

A Short History of Computational Complexity
 Lance Fortnow, Steve Homer

Overview

- 1936: Turing machine
- early 60's: birth of computational complexity
- early 70's: NP-completeness, P?=?NP
- 70's: different models of computation
- 80's: finite models (eg. circuits)
- 90's: new models of computation (quantum computers, propositional proof system)

Early History

- Ancient Greek (?!?!?!), Chinese
- 1936: Turing
- 1960: Myhill (linear bounded automata)
- 1962: Yamada (real-time computable functions)
- specific time and space bounded machines, but no general approach to measuring complexity

Birth of CC

- 1965: Hartmanis, Stearns
- definition of multitape TM, time, space
- measured time/space as a function of the input
- first results of form "given more time/space more things computed"
- $s_{1}(n)=0\left(s_{2}(n)\right)$ there are problems solvable in $s_{2}(n)$, but not in $s_{1}(n)$
- 1963: Rabin (two-taped TMs)
- 1966: Hennie, Stearns
- 2-tape vs. single tape TM: log factor more time
- Time Hierarchy Th: separation if $t_{1}(n) \log _{1}(n)=0\left(t_{2}(n)\right)$

Nondeterminism (Space)

- cannot use straightforward diagonalization
- 1970: Savitch's Theorem (problems solved in nondeterministic $s(n)$ can be solved in deterministic $s^{2}(n)$)
- 1972: Ibarra (there exist problems computable in nondet space n^{a}, but not space $\left.n^{b}, a>b \geq 1\right)$
- 1988: Immerman, Szelepcsenyi (nondet space is close under complement implying that NSPACE=co-NSPACE)

Nondeterminism (Time)

- 1973: Cook (problems computable in nondet space n^{a}, but not stime $n^{b}, a>b \geq 1$)
- 1978: Seiferas Fischer, Meyer (ntime hierarchy th separation if $\left.t_{1}(n+1)=o\left(t_{2}(n)\right)\right)$
- 1967:Blum (Speed-up th: for any computable, unbounded $r(n)$ there exists a computable L s.t. for any TM accepting L in $\dagger(n)$ there is another TM accepting L in $r(f(n)))$
- note: $\dagger(n)$ is not necessarily time constructible
- 1972: Borodin, also Trakhtenbrot 1964 (Gap Th: there is recursive f from nonnegatives to nonnegatives s.t. $\operatorname{TIME}\left(f(n)=\operatorname{TIME}\left(2 f^{(n)}\right)\right)$)

$P=N P$

- 1965: Edmonds (MATCHING є P)
- is poly time efficient?
- informal desciption of nondeterministic poly time

NP-completeness

- captures the combinatorial difficulty of many efficient solution resisting problems
- method for proving that a combinatorial problem is as intractsbleas any NP problem
- TSP, Scheduling, LP: many possible solutions, brute-force search
- no evidence neither that there is no poly time solution nor that are difficult for the same reasons

NP-completeness

- 1956: Godel set the question (proofs in first-order logic)
- 1971: Cook (SAT is NP-complete)
- 1973: Levin (tiling problem is NP-complete)
- 1972: Karp (8 combinatorial problems are NP-complete)
- introduced techniques

Completeness

- PSPACE: Garey, Johnson 1979
- hex/checkers games (unbounded finite size)
- EXPTIME: Garey, Johnson 1979
- small number of complete problems

early 70's

- relationship between complexity classes (mainly LOGSPACE and PSPACE)
- properties of problems in within the principal classes (mainly NP)
- Isomorphism Conjecture
- Polynomial Hierarchy
- Alternation
- Logspace
- Oracles

Isomorphism Conjecture

- 1977, 1978: Berman, Hartmanis
- all NP sets are P isomorphic (via poly time computable and invertible isomorphisms)
- proved that all known NP-complete sets are P isomorphic
- still open today
- what happens if the conjecture holds?

Polynomial Hierarchy

- 1976: Meyer, Stockmeyer
- classes between P and PSPACE
- 0 level: P
- $1^{\text {st }}$ level: NP, coNP
- $2^{\text {nd }}$ level: problems in NP related with NP oracle, etc
- if $\mathrm{P}=\mathrm{PSPACE}$ PH collapses!!!

Alternation

- 1980: Kozen, Chandra, Stockmeyer
- classify combinatorial problems using an alternating TM
- TM in which the computational tree has inner nodes ^ or v and the number of alternations in each path is bounded
- alternating log space=P
- alternating PSPACE=EXPTIME

Logspace (L, NL)

- off-line TM
- L_NL_P
- proving that a P -complete problem (eg. circuit value) is in L, implies that $L=P$

Oracles

- 1975: Baker, Gill, Solovay (there is an oracle reactive for which $P=N P$ and another oracle relative to which $P \neq N P$)

Counting Classes

- how many computational paths lead to acceptance?
- 1979: Valiant (\#P: functions computing the number of accepting paths of a NTM)
- GapP: functions computing the difference between the number of accepting and rejecting paths of a NTM
- 1991: Toda's th (hard functions in \#P lie above any problem in PH)
- 1994-5: Beigel, Reingold, Spielman (PP(unbounded twosided error) is closed under union)

Probabilistic Complexity

- 1977: Solovay, Strassen (alg is n prime)
- 1977: Gill (BPP)
- 1977: Adleman, Manders (RP)
- Babai (ZPP)
- 1983: Sipser (BPP is contained in PH)
- Also probabilistic space classes
- Aleliunas, Karp, Lipton, Lovasz, Rackoff (undirected graph connectivity is in RL)
- BPL, ZPL

Interactive proof systems

- 1985: Babai (MA, AM)
- 1989: Goldwasser, Micali, Rackoff (IP: unbounded AM)
- 1989: Goldwasser, Sipser (equivalence)
- 1989: Furer, Goldreich, Mansour, Sipser, Zachos (for positive instances the prover can succed with no error)
- 1992: Shamir (IP=PSPACE)

Probabilistic Checkable Proofs

- 1994: Fortnow, Rompel, Sipser (the prover writes an exp long proof that the verifier spot checks in probabilistic time)
- 1996: Feige, Goldwasser, Lovasz, Safra, Szegedy (viewing possible proofs as nodes, the size of a clique cannot be approximated well without unexpected collapses in complexity classes)
- 1998: Arora, Lund, Motwani, Sudan, Szegedy (Arora, Safra 1992) every language in NP has a probabilistic checkable proof, where the verifier uses only log number of random coins and constant number of queries to the proof

Derandomization

- how can we reduce the number of truly random bits to simulate probabilistic algorithms?
- 1984: Blum, Micali (create randomness from cryptographically hard functions)
- 1999: (Hastad, Impagliazzo, Levin, Luby) pseudorandomness from one-way functions

Descriptive Complexity

- measures the computational complexity of a problem in terms of the complexity of the logical language needed to define it
- 1973-4: Jones, Selman, Fagin
- 1982: Immerman, Vardi (problems definable in FO logic with the fixpoint operator is the P)

Finite Models Circuit Complexity

- Circuit Complexity: bounds on the size and depth of circuits
- Boolean circuit (size:\#gates, depth:|longest pathl)
- A circuit recognises a set of strings on length n if it evaluates to 1.
- infinite set of strings <-> infinite collections of circuits

$P ?=? N P$

- L in P is recognised by a circuit family of polynomial size
- Proving that some NP problem does not have polynomial size circuits $\Rightarrow>P \neq N P$
- 1949: Shannon (most Boolean functions require exp size circuits)
- $A C^{0}$: L recognised by uniform, constant depth, poly size circuits, unbounded fan-in

Communication Complexity

- models the efficiency and complexity of communication between computers
- bounds on the amount of communication and processors required
- distributed and parallel computations
- performance of VLSI circuits

Proof Complexity

- studies the length of proof in propositional logic and relationship
- NP: short, easily verified membership proof contrary to co-NP
- SAT vs. TAUT
- resolution proof systems: statement D is proved by assuming negation and reach a contadiction

Quantum Computing

- 1982: Richard Feynman
- 1985: David Deutch developed the theoretical computation model based on quantum mechanics, suggested that can compute efficiently problems that can not be computed by traditional computers
- 2 algorithms: Shor (1997) factoring integers, Grover (1996) searching a data base of n elements in $O(5 n)$ time
- 1997: Bernstein, Vazirani (formal definition of BQP: a language

fomptable efficiently by quantum computers)

Future Directions

- $P ?=$?NP remains the main challenge
- possible connection with areas of mathematics, eg. algebraic geometry, higher cohomology(???)
- new techniques to prove lower bounds on circuits, proof systems
- new characterization of P and NP
- clever twist on diagonalization
- basic questions in quantum computational complexity
- probabilistic, parallel, quantum complexity: new models of computation
- the other "complexity": complex systems that occur in society and nature (eg. financial markets, internet, biological systems, the weather, physical systems)

Big Surprise...

The End...

This was a good 40 years and complexity theory is only getting started.

