Pseudorandomness and Derandomization

Evangelos Anagnostopoulos $\mu \Pi \lambda \forall$

Algorithms \& Complexity II 2014

Probabilistic Algorithms

- Primality testing
- Polynomial Identity Testing

Initial conjecture: Probabilistic algorithms are more powerful than deterministic ones.

There exist problems that can be solved probabilistically in polynomial time but not deterministically.

BPP = P Conjecture

BPP has surpassed the class P as the class of problems that are considered efficiently solvable.

Two arguments to support this conjecture:

- A large number of algorithms have been implemented and work fine without access to any source of true randomness
- Every language in BPP can be non-trivially derandomized under certain assumptions

Computational Theory of Pseudorandomness

Theory introduced by Blum, Goldwasser, Micali and Yao. Provides us with a useful conditional derandomization theorem:
"If assumption \mathbf{X} is true, then every problem that can be solved by a probabilistic polynomial time algorithm can also be solved by a deterministic algorithm of running time Y."

Originally, shown for
$\mathbf{X}=$ "there is no polynomial time algorithm for factorization", and
$Y=" t i m e 2^{n^{\varepsilon}}$, for every $\varepsilon>0$ "

Conditional Derandomization Goal

The goal became to:

- Strengthen Y to be polynomial time
- While the assumption X remains plausible

It was achieved by Impagliazzo and Wigderson in 1997.

Impagliazzo-Wigderson Result

Shown in 3 steps:

- Worst-case complexity of certain problems implies a seemingly stronger complexity of their average-case complexity (Amplification of hardness)
- Average case complexity assumption suffices to construct a certain very strong pseudorandom generator.
- This generator suffices to simulate deterministically in polynomial time every polynomial-time probabilistic algorithm.

But what is a pseudorandom generator?

Informally, it is just a map
$G:\{0,1\}^{t} \rightarrow\{0,1\}^{m}, t \ll m$, such that
if x is uniformly selected in $\{0,1\}^{t}$, the distribution $G(x)$
looks like the uniform distribution of $\{0,1\}^{m}$
Ideally, we would like $G\left(U_{t}\right)$ to be close to U_{m} in statistical distance
But this too strong of a definition... Consider the statistical test T to be all the possible outcomes of G.

$$
\operatorname{Pr}\left[G\left(U_{t}\right) \in T\right]=1, \text { but } \operatorname{Pr}\left[U_{m} \in T\right]=\frac{2^{t}}{2^{m}}
$$

Efficiently computable statistical tests

Computational Indistinguishability: Two distributions μ_{x} and μ_{y} over $\{0,1\}^{m}$ are (K, ε) - indistinguishable if $\forall T \subseteq\{0,1\}^{m}$ of circuit complexity at most $K,\left|\underset{x \sim \mu_{x}}{\operatorname{Pr}}[x \in T]-\underset{y \sim \mu_{y}}{\operatorname{Pr}}[y \in T]\right| \leq \varepsilon$

Pseudorandomness: A distribution μ_{x} over $\{0,1\}^{m}$ is (K, ε) - pseudorandom if it is (K, ε)-indistinguishable from U_{m}. $\forall T \subseteq\{0,1\}^{m}$, of circuit complexity $\leq K,\left|\operatorname{Pr}[x \in T]-\frac{|T|}{2^{m}}\right| \leq \varepsilon$

Quick Pseudorandom Generator

Suppose that for every n there is a $G_{n}:\{0,1\}^{t(n)} \rightarrow\{0,1\}^{n}$ that is
$\left(n^{2}, \frac{1}{n}\right)$-pseudorandom, and that there is an algorithm G that, given n, s computes $G_{n}(s)$ in time $2^{\mathrm{O}(t(n))}$.
Then G is called a $t(n)$-quick generator.
logQPRG: A $\mathrm{O}(\log (n))$-quick pseudorandom generator

Application of log-QPRG

Suppose that a $\operatorname{logQPRG}$ exists and suppose that f is a function and A is a polynomial time probabilistic algorithm that computes f , with $\operatorname{Pr}[A(r, I)=f(I)] \geq \frac{3}{4}$ and $\mathrm{m}=|r|$.
Choose K to be an efficiently computable upper bound to the circuit complexity of $T=\{r: A(r, I)=f(I)\}$ and n such that $n \geq|r|, n^{2} \geq K, n \geq 5$ n is polynomial in the length of I, because A runs in polynomial time.
Compute $A\left(G_{n}(s), I\right) \forall s \in\{0,1\}^{t}$ and output the most frequent value.
$\operatorname{Pr}\left[A\left(G_{n}\left(U_{t}\right), I\right)=f(I)\right] \geq \frac{3}{4}-\frac{1}{n}>\frac{1}{2}$, because $\operatorname{Pr}\left[A\left(U_{m}, I\right)=f(I)\right] \geq \frac{3}{4}$

Average case circuit complexity

A set $S \subseteq\{0,1\}^{n}$ is (K, ε)-hard on average if for every set T computable by a circuit of size $\leq K$ we have $\operatorname{Pr}\left[1_{S}(x)=1_{T}(X)\right] \leq \frac{1}{2}+\varepsilon$

A set $L \subseteq\{0,1\}^{*}$ is $(K(n), \varepsilon(n))$-hard on average if, for every n $L \cap\{0,1\}^{n}$ is ($K(n), \varepsilon(n)$)-hard on average

Impagliazzo-Wigderson Result Proof

Nisan and Wigderson theorem
Suppose there is a set L such that: (i) L can be decided in time $2^{\mathrm{O}(\mathrm{n})}$ and (ii) there is a constant δ such that L is ($\left.2^{\delta n}, 2^{-2 \delta n}\right)$-hard on average. Then a $\operatorname{logQPRG}$ exists.

Impagliazzo and Wigderson theorem

Suppose there is a set L such that : (i) L can be decided in time $2^{\mathrm{O}(\mathrm{n})}$ and (ii) there is a constant $\delta>0$ such that the circuit complexity of L is $\geq 2^{\delta n}$. Then there is a set L^{\prime} such that: (i) L can be decided in time $2^{\mathrm{O}(\mathrm{n})}$ and (ii) there is a constant $\delta^{\prime}>0$ such that L^{\prime} is $\left(2^{\delta \prime} n, 2^{-\delta^{\prime} n}\right)$-hard on average.

Onward to uniform hardness results

Complexity class \#P: Counting class that outputs the number of solutions to a problem that can be solved by a NDTM with polynomial time complexity.
Equivalently, outputs the number of accepting branches of such a NDTM.

PERMANENT: of a square matrix A nxn:

$$
\operatorname{perm}(A)=\sum_{\pi} \prod_{i=1}^{n} a_{i, \pi(i)}
$$

PERNAMENT is \#P-Complete

Toda's Theorem and BPP Derandomization

Toda's Theorem: $\mathrm{PH} \subseteq \mathrm{P}^{\# \mathrm{P}}$

If EXP $\nsubseteq B P P$, then for every $\varepsilon>0$, there is a quick generator $\mathrm{G}:\{0,1\}^{n^{\varepsilon}} \rightarrow\{0,1\}^{n}$ that is pseudorandom with respect to any P -sampleable family of n -size Boolean circuits infinitely often.

Proof: if EXP $\nsubseteq \mathrm{P} /$ poly, then we have proved that such a generator exists. if EXP $\subseteq \mathrm{P} /$ poly, then EXP collapses to Σ_{2}^{p} and from Toda's theorem: $\Sigma_{2}^{p} \subseteq P^{\# \mathrm{P}}$. Therefore, \#P-Complete languages are complete for EXP. PERNAMENT can be shown to be in BPP. So, BPP=EXP.

RP Derandomization

A generator H is called a hitting-set generator with respect to Any P-sampleable family of n-size Boolean circuits if, for any Probabilistic polynomial time algorithm R, where $R\left(1^{n}\right)$ outputs a boolean circuit of size n , there are infinitely many n s.t.

$$
\operatorname{Pr}\left[R\left(1^{n}\right) \in B_{H}(n)\right]<1
$$

If EXP $\not \subset \mathrm{ZPP}$, then for every $\varepsilon>0$, there is a quick hitting-set generator $\mathrm{H}:\{0,1\}^{n^{n}} \rightarrow\{0,1\}^{n}$.
If generator EASY doesn't work then ZPP=BPP

RP Derandomization

At least one of the following holds

1. $\mathrm{RP} \subseteq \mathrm{ZPP}$
2. For every $\varepsilon>0$, every RP algorithm can be simulated in deterministic time $2^{n^{\varepsilon}}$ so that, for any polynomial time computable function $\mathrm{f}:\{1\}^{n} \rightarrow\{0,1\}^{n}$, there are infinitely many n where this simulation is correct on the input $f\left(1^{n}\right)$

AM Derandomization

If $\mathrm{E} \nsubseteq \mathrm{AM}-\mathrm{TIME}\left(2^{\mathrm{en}}\right)$ for some $\varepsilon>0$ then every language $\mathrm{L} \in \mathrm{AM}$ has an NP-algorithm A such that for every polynomial time computable function $\mathrm{f}:\{1\}^{n} \rightarrow\{0,1\}^{n}$, there are infinitely many n where the algorithm A correctly decides L on the input $\{1\}^{n}$.

This means that AM is almost as powerful as E , or AM is no more powerful than NP from the point of view of any efficient observer

Circuit lower bounds from the derandomization of MA

If $\mathrm{NEXP} \subset \mathrm{P} /$ poly, then $\mathrm{NEXP}=\mathrm{MA}$
$\mathrm{EXP} \subset \mathrm{P} /$ poly implies $\mathrm{EXP}=\mathrm{AM}$, so it sufficient to prove that NEXP $\subset \mathrm{P} /$ poly implies NEXP $=$ EXP .

Use generator EASY again to search for NEXP-witnesses. If the generator succeeds for every language $L \in$ NEXP then NEXP $=$ EXP. Otherwise argue that EASY must succeed.

