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.. Balls and Bins

.
Problem
..

.

. ..

.

.

We have m balls that are thrown into n bins, the location of
each ball chosen independently and uniformly at random.

How many bins are empty?

What is the expected maximum load?

Recall from birthday paradox we have that for m = Ω(
√
n)

at least one of the bins has more than one ball with
probability ≥ 1

2

Proof:

P(E′
1 ∪ ... ∪ E′

k) ≤
∑k

j=1 P(E
′
j) =

∑k
j=1

j−1
n = k(k−1)

2n < k2

2n
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The probability p such that the maximum load is more than
3 lnn
lnlnn is at most 1

n for n sufficiently large.

Proof:

Using union bound we have that

p ≤ n

(
n

M

)
( 1n)

M ≤ n
M! ≤ n( e

M)M

The function ( e
M)M is decreasing so for M ≥ 3 lnn

lnlnn follows
that n( e

M)M ≤ 1
n .
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When n balls are thrown independently and uniformly at
random into n bins, the maximum load is at least lnn

lnlnn with
probability p ≥ 1− 1

n for n sufficiently large.

The main difficulty in analyzing balls-in-bins problem and
proving the above lemma is handling the dependencies.

So the solution is using Poisson distribution!

Ioannis Panageas Randomized Load Balancing:The Power of 2 Choices



Introduction to Balls-Bins
The power of 2 choices - Layered Induction

Applications
Conclusion

.
Theorem
..

.

. ..

.

.

When n balls are thrown independently and uniformly at
random into n bins, the maximum load is at least lnn

lnlnn with
probability p ≥ 1− 1

n for n sufficiently large.

The main difficulty in analyzing balls-in-bins problem and
proving the above lemma is handling the dependencies.

So the solution is using Poisson distribution!

Ioannis Panageas Randomized Load Balancing:The Power of 2 Choices



Introduction to Balls-Bins
The power of 2 choices - Layered Induction

Applications
Conclusion

.
Lemma 1.
..

.

. ..

.

.

Let X
(m)
i be the number of balls in i-th bin and Y

(m)
i be

independent Poisson random variables with mean m
n . The

distribution of (Y
(m)
1 , ...,Y

(m)
n ) conditioned on

∑
iY

(m)
i = k is

the same as (X
(k)
1 , ...,X

(k)
n ), regardless the value of m.

Proof:

Throwing k balls into n bins , the probability
(X1, ...,Xn) = (k1, ..., kn) such that

∑
i ki = k is(

k

k1

)(
k− k1
k2

)
...

(
k− k1 − ...− kn−1

kn

)
nk

= k!
k1!k2!...kn!nk

The probability (Y
(m)
1 , ...,Y

(m)
n ) = (k1, ..., kn) such that∑

iY
(m)
i = k is

P((Y
(m)
1 =k1)∩...∩(Y(m)

n =kn))

P(
∑

i Y
(m)
i =k)

= e−m/n(m/n)k1 ...e−m/n(m/n)knk!
k1!...kn!e−mmk
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Let f(x1, ..., xn) be a nonnegative function. Then

E[f(X
(m)
1 , ...,X

(m)
n )] ≤ e

√
mE[f(Y

(m)
1 , ...,Y

(m)
n )].

Proof:
E[f(Y

(m)
1 , ...,Y

(m)
n )] =

∑∞
t=0 E[f(Y

(m)
1 , ...,Y

(m)
n )|

∑n
i=1Y

(m)
i = t]

·Pr(
∑n

i=1Y
(m)
i = t) ≥ E[f(Y

(m)
1 , ...,Y

(m)
n )|

∑n
i=1Y

(m)
i = m]

·Pr(
∑n

i=1Y
(m)
i = m)

= E[f(X
(m)
1 , ...,X

(m)
n )m

me−m

m! ≥ E[f(X
(m)
1 , ...,X

(m)
n )

mme−m

m! ≥ E[f(X
(m)
1 , ...,X

(m)
n ) 1

e
√
m
.

Ioannis Panageas Randomized Load Balancing:The Power of 2 Choices



Introduction to Balls-Bins
The power of 2 choices - Layered Induction

Applications
Conclusion

.
Lemma 2.
..

.

. ..

.

.

Let f(x1, ..., xn) be a nonnegative function. Then

E[f(X
(m)
1 , ...,X

(m)
n )] ≤ e

√
mE[f(Y

(m)
1 , ...,Y

(m)
n )].

Proof:
E[f(Y

(m)
1 , ...,Y

(m)
n )] =

∑∞
t=0 E[f(Y

(m)
1 , ...,Y

(m)
n )|

∑n
i=1Y

(m)
i = t]

·Pr(
∑n

i=1Y
(m)
i = t) ≥ E[f(Y

(m)
1 , ...,Y

(m)
n )|

∑n
i=1Y

(m)
i = m]

·Pr(
∑n

i=1Y
(m)
i = m)

= E[f(X
(m)
1 , ...,X

(m)
n )m

me−m

m! ≥ E[f(X
(m)
1 , ...,X

(m)
n )

mme−m

m! ≥ E[f(X
(m)
1 , ...,X

(m)
n ) 1

e
√
m
.

Ioannis Panageas Randomized Load Balancing:The Power of 2 Choices



Introduction to Balls-Bins
The power of 2 choices - Layered Induction

Applications
Conclusion

Proof of Theorem:
With m=n the probability in the Poisson case that a fixed bin
has at least M balls is at least 1

eM! . So because the bins are
independent we have that the probability no bin has at least M

balls is at most (1− 1
eM!)

n ≤ e
−n
eM! . Thus by choosing M such

that e
−n
eM! ≤ 1

n2
we have that from the previous lemma that the

fact in the exact case has probability at most e
√
n

n2
< 1

n . The

(largest) choice is M = lnn
lnlnn
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Upper-Lower Bound
Always-Go-Left

.. Balls and Bins

.
Problem
..

.

. ..

.

.

Each ball comes with d possible destination bins, each chosen
independently and uniformly at random and is placed in the
least full bin among the d locations (ties broken randomly).

What is the expected maximum load now?

We are going to prove that the maximum load decreases
exponentially...
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.
Theorem
..

.

. ..

.

.

The maximum load for the problem above is at most
lnlnn
lnd +O(1) with probability 1− o( 1n)

Proof Sketch:

We wish to find a sequence of values bi such that the
number of bins with load at least i is bounded above by bi
w.h.p. Suppose we know bi, we want to find bi+1. If a ball
has height at least i + 1 only if each of its d choices for a
bin has load at least i. Therefore the probability that a ball
has height at least i + 1 is at most (bin )

d.

Using standard bounds on Bernoulli trials, it follows that
bi+1 ≤ cn(bin )

d for constant c, so by selecting j = O(lnlnn)
we are done (bj < 1).
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Lemma 1
..
.
. ..

.

.

P(B(n, p) ≥ enp) ≤ e−np. (1)

Using Chernoff Bounds P(X ≥ (δ + 1)µ) ≤ ( eδ

(1+δ)(1+δ) )
µ for

δ = e− 1 we conclude the proof.

.
Lemma 2
..

.

. ..

.

.

Let X1,X2, ...,Xn be a sequence of r.v in an arbitrary domain,
and let Y1,Y2, ...,Yn be a sequence of binary r.v such that
Yi = Yi(X1, ...,Xi−1). If P(Yi = 1|X1, ...,Xi−1) ≤ (or ≥)p then
P(

∑n
i=1Yi ≥ k) ≤ (or ≥)P(B(n,p) ≥ k)

Yi is less (or more) likely to take value 1 than an independent
Bernoulli trial.
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Proof of theorem:

Let h(t) be the height of the t-th ball that is placed , vi(t)
the number of bins with load at least i and µi(t) the
number of balls with height at least i at time t. Suppose
β6 =

n
2e , βi+1 = ne(βi

n )
d and Ei be the event that

vi(n) ≤ βi. We want to find the largest i , such that if Ei

holds then Ei+1 holds w.h.p.

Fix i and assume Yt = 1 iff h(t) ≥ i + 1 and vi(t− 1) ≤ βi.
So P(Yt = 1|ω1, ..., ωt−1) ≤ (βi

n )
d = pi.

Conditioned on Ei we have
∑

Yt = µi+1(n). Thus

P(vi+1 ≥ βi+1|Ei) ≤ P(µi+1 ≥ βi+1|Ei) ≤ P(
∑

Yt≥βi+1)
P(Ei)

≤ P(B(n,pi)≥βi+1)
P(Ei)

≤ 1
enpiP(Ei)

(Lemma 2 - Lemma 1).
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Case pin ≥ 2lnn ⇒ P(¬Ei+1|Ei) ≤ 1
n2P(Ei)

.

Case pin < 2lnn : Let i∗ be the smallest value such that
pin < 2lnn.
Then i∗ ≤ lnlnn

lnd +O(1) (we can prove it using induction to

prove βi+6 ≤ n/2d
i
). Finally we have to prove that

P(µi∗+2 ≥ 1) = O( 1n). Using the fact that
P(vi∗+1 ≥ 6lnn|Ei∗) ≤ P(B(n, 2lnn/n) ≥ lnn) ≤ 1

n2P(Ei∗ )

and P(µi∗+2 ≥ 1|µi∗+1 ≤ 6lnn) ≤ P(B(n,((6lnn)/n)d))
P(µi∗+1≤6lnn)

≤ n(6lnn)/n)d

P(µi∗+1)
it follows that P(µi∗+2 ≥ 1) = O( 1n).
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Using the same technique, we can prove the following theorem
for the lower bound.
.
Theorem
..

.

. ..

.

.

The maximum load for the problem above is at least
lnlnn
lnd −O(1) with probability 1− o( 1n).

There are also other known techniques for proving the theorems
above concerning the Upper and Lower Bound.

Witness tree method (tree of events). probability of
occurence of bad events bounded above by probability of
occurence of witness tree.

Fluid limit models (describing the system by differential
equations).
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Upper-Lower Bound
Always-Go-Left

Here we mention another mechanism of replacing each ball into
a bin.

Always-Go-Left Algorithm:

Partition the bins into d groups of almost equal size (Θ(nd )).
For each ball choose one location from each group.
The ball is placed in the bin with the minimum load (ties
are broken by inserting the ball to the leftmost bin).

It’s proven that the maximum load is lnlnn
dlnϕd

+O(1) w.h.p

where ϕd = limk→∞
k
√

Fd(k). As the limit converges we
have that this algorithm has better load balancing than the
previous one.
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Bucket-Sort
Hashing

.. Bucket-sort

Suppose we have n = 2m elements to be sorted, each one chosen
independently and uniformly at random from a range [0, 2k)
with k ≥ m and n buckets. The algorithm has two stages:

We place the numbers in the buckets (O(n) ?). The j-th
bucket contains the numbers whose first m binary digits
make j.
We sort each bucket using bubblesort (doesn’t matter
which sorting algorithm we choose) and concatenate the
sorted buckets.

The algorithm runs in O(n): Suppose Xj be a random variable
representing the number of integers in j-th bucket. Then Xj

follows binomial distribution B(n, 1n) so to find the complexity
of the algorithm we have to compute

∑
j E[X

2
j ]. Using the fact

that E[X2] = Var[X] + E[X]2 = np(1− p) + (np)2 = 2− 1
n we

have that the algorithm runs in O(n).
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Bucket-Sort
Hashing

.. Chain Hashing

Suppose we want to make a password checker, which prevents
people from using unacceptable passwords. We have a set S of
m words and we want to check for a given a word, if it belongs
or not to S. One easy and well-known idea is binary search in
O(logm) if we have S saved as a sorted array. Another approch
is using a random hash function and a hash table of size n. We
make the assumption that for a given x , P(f(x) = j) = 1

n , f(x)
is fixed and that the values of f are independent. Now the
complexity of the algorithm(expected worst case) is the
maximum load of a bin....

O( lnn
lnlnn)
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Bucket-Sort
Hashing

.. Chain Hashing

Another approach for hashing in order to balance the load is
the use of two hash functions (d = 2). The two hash functions
define two possible entries in the hash table for each item. The
item is inserted to the location that is least full. So w.h.p the
maximum time to find an item is (O(lnlnn)). However this
improvement leads to double the average search time because
we look at two bucket instead of one.
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Other applications

The balls-and-bins method can be used in different fields of cs.

Operating systems (Dynamic resource allocation)

Game Theory (Congestion Games - Routing)

Queueing Theory

DataBases

other
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