

• alternating log space=P
• alternating PSPACE=EXPTIME



  

Logspace (L, NL)

• off-line TM
• L≤NL≤P
• proving that a P-complete problem (eg. 

circuit value) is in L, implies that L=P



  

Oracles

• 1975: Baker, Gill, Solovay (there is an 
oracle reactive for which P=NP and 
another oracle relative to which P≠NP)



  

Counting Classes
• how many computational paths lead to 

acceptance?
• 1979: Valiant (#P: functions computing the 

number of accepting paths of a NTM)
• GapP: functions computing the difference 

between the number of accepting and rejecting 
paths of a NTM

• 1991: Toda’s th (hard functions in #P lie above any 
problem in PH)

• 1994-5: Beigel, Reingold, Spielman (PP(unbounded two-
sided error) is closed under union)



  

Probabilistic Complexity
• 1977: Solovay, Strassen (alg is n prime)
• 1977: Gill (BPP)
• 1977: Adleman, Manders (RP)
• Babai (ZPP)
• 1983: Sipser (BPP is contained in PH)
• Also probabilistic space classes 

– Aleliunas, Karp, Lipton, Lovasz, Rackoff 
(undirected graph connectivity is in RL)

– BPL, ZPL



  

Interactive proof 
systems

• 1985: Babai (MA, AM)
• 1989: Goldwasser, Micali, Rackoff (IP: 

unbounded AM)
• 1989: Goldwasser, Sipser (equivalence)
• 1989: Furer, Goldreich, Mansour, Sipser, 

Zachos (for positive instances the prover 
can succed with no error)

• 1992: Shamir (IP=PSPACE)



  

Probabilistic Checkable 
Proofs

• 1994: Fortnow, Rompel, Sipser (the prover writes 
an exp long proof that the verifier spot checks in 
probabilistic time)

• 1996: Feige, Goldwasser, Lovasz, Safra, Szegedy 
(viewing possible proofs as nodes, the size of a 
clique cannot be approximated well without 
unexpected collapses in complexity classes)

• 1998: Arora, Lund, Motwani, Sudan, Szegedy 
(Arora, Safra 1992) every language in NP has a 
probabilistic checkable proof, where the verifier 
uses only log number of random coins and constant 
number of queries to the proof



  

Derandomization
• how can we reduce the number of truly 

random bits to simulate probabilistic 
algorithms?

• 1984: Blum, Micali (create randomness 
from cryptographically hard functions)

• 1999: (Hastad, Impagliazzo, Levin, Luby) 
pseudorandomness from one-way functions



  

Descriptive Complexity
• measures the computational 

complexity of a problem in terms of 
the complexity of the logical language 
needed to define it

• 1973-4: Jones, Selman, Fagin
• 1982: Immerman, Vardi (problems 

definable in FO logic with the fix-
point operator is the P)



  

Finite Models
Circuit Complexity

• Circuit Complexity: bounds on the size and depth 
of circuits

• Boolean circuit (size:#gates, depth:|longest 
path|)

• A circuit recognises a set of strings on length n 
if it evaluates to 1.

• infinite set of strings <-> infinite collections of 
circuits



  

P?=?NP
• L in P is recognised by a circuit family of polynomial 

size
• Proving that some NP problem does not have 

polynomial size circuits => P≠NP
• 1949: Shannon (most Boolean functions require exp 

size circuits)
• AC0: L recognised by uniform, constant depth, poly 

size circuits, unbounded fan-in



  

Communication Complexity

• models the efficiency and complexity 
of communication between computers

• bounds on the amount of 
communication and processors required

• distributed and parallel computations
• performance of VLSI circuits



  

Proof Complexity
• studies the length of proof in 

propositional logic and relationship
• NP: short, easily verified membership 

proof contrary to co-NP
• SAT vs. TAUT
• resolution proof systems: statement D is 

proved by assuming negation and reach a 
contadiction



  

Quantum Computing
• 1982: Richard Feynman

• 1985: David Deutch developed the theoretical computation 
model based on quantum mechanics, suggested that can 
compute efficiently problems that can not be computed by 
traditional computers

• 2 algorithms: Shor (1997) factoring integers, Grover (1996) 
searching a data base of n elements in O(√n) time

• 1997: Bernstein, Vazirani (formal definition of BQP: a language 
computable efficiently by quantum computers)



  

Future Directions
• P?=?NP remains the main challenge

– possible connection with areas of mathematics, eg. algebraic geometry, 
higher cohomology(???)

– new techniques to prove lower bounds on circuits, proof systems

– new characterization of P and NP

– clever twist on diagonalization

• basic questions in quantum computational complexity

• probabilistic, parallel, quantum complexity: new models of computation

• the other “complexity”: complex systems that occur in society and nature (eg. 
financial markets, internet, biological systems, the weather, physical 
systems)

• Big Surprise...



  

The End...

This was a good 40 years and complexity theory 
is only getting started.


