Elementary O(logN) Step Algorithms

- Packet routing
- •Sorting
- Matrix vector multiplication
- Jacobi relaxation
- •Pivoting
- Convolution

Σπύρος Κομνηνός

Elementary O(logN) Step Algorithms

- •Algorithms are optimal in terms of speed.
- Only matrix Algorithms are work efficient.
- •Routing sorting convolution use N² processors to solve problems of size N in O(log N) steps.
- •But they can be improved by $\Theta(N)$ by pipelining.
- •With hypercubic networks these can be solved in O(logN) steps and with O(N) processors. Optimal in both speed and work efficiency.

Routing

•N x N mesh of trees have bisection width N •Hence they will not be able to sort or route in less than $\Omega(N)$ steps.

•N x N mesh of trees no faster than N x N array when one needs to route N^2 packets.

•But N x N mesh of trees have a smaller diameter!

Sparse Routing

•M≤N packets stored in the row roots, can be routed in 2 log N steps to desired column roots.

Sparse Routing Algorithm

Let $0 \le p_i \le N-1$ be the desired destination of the packet stored in the i-th row tree root. (column tree root)

•Route the packet to the p_i -th leaf of its row. (*log N steps needed*)

•Route the packet to its column tree root. (*log N steps needed*)

Sparse Routing Algorithm

- •Let $0 \le p_i \le N-1$ be the desired destination of the packet. (column tree root)
- •If the destinations are mutually different the paths will never intersect.

Matrix Vector Multiplication

- •Let $A=(a_{ij})$ be a N x N matrix, x an N vector, y their product.
- •Enter x_i into the i-th column root. $1 \le i \le N$.
- •Pass x_i to the leafs of its tree. (i-th tree) (*log N steps*)
- •Input a_{ij} into the (i,j) leaf.
- •Compute the product $a_{ij} x_j$
- •The values are summed by the row trees. (*log N steps*)

$$y_i = \sum_{j=1}^{N} a_{i,j} x_j$$

Matrix Vector Multiplication Complexity

- •The algorithm needs 2 log N steps
- •By pipelining r vectors (input at the row roots new vector elements) we get with a delay 2 log N the result of each multiplication.
- •log N + r complexity for pipelined multiplications.

Jacobi Relaxation

•Jacobi Relaxation can be expressed as a matrix vector product.

 $\begin{array}{c} A\vec{x} = \vec{b} \text{ approximated by} \\ \begin{pmatrix} x_1(t+1) \\ x_2(t+1) \\ \vdots \\ x_N(t+1) \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{a_{12}}{a_{11}} & \cdots & -\frac{a_{1N}}{a_{11}} & \frac{b_1}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & \cdots & -\frac{a_{2N}}{a_{22}} & \frac{b_2}{a_{22}} \\ \vdots & \vdots & \vdots \\ -\frac{a_{N1}}{a_{NN}} & -\frac{a_{N2}}{a_{NN}} & \cdots & 0 & \frac{b_N}{a_{NN}} \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_N(t) \\ 1 \end{pmatrix}$

Jacobi Relaxation Implementation

 ${}^{\bullet}b_i$ is stored on the (i,i) processor. a_{ij} is stored on the (i,j) processor

 $\cdot x_i(t)$ is stored in the i-th column root.

•[INIT] a_{ii} is inverted at the (i,i) leaf processor and passed to every leaf of the i-th row. b_i / a_{ii} is stored on the (i,i) processor. a_{ij} / a_{ii} is stored on the (i,j) processor

Jacobi Relaxation Implementation

- •Matrix vector multiplication as usual, but
- If (i=j) /a_{ii} is the constant result the leaf processor passes its row parent.
- •Route \mathbf{x}_{i} from the row root to the column root.

•(* forall iterations 4 log N = O(log N) steps needed *)

Gaus Seidel Relaxation

Gaus Seidel Relaxation in 3D meshes of trees in O(log² N) with Θ(N³) processors.
In 2D meshes of trees unresolved.