
dimitris myrisiotis

• input
• 3 sets

• boys, girls, homes

• 𝑛 elements in each

• 𝑚 preferences
• (𝑏𝑜𝑦, 𝑔𝑖𝑟𝑙, ℎ𝑜𝑚𝑒)

• can be viewed as a graph

• output
• yes

• if there exists a set of 𝑛 triplets (𝑏𝑜𝑦, 𝑔𝑖𝑟𝑙, ℎ𝑜𝑚𝑒)

such that, every triplet has unique elements

• no
• otherwise

that decomposes to 𝐾3 graphs

bg

h

b

g

h

g

b

h

g b

h

• input
• 3 sets

• boys, girls, homes

• 𝑛 elements in each

• 𝑚 preferences
• (𝑏𝑜𝑦, 𝑔𝑖𝑟𝑙, ℎ𝑜𝑚𝑒)

• can be viewed as a graph

• output
• yes

• if there exists a set of 𝑛 triplets (𝑏𝑜𝑦, 𝑔𝑖𝑟𝑙, ℎ𝑜𝑚𝑒)

such that, every triplet has unique elements

• no
• otherwise

that decomposes to 𝐾3 graphs

bg

h

b

g

h

g

b

h

g b

h

• why?
• 3d matching ∈ 𝐍𝐏

• 3sat ≤ 3d matching

• 3sat is 𝐍𝐏-complete

• reduction R
• input

• a CNF formula

• output
• a graph

𝑥1⋁¬𝑥2⋁ 𝑥3 ⋀ ¬𝑥1⋁¬𝑥6⋁𝑥3 ⋀…⋀ ¬𝑥8⋁¬𝑥5⋁𝑥7

reduction R
3d matching

algorithm
CNF formula graph yes/ no

3sat algorithm

• input
• CNF formula

• variables 𝑥1, 𝑥2, …, 𝑥𝑛

• output
• graph

• for each variable

one gadget

…

𝑥𝑛𝑥2𝑥1 …

• gadget for 𝑥𝑖

ℎ1,𝑖

𝑔1,𝑖

ℎ4,𝑖

ℎ3,𝑖

ℎ2,𝑖

𝑔2,𝑖 𝑏2,𝑖

𝑏1,𝑖
boy

home

girl

home

home

home

boygirl

• gadget for 𝑥𝑖

ℎ1,𝑖

𝑔1,𝑖

ℎ4,𝑖

ℎ3,𝑖

ℎ2,𝑖

𝑔2,𝑖 𝑏2,𝑖

𝑏1,𝑖

they appear only here

they appear in other gadgets, too

ℎ∎,𝒊 ≡ ℎ∎,𝒋

𝑔∎,𝒊 ≢ 𝑔∎,𝒋

𝑏∎,𝒊 ≢ 𝑏∎,𝒋

• gadget for 𝑥𝑖
• on/ off behavior

ℎ1,𝑖

ℎ4,𝑖

ℎ3,𝑖

ℎ2,𝑖

𝑔1,𝑖

𝑔2,𝑖 𝑏2,𝑖

𝑏1,𝑖

• gadget for 𝑥𝑖
• on/ off behavior

ℎ1,𝑖

ℎ4,𝑖

ℎ3,𝑖

ℎ2,𝑖

𝑥𝑖 = 0

𝑥𝑖 = 1

𝑔1,𝑖

𝑔2,𝑖 𝑏2,𝑖

𝑏1,𝑖

• after we apply the 3d matching algorithm

…

𝑥1 = 0 … 𝑥𝑛 = 0𝑥2 = 1

• what about the clauses?

• for clause 𝑐 = 𝑥𝑖⋁¬𝑥𝑗⋁𝑥𝑘
• introduce a new 𝑏𝑜𝑦 and a new 𝑔𝑖𝑟𝑙,

• 𝑏𝑐 and 𝑔𝑐
• relate the clause to three triplets

• (𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑖)

• (𝑏𝑐 , 𝑔𝑐 , ℎ2,𝑗)

• (𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑘)

• 𝑐 = 1 if and only if
𝑥𝑖 = 1 or,
𝑥𝑗 = 0 or,
𝑥𝑘 = 1

(𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑖)

(𝑏𝑐 , 𝑔𝑐 , ℎ2,𝑗)

(𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑘)

• what about the clauses?
• clause 𝑐 = 𝑥𝑖⋁¬𝑥𝑗⋁𝑥𝑘
• three triplets

• (𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑖)

• (𝑏𝑐 , 𝑔𝑐 , ℎ2,𝑗)

• (𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑘)

ℎ1,𝑖

𝑔1,𝑖

ℎ4,𝑖

ℎ3,𝑖

ℎ2,𝑖

𝑔2,𝑖 𝑏2,𝑖

𝑏1,𝑖

empty!

(𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑖)

𝑥𝑖 = 1

𝑏𝑐, 𝑔𝑐

• what about the clauses?
• clause 𝑐 = 𝑥𝑖⋁¬𝑥𝑗⋁𝑥𝑘
• three triplets

• (𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑖)

• (𝑏𝑐 , 𝑔𝑐 , ℎ2,𝑗)

• (𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑘)

ℎ1,𝑖

𝑔1,𝑖

ℎ4,𝑖

ℎ3,𝑖

ℎ2,𝑖

𝑔2,𝑖 𝑏2,𝑖

𝑏1,𝑖

occupied!

(𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑖)

𝑥𝑖 = 0

• what about clauses?
• clause 𝑐 = 𝑥𝑖⋁¬𝑥𝑗⋁𝑥𝑘
• three triplets

• (𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑖)

• (𝑏𝑐 , 𝑔𝑐 , ℎ2,𝑗)

• (𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑘)

ℎ1,𝑗

𝑔1,𝑗

ℎ4,𝑗

ℎ3,𝑗

ℎ2,𝑗

𝑔2,𝑗 𝑏2,𝑗

𝑏1,𝑗

empty!

(𝑏𝑐 , 𝑔𝑐 , ℎ2,𝑗)

𝑥𝑗 = 0
𝑏𝑐, 𝑔𝑐

• what about clauses?
• clause 𝑐 = 𝑥𝑖⋁¬𝑥𝑗⋁𝑥𝑘
• three triplets

• (𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑖)

• (𝑏𝑐 , 𝑔𝑐 , ℎ2,𝑗)

• (𝑏𝑐 , 𝑔𝑐 , ℎ1,𝑘)

ℎ1,𝑗

𝑔1,𝑗

ℎ4,𝑗

ℎ3,𝑗

ℎ2,𝑗

𝑔2,𝑗 𝑏2,𝑗

𝑏1,𝑗

occupied!

(𝑏𝑐 , 𝑔𝑐 , ℎ2,𝑗)

𝑥𝑗 = 1

• graph

…

𝑥1 = 0 … 𝑥𝑛 = 0𝑥2 = 1

𝑔1,1

𝑔2,1

𝑏1,1

• input
• a set of 𝑛 items, 𝑆

• each has a weight, 𝑤𝑖
• each has a value, 𝑣𝑖

• a number 𝑊
• the maximum weight we can lift

• a number 𝐾
• the minimum value that satisfies us

• output
• yes

• if there is a subset of 𝑆 that weights at most 𝑊 and its value is at least 𝐾

• no
• otherwise

• input

• a set of integers 𝑆

• a number 𝑊

• output

• yes

• if there is a subset of 𝑆 that adds up to 𝑊

• no

• otherwise

subset-sum!

• why?
• knapsack ∈ 𝐍𝐏
• exact cover by 3-sets ≤ knapsack
• exact cover by 3-sets is 𝐍𝐏-complete

• exact cover by 3-sets
• input

• a set 𝑈, 𝑈 = 3𝑚
• a collection 𝐹 of 𝑛 subsets of 𝑈

• each subset contains 3 elements

• output
• yes

• if there are 𝑚 sets in 𝐹 that are disjoint and have 𝑈 as their union

• no
• otherwise

𝑈

• why?
• knapsack ∈ 𝐍𝐏
• exact cover by 3-sets ≤ knapsack
• exact cover by 3-sets is 𝐍𝐏-complete

• exact cover by 3-sets
• input

• a set 𝑈, 𝑈 = 3𝑚
• a collection 𝐹 of 𝑛 subsets of 𝑈

• each subset contains 3 elements

• output
• yes

• if there are 𝑚 sets in 𝐹 that are disjoint and have 𝑈 as their union

• no
• otherwise

𝑠5

𝑠3

𝑠6

𝑠2

𝑠4

𝑠1

𝑈

• 𝑖𝑛𝑝𝑢𝑡(exact cover by 3 − sets) → 𝑖𝑛𝑝𝑢𝑡(knapsack)

• subset collection 𝐹 becomes,

• 𝐹′

• 𝐹′ is a collection of 𝑛 strings of {0,1}3𝑚

• each respective to a subset of 𝐹

• 0𝟏𝟏00𝟏 is respective to the subset that contains the 𝟐𝒏𝒅, the 𝟑𝒓𝒅 and the 𝒍𝒂𝒔𝒕 element of 𝑈,

if 𝑈 is a 6-element set

• set union becomes,

• number addition

• solve knapsack,

• for set 𝐹′ and for number 𝑊 = 23𝑚 − 1

• 𝑚 subsets that cover 𝑈 →𝑚 numbers that add up to 23𝑚 − 1

• number 23𝑚 − 1↔ string 13𝑚 = 11111…1

• but, there is a bug!

• 𝑈 = {1,2,3,4}

{3,4}, {2,4}, {2,3,4}

0011 + 0101 + 0111 = 1111

3,4 ∪ 2,4 ∪ 2,3,4 = {2,3,4} ≠ {1,2,3,4}

change

representation

base to

3 ∙ 𝑚 + 1

• solving knapsack
• via dynamic programming

• using this,
𝑉 𝑤, 𝑖 + 1 = max 𝑉 𝑤, 𝑖 , 𝑣𝑖+1 + 𝑉 𝑤 − 𝑤𝑖+1, 𝑖

0 ≤ 𝑤 ≤ 𝑊, 0 ≤ 𝑖 ≤ 𝑛

• Also 𝑉 𝑤, 0 = 0, ∀𝑤

𝑉(𝑤, 𝑖)

𝑜𝑢𝑡𝑝𝑢𝑡

𝑊

𝑛

𝑛 ∙ 𝑊

• 𝑉 𝑤, 𝑖 + 1 = max 𝑉 𝑤, 𝑖 , 𝑣𝑖+1 + 𝑉 𝑤 − 𝑤𝑖+1, 𝑖

𝑉 𝑤, 𝑖 =

maximumattainable value using 𝑖 items that weight at most 𝑤

• what happens at the end?

• 𝑉 𝑊, 𝑛 = max 𝑉 𝑊, 𝑛 − 1 , 𝑣𝑛 + 𝑉 𝑊 −𝑤𝑛, 𝑛 − 1

• item 𝑛 is not chosen

𝑉 𝑊, 𝑛 = 𝑉 𝑊, 𝑛 − 1

• item 𝑛 is chosen

𝑉 𝑊, 𝑛 = 𝑣𝑛 + 𝑉 𝑊 −𝑤𝑛, 𝑛 − 1

𝑛𝑡ℎ

?

• so, we can solve knapsack in 𝑛 ∙ 𝑊 steps

• but, is 𝑛 ∙ 𝑊 polynomial time?
• actually, no

• input
• 𝑛 + 1 numbers: 𝑖𝑡𝑒𝑚1, 𝑖𝑡𝑒𝑚2, … , 𝑖𝑡𝑒𝑚𝑛 and 𝑊

• input size
• log(𝑖𝑡𝑒𝑚1) + log(𝑖𝑡𝑒𝑚2) + ⋯+ log(𝑖𝑡𝑒𝑚𝑛) + log𝑊

• log(𝑖𝑡𝑒𝑚1) = log(𝑖𝑡𝑒𝑚2) = ⋯ = log(𝑖𝑡𝑒𝑚𝑛) = log𝑊

• input size
𝑛 + 1 ∙ log𝑊 = 𝛩 𝑛 ∙ log𝑊

• complexity as a function of the input size 𝑛 ∙ 𝑊 = 𝑛 ∙ 2log𝑊

• so, we can solve knapsack in 𝑛 ∙ 𝑊 steps

• input size
𝛩 𝑛 ∙ log𝑊

• complexity as a function of the input size 𝑛 ∙ 2log𝑊

• increase in 𝑛
• more items in the set 𝑆

• linear increase in performance cost

• increase in log𝑊
• more representation bits

• exponential increase in performance cost!

• strongly 𝐍𝐏-complete problems

• the problems that remain 𝐍𝐏-complete even if

∀instance, ∀number ∶

number ∈ instance → number ≤ poly(size instance)

where,

size ∎ = # of representation bits of ∎

• knapsack is not strongly 𝐍𝐏-complete

• we created 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 numbers in its reduction

• bin packing is strongly 𝐍𝐏-complete!

• input
• a set of 𝑛 integers, 𝑆

• a set of items

• an integer 𝐵
• bins

• an integer 𝐶
• bin capacity

• output
• yes

• if 𝑆 can be partitioned into 𝐵 subsets such that, the total sum of each subset is at most 𝐶

• no
• otherwise

𝑏1 𝑏𝐵𝑏2

…

𝑆

• why?

• bin packing ∈ 𝐍𝐏

• 3d matching ≤ bin packing

• 3d matching is 𝐍𝐏-complete

• the numbers that we create for our reduction are at most,

(size input)4

• 𝑖𝑛𝑝𝑢𝑡(3d matching) → 𝑖𝑛𝑝𝑢𝑡(bin packing)

• 𝑖𝑛𝑝𝑢𝑡 3d matching

• 𝑛 boys, 𝑛 girls, 𝑛 homes and 𝑚 triplets

• 𝑖𝑛𝑝𝑢𝑡(bin packing)

• 𝑚 bins

• 4𝑚 items

• one for each triplet

• one for each boy, girl or home occurrence in the triplets

• what are the 4𝑚 items?
• 𝑏𝑖 𝑞

• 𝑏2 5 → 5𝑡ℎ occurrence of boy 𝑏2

• 𝑔𝑗[𝑞]
• girl occurrences

• ℎ𝑘[𝑞]
• home occurrences

• 𝑡𝑙

• triplet occurrences

• each triplet appears only once!

𝑚 triplets
𝑚 boy occurrences
𝑚 girl occurrences
𝑚 home occurrences

• what are the item sizes?

item size

𝑏𝑖[1] 10𝑀4 + 𝑖𝑀 + 1

𝑏𝑖[𝑞] 11𝑀4 + 𝑖𝑀 + 1

𝑔𝑗[1] 10𝑀4 + 𝑗𝑀2 + 2

𝑔𝑗[𝑞] 11𝑀4 + 𝑗𝑀2 + 2

ℎ𝑘[1] 10𝑀4 + 𝑘𝑀3 + 4

ℎ𝑘[𝑞] 8𝑀4 + 𝑘𝑀3 + 4

𝑡𝑙 = (𝑏𝑖 , 𝑔𝑗 , ℎ𝑘) 10𝑀4 + 8 − 𝑖𝑀 − 𝑗𝑀2 − 𝑘𝑀3

• 𝑏𝑖𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐶 = 40𝑀4 + 15

first occurrence

first occurrence

first occurrence

𝑀 = 𝛩(𝑛)

• suppose there is a way to fit these items into 𝑚 bins,

then,

• there is 3d matching in the sets of boys, girls and homes!

• we have that,

• each bin is full

• each bin contains exactly 4 items

• a triplet and,

• its 3 respective elements (𝑏, 𝑔, ℎ)

• these 3 respective elements are either 𝑎𝑙𝑙 first occurrences or,

𝑛𝑜𝑛𝑒 is a first occurrence

• the bins that contain the first occurrences compose a 3d matching

• because 𝑜𝑛𝑙𝑦 these bins have 𝑢𝑛𝑖𝑞𝑢𝑒 elements!

!

• some questions

• why are the bins full?

• why each bin contains 4 elements?

• why each bin contains a triple, a boy, a girl and a home?

• why each triple is contained in a common bin with its 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 boy, girl and

home?

• why in each bin the 𝑏𝑜𝑦 − 𝑔𝑖𝑟𝑙 − ℎ𝑜𝑚𝑒 items are either all first occurrences

or none is a first occurrence?

• why are all the bins full?

𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑚 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑚 ∙ 𝑏𝑖𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

• 𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑚 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝒃𝒐𝒚𝒔 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 + 𝒈𝒊𝒓𝒍𝒔 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 +

𝒉𝒐𝒎𝒆𝒔 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 + 𝒕𝒓𝒊𝒑𝒍𝒆𝒕𝒔 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒

• 𝑏𝑜𝑦𝑠 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒(𝑏𝑖 𝑗)

• similarly for girls, homes and triplets

• we supposed that the items fit in the bins

• so, every bin is full!

• why each bin contains 4 elements?

because each item has

size ~
1

4
∙ (𝑏𝑖𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)

• why each bin contains a triple, a boy, a girl and a home?
• triplet (𝑏𝑖 , 𝑔𝑗 , ℎ𝑘)

• 𝑏𝑖[1]

• 𝒃𝑗[1]

• ℎ𝑘[1]

• 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 =

10𝑀4 + 8 − 𝑖𝑀 − 𝑗𝑀2 − 𝑘𝑀3 + 10𝑀4 + 𝑖𝑀 + 1 +

+ 10𝑀4 + 𝑗𝑴 + 𝟏 + 10𝑀4 + 𝑘𝑀3 + 4

= (10𝑀4 + 10𝑀4 + 10𝑀4 + 10𝑀4) + (𝑖𝑀 − 𝑖𝑀) + (𝑗𝑴 − 𝑗𝑀2) + (𝑘𝑀3 − 𝑘𝑀3) +

8 + 1 + 𝟏 + 4 = 40𝑀4 + 𝟏𝟒 + 𝑗𝑴 − 𝑗𝑀2 ≠ 𝐶

two boys 𝐶 = 40𝑀4 + 15

• why each triple is contained in a common bin with its 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 boy, girl
and home?
• triplet (𝑏𝑖 , 𝑔𝑗 , ℎ𝑘)

• 𝑏𝑖[𝑞]

• 𝑔𝒇[𝑞′]

• ℎ𝑘[𝑞′′]

• 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 =

10𝑀4 + 8 − 𝑖𝑀 − 𝑗𝑀2 − 𝑘𝑀3 + 11𝑀4 + 𝑖𝑀 + 1 +

+ 11𝑀4 + 𝒇𝑀2 + 2 + 8𝑀4 + 𝑘𝑀3 + 4

= (10𝑀4 + 11𝑀4 + 11𝑀4 + 8𝑀4) + (𝑖𝑀 − 𝑖𝑀) + (𝒇𝑀2 − 𝑗𝑀2) + (𝑘𝑀3 − 𝑘𝑀3) +

8 + 1 + 2 + 4

= 40𝑀4 + 15 + 𝒇𝑀2 − 𝑗𝑀2 ≠ 𝐶

mismatched girl
𝐶 = 40𝑀4 + 15

• why, in each bin, the 𝑏𝑜𝑦−𝑔𝑖𝑟𝑙−ℎ𝑜𝑚𝑒 items are either all first
occurrences or none is a first occurrence?
• triplet (𝑏𝑖 , 𝑔𝑗 , ℎ𝑘)

• 𝑏𝑖[1]

• 𝑔𝑗[1]

• ℎ𝑘[1]

• 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 =

10𝑀4 + 8 − 𝑖𝑀 − 𝑗𝑀2 − 𝑘𝑀3 + 10𝑀4 + 𝑖𝑀 + 1 +

+ 10𝑀4 + 𝑗𝑀2 + 2 + 10𝑀4 + 𝑘𝑀3 + 4

= (10𝑀4 + 10𝑀4 + 10𝑀4 + 10𝑀4) + (𝑖𝑀 − 𝑖𝑀) + (𝑗𝑀2 − 𝑗𝑀2) + (𝑘𝑀3 − 𝑘𝑀3) +

8 + 1 + 2 + 4 = 40𝑀4 + 15 = 𝐶

first occurrences
𝐶 = 40𝑀4 + 15

• why, in each bin, the 𝑏𝑜𝑦−𝑔𝑖𝑟𝑙−ℎ𝑜𝑚𝑒 items are either all first occurrences
or none is a first occurrence?
• triplet (𝑏𝑖 , 𝑔𝑗 , ℎ𝑘)

• 𝑏𝑖[𝑞]

• 𝑔𝑗[𝑞′]

• ℎ𝑘[𝑞′′]

• 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 =

10𝑀4 + 8 − 𝑖𝑀 − 𝑗𝑀2 − 𝑘𝑀3 + 11𝑀4 + 𝑖𝑀 + 1 +

+ 11𝑀4 + 𝑗𝑀2 + 2 + 8𝑀4 + 𝑘𝑀3 + 4

= (10𝑀4 + 11𝑀4 + 11𝑀4 + 8𝑀4) + (𝑖𝑀 − 𝑖𝑀) + (𝑗𝑀2 − 𝑗𝑀2) + (𝑘𝑀3 − 𝑘𝑀3) +

8 + 1 + 2 + 4

= 40𝑀4 + 15 = 𝐶

𝑛𝑜𝑛 − 𝑓𝑖𝑟𝑠𝑡 occurrences
𝐶 = 40𝑀4 + 15

• why, in each bin, the 𝑏𝑜𝑦−𝑔𝑖𝑟𝑙−ℎ𝑜𝑚𝑒 items are either all first occurrences
or none is a first occurrence?
• triplet (𝑏𝑖 , 𝑔𝑗 , ℎ𝑘)

• 𝑏𝑖[𝑞]

• 𝑔𝑗[𝟏]

• ℎ𝑘[𝑞′′]

• 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 =

10𝑀4 + 8 − 𝑖𝑀 − 𝑗𝑀2 − 𝑘𝑀3 + 11𝑀4 + 𝑖𝑀 + 1 +

+ 𝟏𝟎𝑀4 + 𝑗𝑀2 + 2 + 8𝑀4 + 𝑘𝑀3 + 4

= (10𝑀4 + 11𝑀4 + 𝟏𝟎𝑀4 + 8𝑀4) + (𝑖𝑀 − 𝑖𝑀) + (𝑗𝑀2 − 𝑗𝑀2) + (𝑘𝑀3 − 𝑘𝑀3) +

8 + 1 + 2 + 4

= 𝟑𝟗𝑀4 + 15 ≠ 𝐶

mixed occurrences 𝐶 = 40𝑀4 + 15

• if we had a pseudo-polynomial algorithm for bin packing,

then,

• we would have a polynomial algorithm for it!

because,

the numbers that emerged in the reduction from 3d matching to bin packing

are 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 in the input length

• and, since bin packing is strongly 𝐍𝐏-complete, we would get,

𝐏 = 𝐍𝐏

𝑀4 = 𝛩(𝑛4)

thank you!

