
Elementary O(logN) Step Algorithms

•Packet routing
•Sorting
•Matrix vector multiplication
•Jacobi relaxation
•Pivoting
•Convolution

Σπύρος Κομνηνός

Elementary O(logN) Step Algorithms

•Algorithms are optimal in terms of speed.
Only matrix Algorithms are work efficient.
•Routing sorting convolution use N2

processors to solve problems of size N in
O(log N) steps.
•But they can be improved by Θ(Ν) by
pipelining.
•With hypercubic networks these can be
solved in O(logN) steps and with O(N)
processors. Optimal in both speed and work
efficiency.

Routing

•N x N mesh of trees have bisection width N
•Hence they will not be able to sort or route in
less than Ω(Ν) steps.
•N x N mesh of trees no faster than N x N
array when one needs to route N2 packets.
•But N x N mesh of trees have a smaller
diameter!

Sparse Routing

•M≤N packets stored in the row roots, can be
routed in 2 log N steps to desired column
roots.

Sparse Routing Algorithm

Let 0≤pi≤N-1 be the desired destination of the
packet stored in the i-th row tree root.
(column tree root)
•Route the packet to the pi-th
leaf of its row. (*log N steps
needed*)
•Route the packet to its column
tree root. (*log N steps needed*)

Sparse Routing Algorithm

•Let 0≤pi≤N-1 be the desired destination of
the packet. (column tree root)
•If the destinations are mutually different the
paths will never intersect.

Matrix Vector Multiplication

•Let A=(aij) be a N x N matrix, x an N vector,
y their product.
•Enter xi into the i-th column
root. 1 ≤ i≤ N.
•Pass xi to the leafs of its tree.
(i-th tree) (*log N steps*)
•Input aij into the (i,j) leaf.
•Compute the product aij xj
•The values are summed by the row
trees. (*log N steps*)

∑
=

=
N

j
jjii xay

1
,

Matrix Vector Multiplication
Complexity

•The algorithm needs 2 log N steps
•By pipelining r vectors (input at the row roots
new vector elements) we get with a delay
2 log N the result of each multiplication.
•log N + r complexity for pipelined
multiplications.

Jacobi Relaxation
•Jacobi Relaxation can be expressed as a
matrix vector product.

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−

−−
−−

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+
+

=

1
)(

)(
)(

1000
0

0
0

1
)1(

)1(
)1(

by edapproximat

2

1

2

1

21

22
2

22
2

22
21

11
1

11
1

11
12

tx

tx
tx

tx

tx
tx
bxA

Na
b

a
a

a
a

a
b

a
a

a
a

a
b

a
a

a
a

N NN
N

NN
N

NN
N

N

N

M

L

L

MMM

L

L

M

rr

Jacobi Relaxation Implementation
•bi is stored on the (i,i) processor. aij is stored
on the (i,j) processor
•xi(t) is stored in the i-th column root.

•[INIT]aii is inverted at the (i,i)
leaf processor and passed to every
leaf of the i-th row. bi /aii is
stored on the (i,i) processor. -
aij /aii is stored on the (i,j)
processor

Jacobi Relaxation Implementation
•Matrix vector multiplication as
usual, but
•If (i=j) /aii is the constant
result the leaf processor passes
its row parent.
•Route xi from the row root to the
column root.

•(* forall iterations 4 log N =
O(log N) steps needed *)

Gaus Seidel Relaxation
•Gaus Seidel Relaxation in 3D meshes of
trees in O(log2 N) with Θ(Ν3) processors.
•In 2D meshes of trees unresolved.

	Elementary O(logN) Step Algorithms
	Elementary O(logN) Step Algorithms
	Routing
	Sparse Routing
	Sparse Routing Algorithm
	Sparse Routing Algorithm
	Matrix Vector Multiplication
	Matrix Vector Multiplication�Complexity
	Jacobi Relaxation
	Jacobi Relaxation Implementation
	Jacobi Relaxation Implementation
	Gaus Seidel Relaxation

