Once again: What is that? First-order logic Fagin’'s Theorem, NP and PH P. L and stuff
00000 000
000 0000
00

A potpourri from Descriptive Complexity

Antonis Achilleos

June 26, 2008

Regular things
000

Once again: What is that? First-order logic Fagin’'s Theorem, NP and PH P. L and stuff Regular things
00000 000 000
000 0000
oo

Outline

Once again: What is that?

First-order logic
Games, limits and complexity of
Add-ons: Built-in relations

Fagin's Theorem, NP and PH

P, L and stuff
Fixed Points
)
L, NL and transitive closures

Regular things
MSO,dAMSO and Automata

Once again: What is that?

Descriptive Complexity

In Computational Complexity, we deal with the classification of
problems (properties of strings, graphs, etc.) in complexity
classes and many times we try to find the relationship between
these classes.

In logic (sometimes) we try to express properties of structures
in a given language and find the limits of the language.

For example: Tarski’'s inexpressibility of Truth.

Model Theory

Finite Model Theory deals with finite structures (can mostly

be thought of as graphs). These are more appropriate if we
want to imagine them as inputs to a computational problem.

Once again: What is that?

Descriptive Complexity

When dealing with finite structures, many things are different
from the infinite case.

First-order logic is no longer uncomputable. On the contrary
many relatively easy problems cannot be expressed by it.

More expressive languages are needed.

Descriptive Complexity studies the relationship between these
logics and complexity classes.

If a property of a finite structure (decision problem) can be
expressed by a formula of logic L, what is its computational
complexity?

What logic is needed to express all properties in a specific
complexity class?

Once again: What is that?

Structures, vocabularies, graphs and strings
e Vocabularies are...
e Structures are...
e Graphs are...

e And I'm sure you thought you knew what strings are...

Once again: What is that? First-order logic Fagin’'s Theorem, NP and PH
©0000
000

Outline

First-order logic
Games, limits and complexity of

P. L and stuff
000

0000

00

Regular things
000

First-order logic
0®000

Ehrenfeucht - Fraisse and Pe(e)bble games

Players: Player | - Player Il, or Spoiler - Duplicator

They play on two structures, say A and B.

The game is G¥ : k rounds

Spoiler tries to show that the two structures are not identical
and Duplicator tries to respond to Spoiler’s challenges.

First-order logic
0®000

Ehrenfeucht - Fraisse and Pe(e)bble games

Players: Player | - Player Il, or Spoiler - Duplicator
They play on two structures, say A and B.
The game is G¥ : k rounds

Spoiler tries to show that the two structures are not identical
and Duplicator tries to respond to Spoiler’s challenges.

Spoiler moves first each round, say round .

S picks an element from A or B and calls it a;, or b;
accordingly.

First-order logic
0®000

Ehrenfeucht - Fraisse and Pe(e)bble games

Players: Player | - Player Il, or Spoiler - Duplicator
They play on two structures, say A and B.
The game is G¥ : k rounds

Spoiler tries to show that the two structures are not identical
and Duplicator tries to respond to Spoiler’s challenges.

Spoiler moves first each round, say round .

S picks an element from A or B and calls it a;, or b;
accordingly.

D responds with an element from the other structure, s.t.
both a;, and b; are defined. and they keep placing pebbles...

First-order logic
0®000

Ehrenfeucht - Fraisse and Pe(e)bble games

Players: Player | - Player Il, or Spoiler - Duplicator
They play on two structures, say A and B.
The game is G¥ : k rounds

Spoiler tries to show that the two structures are not identical
and Duplicator tries to respond to Spoiler’s challenges.

Spoiler moves first each round, say round .

S picks an element from A or B and calls it a;, or b;
accordingly.

D responds with an element from the other structure, s.t.
both a;, and b; are defined. and they keep placing pebbles...

They play for n rounds.

First-order logic
0®000

Ehrenfeucht - Fraisse and Pe(e)bble games
e Players: Player | - Player Il, or Spoiler - Duplicator
e They play on two structures, say A and B.
e The game is G : k rounds

e Spoiler tries to show that the two structures are not identical
and Duplicator tries to respond to Spoiler’s challenges.

e Spoiler moves first each round, say round 7.

e S picks an element from A or B and calls it a;, or b;
accordingly.

e D responds with an element from the other structure, s.t.
both a;, and b; are defined. and they keep placing pebbles...

e They play for n rounds.

e If the induced substructures on the elements chosen are

isomorphic, with the isomorphism mappint a; to b;, D wins.
Otherwise, S does.

First-order logic
00@00

Ehrenfeucht - Fraisse and Pe(e)bble games

e Ehrenfeucht - Fraisse games are a way to show inexpressibility
results about first-order logic.

e S wins Gy iff a first order sentence with at most & quantifier
alterations can distinguish between the structures.

(343 - Vi (T, ..., T)

e Pebble games are similar, but instead of choosing a/s and b;s,
they place pairs of pebbles. Pebbles are finite and can be
reused. The game of k£ moves and m pebbles is G;".

e S wins G iff a first order sentence with at most £ quantifier
alterations and m variables can distinguish between the
structures.

First-order logic
00000

To use an old example...

To maividi Svo KiviicEwv
umopei va Slakpivel
QAVAMEDA OTIG SUO AUTEG
Souéc. Aplotepd, o
ypapoc A kat 5e€1d o
ypdagog B.

Figure: A two-move game.

By hand:
The k—move game shows that graph connectivity and other
properties are not expressible in first order logic.

First-order logic
ooooe

Complexity

FO is the class of problems that correspond to first order
sentences. This will be used sloppily...

FO C L, and the reason is that each sentence has a fixed
number of quantifiers.

so, exhaustive search of the structure will do: % - log n space is
needed.

Also, FO # L, from the previous example (the “by hand* one)

Once again: What is that? First-order logic Fagin’'s Theorem, NP and PH
00000
®00

Outline

First-order logic

Add-ons: Built-in relations

P. L and stuff
000

0000

00

Regular things
000

First-order logic

oeo

Built-in relations: Bit, < and others

e What is a node in a graph?
Possible answers:

1. Anodeis ... a node
2. A node is a natural number from {1,2,3,...,n}

e But1+1=2and 2 <5, while the 2nd bit of 3is 1...

e Can we use these relations of the natural numbers? Yes. (Do
we want to?7?)

o If Py,..., Py arerelations in N, FO(Py, ..., Py) is first-order
logic on a vocabulary extended by Pi,..., Py. Structures will
have finite subsets from N as universes and the new symbols
will be interpreted accordingly.

AC®

so, why

First-order logic

ooe

Non-uniform AC? is the class of problems (languages)
decided by families of constant-depth polynomial-sized circuits
(with unbounded fan-in vV and A gates).

Uniform AC? is the same, but with uniform families of
circuits.

Uniformity: Generated (think of it as "described”) by
DLOGTIME Turing machines with random access on the input
tape.

It turns out that F'O(all) (yes, we include all possible relations
from N) is equivalent to non-uniform ACO?. (Perhaps we
allowed too much in our language...)

Also, FO(+, x) = FO(Bit,<) = FO(Bit) = uniform AC®°.
No, | will not prove this.

not include these relations??

Fagin's Theorem, N'P and PH

Fagin's Theorem. Yes, you have seen it before...

Theorem (Fagin’s Theorem - 1973)

NP is equivalent to the class of problems expressible in Second
Order Existential Logic (3S0):

NP =350

Which means that a problem (class of structures) C is in NP, iff
there exists a second order formula 35¢(S), where ¢(S5) is first
order, such that for all instances of C (structures in C), A,

AeCe AE354(S)

Furthermore, the theorem still holds for ¢ € I>.

Fagin's Theorem, N'P and PH

The proof of the theorem...

...is long, complicated and nearly boring

The idea of the proof is...

Existential quantification can be used to say " There exists a
computation, a polynomial...”,

The first-order part can describe the transition function of the
TM and limit the steps of the computation by the polynomial.
Interestingly, we can use built-in relations to make the
first-order part universal.

Once again: What is that? First-order logic Fagin's Theorem, N'P and PH

00000
[e]e]e}

From Fagin’s Theorem, PH = SO

PSPACE

T

K
&

B —

)

&
]

%=y

T

ap=pv

)

I, = coNP 4 = NP

(

vy

Ar=p

PH

P, L and stuff Regular things
000 000

0000

(e}

Figure: The Polynomial Time Hierarchy

00

Outline
Once again: What is that?

First-order logic
Games, limits and complexity of
Add-ons: Built-in relations
Fagin's Theorem, NP and PH

P, L and stuff

Fixed Points
P

L, NL and transitive closures

Regular things
MSO,dAMSO and Automata

«4O0)>» «Fr «Er» « =)

DA

P, L and stuff
oceo

O Tekeotic ehdylotov otabepod onueiov (LFP)

Definition (Movotétovn aneixévion)
Miaw aneixévion (¢4) Aéyetou uovdtovy av yu xdbe R, S,

RC 8 — (¢M)(R) C (¢™)(5)

Theorem (Knaster-Tarski)

‘Ectw R éva véo oxecloand cOuPoro tdlng £, xou €otw

d(R, 71, ..., x1) évag povétovog mpwtoPfdbiog ténog. Tote, yia
x60e memepacpévn Sopn A, To ehdyloto otabepd onueio g
$A(8) vrdpyel ko tgodvton pe (¢4)7 (M) émov o 7 elvan To
edyioto yl to onoio (¢74)"(0) = () +1(0). Emmhéoy, av
n=|lA|, téte r < nk.

® Me (LFPgiy 4 ¢) O cupBolifoupe auvtd to ehdyloto
otafepd onpeio.

P, L and stuff
ooe

LFP

Example

REACH = (LFPpyyd)(s, t)
‘Orov (R, z,y) =2 =y V Iz(E(z,2) N R(2,y))
Definition (FO(LFP))

FO(LFP) eivou to xheioipo g MpwtoPdbutag Aoyueig pe toy
telect ehdyloTou Gtabepol onpeiov

Theorem (©edpnpa Kavovurig Mopgiic)
‘Ectw ¢ tinog oy FO(LFP). Téte vndpyet MNpwtopddpiog
T0mog 1 Kot pua Gelpd and petafAntég ¢, dote,

¢ = (LFPY)(2)

00

Outline
Once again: What is that?

First-order logic
Games, limits and complexity of
Add-ons: Built-in relations
Fagin's Theorem, NP and PH

P, L and stuff

Fixed Points
P

L, N L and transitive closures

Regular things
MSO,dAMSO and Automata

«4O0)>» «Fr «Er» « =)

DA

P, L and stuff

0e00

And LFP is...

FO(LFP) = P, when we restrict ourselves on finite ordered
structures...

And of course, FO(LFP)(<) = P.

The proof looks like the one of Fagin's Theorem, but here the
ordering of the structure plays a significant role. And of course,
some things need to be modified to keep the formula positive...

Without the ordering, we cannot even describe the parity of a
set. (Proof? in a while)

So, once again, what could possibly be wrong with built-in
relations and more specifically, why not impose a linear
ordering to our structures?

P, L and stuff

[e]e] o]

An answer to a question, which brings another question...

LFP(<) is not a logic, because its sentences are not preserved
under isomorphisms.

But problems in P do not depend on the (built-in) ordering of
a structure. Can't we keep the order-invariant sentences from
LFP(<)?

The order-invariant sentences from LFP(<) are not a logic
either, because it is an undecidable set.

In fact, it is an open question, whether a logic exists that
captures exactly P.

A negative answer directly implies P # NP, from Fagin’s
Theorem.

A positive answer might help proving this, using a game, like
Ehrenfeucht - Fraisse games

P, L and stuff

oooe

Limiting LFP

e Lk is the extension of FO with infinite disjunctions and

00,w

conjunctions available, but with only £ variables allowed.
® Lgo,w = Uk Lﬁo,w
e LFP C Lk, ,
e Infinite move pebble games - Lfﬁow
e Using games, EVENNESS is not in L .

Once again: What is that? First-order logic Fagin’'s Theorem, NP and PH
00000
000

Outline

P, L and stuff

L, NL and transitive closures

P, L and stuff
000

0000

®0

Regular things
000

P, L and stuff

oe

Other fixed-point logics: TC,DTC

e TC stands for transitive closure of a relation (defined by a
formula).

e DTC stands for deterministic transitive closure: exactly one
path.

e Formulas: T'Cyy¢(d¥), DT Cyyp(u?)

e Logics: FO(TC), FO(DTC),FO(TC)

e Problems: (s — ¢)— REACHABILITY, DETERMINISTIC

(s — t)— REACHABILITY: NI, L— complete by
FO-reductions (what are those?)

e (If you believe that, then) easily,
FO(TC)=NL, FO(DTC) = L (with BIT, <)

Once again: What is that? First-order logic Fagin’'s Theorem, NP and PH P. L and stuff Regular things
00000 000 000
000 0000
00

Outline

Regular things
MSO,dAMSO and Automata

Regular things
0@0

Monadic Second Order Logic on strings
e MSO is SO, with only arity 1 second order quantifiers.
e Similarly, AMSO: only existential quantifiers.
e We will consider only strings with finite unary relations, P,,
a €.
e P,(n) means that there is an a at the n'th position of the
string.

Regular things
ooe

MSO,3MS0 and Automata

e Regular C IMSO (on strings)

e Proof (idea of a): from a DFA we construct an 3MSO
sentence, where the existential second order quantifiers provide
relations of arity 1, that represent the states of the automaton.
The first order part ensures that they behave like a DFA: that
go is the initial state, that transitions are performed correctly,
that only one state satisfies each position of the input, and
that the state at the last position of the string has an
accepting state.

e Also, MSO C Regular. (without proof, though...)
e Therefore, it follows that on strings, M50 = AMSO

	Once again: What is that?
	First-order logic
	Games, limits and complexity of
	Add-ons: Built-in relations

	Fagin's Theorem, NP and PH
	P, L and stuff
	Fixed Points
	P
	L, NL and transitive closures

	Regular things
	MSO, MSO and Automata

