

Pseudorandomness and
Derandomization

Evangelos Anagnostopoulos
μΠλ ∀

Algorithms&Complexity II 2014

Probabilistic Algorithms

● Primality testing
● Polynomial Identity Testing

Initial conjecture: Probabilistic algorithms are more powerful than
deterministic ones.

There exist problems that can be solved probabilistically in
polynomial time but not deterministically.

BPP = P Conjecture

BPP has surpassed the class P as the class of problems
that are considered efficiently solvable.

Two arguments to support this conjecture:
● A large number of algorithms have been implemented and

work fine without access to any source of true randomness
● Every language in BPP can be non-trivially derandomized

under certain assumptions

Computational Theory of
Pseudorandomness
Theory introduced by Blum, Goldwasser, Micali and Yao.
Provides us with a useful conditional derandomization theorem:

“If assumption X is true, then every problem that can be solved by
a probabilistic polynomial time algorithm can also be solved by a
deterministic algorithm of running time Y.”

Originally, shown for
X=”there is no polynomial time algorithm for factorization”, and
Y=”time 2nε

, for every ε>0”

Conditional Derandomization Goal

The goal became to:
● Strengthen Y to be polynomial time
● While the assumption X remains plausible

It was achieved by Impagliazzo and Wigderson in 1997.

Impagliazzo-Wigderson Result

Shown in 3 steps:
● Worst-case complexity of certain problems implies

a seemingly stronger complexity of their average-case
complexity (Amplification of hardness)

● Average case complexity assumption suffices to construct a
certain very strong pseudorandom generator.

● This generator suffices to simulate deterministically in
polynomial time every polynomial-time probabilistic algorithm.

But what is a pseudorandom
generator?

Informally, it is just a map

G :{0,1}t
→{0,1}m , t≪m , such that

if x is uniformly selected in {0,1}t , the distribution G (x)
looks like the uniform distribution of {0,1}m

Ideally, we would like G (U t) to be close to U m in statistical distance

But this too strong of a definition... Consider the statistical test T
to be all the possible outcomes of G.

Pr [G (U t)∈T]=1, but Pr [U m∈T]=
2t

2m

Efficiently computable statistical
tests

Computational Indistinguishability: Two distributions μx and μ y

over {0,1}m are (K , ε)−indistinguishable if ∀T ⊆{0,1}m

of circuit complexity at most K ,∣Pr
x ~ μx

[x∈T]− Pr
y ~ μ y

[y∈T]∣≤ε

Pseudorandomness: A distribution μ x over {0,1}m is
(K , ε)−pseudorandom if it is (K , ε)−indistinguishable from U m.

∀T ⊆{0,1}m , of circuit complexity ≤K ,∣Pr
x ~ μ x

[x∈T]−
∣T∣

2m∣≤ε

Quick Pseudorandom Generator

Suppose that for every n there is a Gn :{0,1}t (n)→{0,1}n that is

(n2 ,
1
n

)-pseudorandom, and that there is an algorithm G that,

given n , s computes Gn(s) in time 2O(t (n)) .
Then G is called a t (n)−quick generator.

logQPRG:A O(log (n))-quick pseudorandom generator

Application of log-QPRG

Suppose that a logQPRG exists and suppose that f is a function and
A is a polynomial time probabilistic algorithm that computes f, with

Pr [A(r , I)= f (I)]≥
3
4

 and m = ∣r∣.

Choose K to be an efficiently computable upper bound to the circuit
complexity of T={ r : A(r , I)= f (I)} and n such that n≥∣r∣, n2≥K , n≥5
n is polynomial in the length of I, because A runs in polynomial time.
Compute A(Gn(s) , I)∀ s∈{0,1}t and output the most frequent value.

Pr [A(Gn(U t) , I)= f (I)]≥3
4

−
1
n

>
1
2

, because Pr [A(U m , I)= f (I)]≥3
4

Average case circuit complexity

A set S⊆{0,1}n is (Κ , ε)-hard on average if for every set T

computable by a circuit of size ≤K we have Pr [1S (x)=1T (X)]≤
1
2

+ε

A set L⊆{0,1}* is (K (n) , ε (n))-hard on average if, for every n
L∩{0,1}n is (K (n) , ε(n))−hard on average

Impagliazzo-Wigderson Result -
Proof

Nisan and Wigderson theorem
Suppose there is a set L such that : (i) L can be decided in time 2O(n) and
(ii) there is a constant δ such that L is (2δn ,2−2δn)-hard on average.
Then a logQPRG exists.

Impagliazzo and Wigderson theorem
Suppose there is a set L such that : (i) L can be decided in time 2O(n) and
(ii) there is a constant δ >0 such that the circuit complexity of L is ≥2δn.

Then there is a set L' such that: (i) L can be decided in time 2O(n) and
(ii) there is a constant δ'>0 such that L' is (2δ ' n ,2−δ ' n)-hard on average.

Onward to uniform hardness
results

Complexity class #P: Counting class that outputs the
number of solutions to a problem that can be solved by a
NDTM with polynomial time complexity.
Equivalently, outputs the number of accepting branches
of such a NDTM.

PERMANENT: of a square matrix A nxn:

perm(A)=∑
π
∏
i=1

n

a i ,π (i)

PERNAMENT is #P-Complete

Toda's Theorem and BPP
Derandomization

Toda's Theorem: PH⊆P#P

If EXP⊈BPP , then for every ε>0, there is a quick generator G:{0,1}nε

→{0,1}n

that is pseudorandom with respect to any P-sampleable family of n-size
Boolean circuits infinitely often.

Proof: if EXP⊈P/poly, then we have proved that such a generator exists.
if EXP⊆P/poly, then EXP collapses to Σ 2

p and from Toda's theorem:

Σ 2
p
⊆P#P .Therefore, #P-Complete languages are complete for EXP.

PERNAMENT can be shown to be in BPP. So, BPP=EXP.

RP Derandomization

Pr [R(1n
)∈BH (n)]<1

A generator H is called a hitting-set generator with respect to
Any P-sampleable family of n-size Boolean circuits if, for any
Probabilistic polynomial time algorithm R, where R(1n) outputs
a boolean circuit of size n, there are infinitely many n s.t.

If EXP⊈ZPP, then for every ε>0, there is a quick hitting-set generator
H:{0,1}nε

→{0,1}n .
If generator EASY doesn't work then ZPP=BPP

RP Derandomization

At least one of the following holds
1. RP⊆ ZPP
2. For every ε>0, every RP algorithm can be simulated in deterministic
 time 2nε

 so that, for any polynomial time computable function
 f: {1}n→{0,1}n , there are infinitely many n where this simulation is
 correct on the input f(1n)

AM Derandomization

If E ⊈AM-TIME(2εn) for some ε>0 then every language L∈AM
has an NP-algorithm A such that for every polynomial time
computable function f:{1}n→{0,1}n , there are infinitely many n
where the algorithm A correctly decides L on the input {1}n .

This means that AM is almost as powerful as E, or AM is no more
powerful than NP from the point of view of any efficient observer

Circuit lower bounds from the
derandomization of MA

If NEXP ⊂P/poly, then NEXP = MA

EXP ⊂P/poly implies EXP=AM, so it sufficient to prove that
NEXP ⊂ P/poly implies NEXP=EXP .

Use generator EASY again to search for NEXP-witnesses. If the
generator succeeds for every language L∈NEXP then NEXP=EXP.
Otherwise argue that EASY must succeed.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

