Elementary O(logN) Step Algorithms

-Packet routing
-Sorting

- Matrix vector multiplication
- Jacobi relaxation
-Pivoting
-Convolution
$\Sigma \pi u ́ p o s$ Kouvŋvós

Elementary O(logN) Step Algorithms

-Algorithms are optimal in terms of speed.
Only matrix Algorithms are work efficient.
-Routing sorting convolution use N^{2} processors to solve problems of size N in $\mathrm{O}(\log \mathrm{N})$ steps.
-But they can be improved by $\Theta(\mathrm{N})$ by pipelining.
-With hypercubic networks these can be solved in $\mathrm{O}(\log \mathrm{N})$ steps and with $\mathrm{O}(\mathrm{N})$ processors. Optimal in both speed and work efficiency.

Routing

- $\mathrm{N} \times \mathrm{N}$ mesh of trees have bisection width N
-Hence they will not be able to sort or route in less than $\Omega(\mathrm{N})$ steps.
- $\mathrm{N} \times \mathrm{N}$ mesh of trees no faster than $\mathrm{N} \times \mathrm{N}$ array when one needs to route N^{2} packets.
-But $\mathrm{N} \times \mathrm{N}$ mesh of trees have a smaller diameter!

Sparse Routing

$\cdot \mathrm{M} \leq \mathrm{N}$ packets stored in the row roots, can be routed in $2 \log \mathrm{~N}$ steps to desired column roots.

Sparse Routing Algorithm

Let $0 \leq p_{i} \leq N-1$ be the desired destination of the packet stored in the i-th row tree root.
(column tree root)
-Route the packet to the p_{i}-th
leaf of its row. (*log N steps needed*)
-Route the packet to its column tree root. (*log N steps needed*)

Sparse Routing Algorithm

-Let $0 \leq p_{i} \leq N-1$ be the desired destination of the packet. (column tree root)
-If the destinations are mutually different the paths will never intersect.

Matrix Vector Multiplication

-Let $A=\left(a_{i j}\right)$ be a $N \times N$ matrix, x an N vector, y their product.

- Enter x_{i} into the i-th column
root. $1 \leq i \leq N$.
-Pass x_{i} to the leafs of its tree.
(i-th tree) (*log N steps*)
-Input $a_{i j}$ into the (i, j) leaf.
-Compute the product $a_{i j} x_{j}$
-The values are summed by the row trees. (*log N steps*)

$$
y_{i}=\sum_{j=1}^{N} a_{i, j} x_{j}
$$

Matrix Vector Multiplication Complexity

-The algorithm needs $2 \log \mathrm{~N}$ steps
-By pipelining r vectors (input at the row roots
new vector elements) we get with a delay
$2 \log \mathrm{~N}$ the result of each multiplication.

- $\log \mathrm{N}+\mathrm{r}$ complexity for pipelined multiplications.

Jacobi Relaxation

- Jacobi Relaxation can be expressed as a matrix vector product.
$A \vec{x}=\vec{b} \quad$ approximated by

$$
\left(\begin{array}{c}
x_{1}(t+1) \\
x_{2}(t+1) \\
\vdots \\
x_{N}(t+1) \\
1
\end{array}\right)=\left(\begin{array}{ccccc}
0 & -a_{12} / a_{11} & \cdots & -a_{1 N} / a_{11} & b_{1} / a_{11} \\
-a_{21} / a_{22} & 0 & \cdots & -\frac{a_{2 N}}{a_{22}} a_{a_{22}} b_{2} / a_{22} \\
\vdots & & & \vdots & \vdots \\
-\frac{a_{N 1}}{a_{N N}} & -\frac{a_{N 2}}{a_{N N V}} & \cdots & 0 & b_{N} / a_{N N} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{N}(t) \\
1
\end{array}\right)
$$

Jacobi Relaxation Implementation

$\cdot \mathrm{b}_{\mathrm{i}}$ is stored on the (i, i) processor. a_{ij} is stored on the (i, j) processor
$\cdot \mathrm{x}_{\mathrm{i}}(\mathrm{t})$ is stored in the i -th column root.

- [INIT]a a_{ij} is inverted at the (i,i) leaf processor and passed to every leaf of the i-th row. $b_{i} / a_{i i}$ is stored on the (i,i) processor. $\mathrm{a}_{\mathrm{ij}} / \mathrm{a}_{\mathrm{ii}}$ is stored on the (i,j) processor

Jacobi Relaxation Implementation

-Matrix vector multiplication as usual, but
-If (i=j) /a a_{ii} is the constant result the leaf processor passes its row parent.
-Route x_{i} from the row root to the column root.
-(* forall iterations 4 log $\mathrm{N}=$ $0(\log N)$ steps needed *)

Gaus Seidel Relaxation

- Gaus Seidel Relaxation in 3D meshes of trees in $\mathrm{O}\left(\log ^{2} \mathrm{~N}\right)$ with $\Theta\left(\mathrm{N}^{3}\right)$ processors. - In 2D meshes of trees unresolved.

