3d matching knapsack

pseudo-polynomial algorithms \& strong np completeness
dimitris myrisiotis

3d matching

3d matching

- input
- 3 sets
- boys, girls, homes
- n elements in each
- m preferences
- (boy,girl,home)
- can be viewed as a graph
- output
- yes
- if there exists a set of n triplets (boy, girl, home) such that, every triplet has unique elements
- no
- otherwise

that decomposes to K_{3} graphs

3d matching

- input
- 3 sets
- boys, girls, homes
- n elements in each
- m preferences
- (boy,girl,home)
- can be viewed as a graph
- output
- yes
- if there exists a set of n triplets (boy, girl, home) such that, every triplet has unique elements
- no
- otherwise

3d matching is np complete

- why?
- 3d matching \in NP
- 3sat) $\leq 3 d$ matching
- 3sat is NP-complete
- reduction R
- input
- a CNF formula
- output
- a graph

$$
\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{6} \vee x_{3}\right) \wedge \ldots \wedge\left(\neg x_{8} \vee \neg x_{5} \vee x_{7}\right)
$$

3d matching is np complete

3sat algorithm

3sat $\leq 3 d$ matching

- input
- CNF formula
- variables $x_{1}, x_{2}, \ldots, x_{n}$
- output
- graph
- for each variable

3sat \leq 3d matching

- gadget for x_{i}

3sat $\leq 3 d$ matching

$$
h_{1, i}
$$

3sat \leq 3d matching

- gadget for x_{i}
- on/ off behavior

3sat \leq 3d matching

- gadget for x_{i}
- on/ off behavior

3sat \leq 3d matching

- after we apply the 3d matching algorithm

$$
x_{1}=0 \quad x_{2}=1 \quad \ldots \quad x_{n}=0
$$

3sat \leq Sd matching

- what about the clauses?
- for clause $c=\left(x_{i} \vee \neg x_{j} \vee x_{k}\right)$
- introduce a new boy and a new girl,
- b_{c} and g_{c}
- relate the clause to three triplets
- $\left(b_{c}, g_{c}, h_{1, i}\right)$
- $\left(b_{c}, g_{c}, h_{2, j}\right)$
- $\left(b_{c}, g_{c}, h_{1, k}\right)$
- $c=1$ if and only if

$$
\begin{aligned}
& x_{i}=1 \text { or } \\
& x_{j}=0 \text { or } \\
& x_{k}=1
\end{aligned}
$$

$$
\left(b_{c}, g_{c}, h_{1, i}\right)
$$

$\left(b_{c}, g_{c}, h_{2, j}\right)$
$\left(b_{c}, g_{c}, h_{1, k}\right)$

3sat \leq 3d matching $b_{b_{c}, g_{c}} \Rightarrow h_{1, i}$ empty

- what about the clauses?
- clause $\left.\left.c=x_{i}\right)^{\prime} \neg x_{j} \vee x_{k}\right)$
- three triplets
- $\left(b_{c}, g_{c}, h_{1, i}\right)$
- $\left(b_{c}, g_{c}, h_{2, j}\right)$
- $\left(b_{c}, g_{c}, h_{1, k}\right)$

$$
x_{i}=1
$$

$$
\left(b_{c}, g_{c}, h_{1, i}\right)
$$

3sat \leq 3d matching

What tipo $x_{i}=0$?

$$
\left(b_{c}, g_{c}, h_{1, i}\right)
$$

3sat \leq 3d matching

- what about clauses?
- clause $c=\left(x_{i} \backslash \neg x_{j} / x_{k}\right)$
- three triplets
- $\left(b_{c}, g_{c}, h_{1, i}\right)$
- $\left(b_{c}, g_{c}, h_{2, j}\right)$
- $\left(b_{c}, g_{c}, h_{1, k}\right)$

$$
x_{j}=0
$$

$$
\left(b_{c}, g_{c}, h_{2, j}\right)
$$

3sat \leq Sd matching $\quad h_{1, j}$

- what about clauses?
- clause $c=\left(x_{i} \backslash \neg x_{j} / x_{k}\right)$
- three triplets
- $\left(b_{c}, g_{c}, h_{1, i}\right)$
- $\left(b_{c}, g_{c}, h_{2, j}\right)$
- $\left(b_{c}, g_{c}, h_{1, k}\right)$

$$
\begin{aligned}
\text { what foo } & x_{j}=1 \text { ? } \\
& \left(b_{c}, g_{c}, h_{2, j}\right)
\end{aligned}
$$

3sat \leq 3d matching

- graph

$$
x_{1}=0
$$

$$
x_{2}=1
$$

$$
x_{n}=0
$$

knapsack

knapsack

- input
- a set of n items, S
- each has a weight, w_{i}
- each has a value, v_{i}
- a number W
- the maximum weight we can lift
- a number K
- the minimum value that satisfies us
- output

- yes
- if there is a subset of S that weights at most W and its value is at least K
- no
- otherwise

knapsack (special case)

- input
- a set of integers S
- a number W
- output
- yes
- if there is a subset of S that adds up to W
- no
- otherwise

knapsack (special case) is np complete

- why?
- knapsack \in NP
- exact cover by 3 -sets \leq knapsack
- exact cover by 3 -sets is NP-complete
- exact cover by 3-sets
- input
- a set $U,|U|=3 m$
- a collection F of n subsets of U
- each subset contains 3 elements

- output
- yes
- if there are m sets in F that are disjoint and have U as their union
- no
- otherwise

knapsack (special case) is inp complete

- why?
- knapsack \in NP
- exact cover by 3 -sets \leq knapsack
- exact cover by 3-sets is NP-complete
- exact cover by 3-sets
- input
- a set $U,|U|=3 m$
- a collection F of n subsets of U
- each subset contains 3 elements

- output
- yes
- if there are m sets in F that are disjoint and have U as their union
- no
- otherwise

exact cover by 3-sets \leq knapsack

- input(exact cover by 3 - sets) \rightarrow input(knapsack)
- subset collection F becomes,
- F^{\prime}
- F^{\prime} is a collection of n strings of $\{0,1\}^{3 m}$
- each respective to a subset of F
- 011001 is respective to the subset that contains the $2^{n d}$, the $3^{\text {rd }}$ and the last element of U, if U is a 6-element set
- set union becomes,
- number addition

exact cover by 3 -sets $\leq k n a p s a c k$

- solve knapsack,
- for set F^{\prime} and for number $W=2^{3 m}-1$
- m subsets that cover $U \rightarrow m$ numbers that add up to $2^{3 m}-1$
- number $2^{3 m}-1 \leftrightarrow$ string $1^{3 m}=11111 \ldots 1$
- but, there is a bug!
- $U=\{1,2,3,4\}$

$$
\begin{aligned}
& \{3,4\},\{2,4\},\{2,3,4\} \\
& 0011+0101+0111=1111 \\
& \{3,4\} \cup\{2,4\} \cup\{2,3,4\}=\{2,3,4\} \neq\{1,2,3,4\}
\end{aligned}
$$

change

representation

base to

$3 \cdot m+1$

pseudo-polynomial algorithms

pseudo-polynomial algorithms

- solving knapsack
- via dynamic programming
- using this,

$$
V(w, i+1)=\max \left\{V(w, i), v_{i+1}+V\left(w-w_{i+1}, i\right)\right\}
$$

$0 \leq w \leq W, 0 \leq i \leq n$

- Also $V(w, 0)=0, \forall w$

pseudo-polynomial algorithms, solving knapsack

- $V(w, i+1)=\max \left\{V(w, i), v_{i+1}+V\left(w-w_{i+1}, i\right)\right\}$
$V(w, i)=$
maximum attainable value using i items that weight at most w
- what happens at the end?

$$
V(W, n)=v_{n}+V\left(W-w_{n}, n-1\right)
$$

pseudo-polynomial algorithms

- so, we can solve knapsack in $n \cdot W$ steps
- but, is $n \cdot W$ polynomial time?
- actually, no
- input
- $n+1$ numbers: item $_{1}$, item $_{2}, \ldots$, item $_{n}$ and W
- input size
- $\log \left(\right.$ item $\left._{1}\right)+\log \left(\right.$ item $\left._{2}\right)+\cdots+\log \left(\right.$ item $\left._{n}\right)+\log W$
- $\log \left(\right.$ item $\left._{1}\right)=\log \left(\right.$ item $\left._{2}\right)=\cdots=\log \left(\right.$ item $\left._{n}\right)=\log W$
- input size

$$
(n+1) \cdot \log W=\Theta(n \cdot \log W)
$$

- complexity as a function of the input size $n \cdot W=n \cdot 2^{\log W}$

pseudo-polynomial algorithms

- so, we can solve knapsack in $n \cdot W$ steps
- input size

$$
\theta(n \cdot \log W)
$$

- complexity as a function of the input size $n \cdot 2^{\log W}$
- increase in n
- more items in the set S
- linear increase in performance cost
- increase in $\log W$
- more representation bits
- exponential increase in performance cost!

strong np-completeness

strong np completeness

- strongly NP-complete problems
- the problems that remain NP-complete even if
\forall instance, \forall number :

$$
\text { number } \in \text { instance } \rightarrow \text { number } \leq \text { poly (size (instance)) }
$$

where,

$$
\operatorname{size}(\boldsymbol{■})=\# \text { of representation bits of } ■
$$

- knapsack is not strongly NP-complete
- we created exponentially large numbers in its reduction
- bin packing is strongly NP-complete!
bin packing

biin packing

- input
- a set of n integers, S
- a set of items
- an integer B
- bins
- an integer C
- bin capacity
- output
- yes
- if S can be partitioned into B subsets such that, the total sum of each subset is at most C
- no
- otherwise

bin packing is strongly np complete

- why?
- bin packing $\in \mathbf{N P}$
- 3d matching \leq bin packing
- 3d matching is NP-complete
- the numbers that we create for our reduction are at most,

$$
(\operatorname{size}(\text { input }))^{4}
$$

3d matching \leq bin packing

- input(3d matching) \rightarrow input(bin packing)
- input(3d matching)
- n boys, n girls, n homes and m triplets
- input(bin packing)
- m bins
- $4 m$ items
- one for each triplet
- one for each boy, girl or home occurrence in the triplets

3d matching \leq bin packing

- what are the $4 m$ items?
- $b_{i}[q]$
- $b_{2}[5] \rightarrow 5^{\text {th }}$ occurrence of boy b_{2}

m triplets
 m boy occurrences m girl occurrences m home occurrences

- $g_{j}[q]$
- girl occurrences
- $h_{k}[q]$
- home occurrences
- t_{l}
- triplet occurrences
- each triplet appears only once!

3d matching \leq bin packing

- what are the item sizes?

$$
M=\Theta(n)
$$

	item	size
first occurrence	$b_{i}[1]$	$10 M^{4}+i M+1$
	$b_{i}[q]$	$11 M^{4}+i M+1$
first occurrence	$g_{j}[1]$	$10 M^{4}+j M^{2}+2$
	$g_{j}[q]$	$11 M^{4}+j M^{2}+2$
first occurrence	$h_{k}[1]$	$10 M^{4}+k M^{3}+4$
	$h_{k}[q]$	$8 M^{4}+k M^{3}+4$
	$t_{l}=\left(b_{i}, g_{j}, h_{k}\right)$	$10 M^{4}+8-i M-j M^{2}-k M^{3}$

- bin capacity $=C=40 M^{4}+15$

3d matching \leq bin packing

- suppose there is a way to fit these items into m bins, then,
- there is 3 d matching in the sets of boys, girls and homes!

Why?

3d matching \leq bin packing

- we have that,
- each bin is full
- each bin contains exactly 4 items
- a triplet and,
- its 3 respective elements (b, g, h)
- these 3 respective elements are either all first occurrences or, none is a first occurrence
- the bins that contain the first occurrences compose a 3d matching
- because only these bins have unique elements!

3d matching \leq bin packing

- some questions
- why are the bins full?
- why each bin contains 4 elements?
- why each bin contains a triple, a boy, a girl and a home?
- why each triple is contained in a common bin with its respective boy, girl and home?
- why in each bin the boy - girl - home items are either all first occurrences or none is a first occurrence?

3d matching \leq bin packing

- why are all the bins full?
total item weight $=m \cdot$ bin capacity $=$ total capacity
- total item weight $=$ boys total size + girls total size + homes total size + triplets total size
- boys total size $=\sum \sum \operatorname{size}\left(b_{i}[j]\right)$
- similarly for girls, homes and triplets
- we supposed that the items fit in the bins
- so, every bin is full!

3d matching \leq bin packing

- why each bin contains 4 elements?

$$
\begin{gathered}
\text { because each item has } \\
\text { size } \sim \frac{1}{4} \cdot(\text { bin capacity })
\end{gathered}
$$

3d matching \leq bin packing

- why each bin contains a triple, a boy, a girl and a home?
- triplet $\left(b_{i}, g_{j}, h_{k}\right)$
- $b_{i}[1]$
- $b_{j}[1]$

```
two boys
```

$$
C=40 M^{4}+15
$$

- $h_{k}[1]$
- total size $=$

$$
\begin{aligned}
& \left(10 M^{4}+8-i M-j M^{2}-k M^{3}\right)+\left(10 M^{4}+i M+1\right)+ \\
& +\left(10 M^{4}+j M+1\right)+\left(10 M^{4}+k M^{3}+4\right) \\
& =\left(10 M^{4}+10 M^{4}+10 M^{4}+10 M^{4}\right)+(i M-i M)+\left(j M-j M^{2}\right)+\left(k M^{3}-k M^{3}\right)+ \\
& (8+1+1+4)=40 M^{4}+14+\left(j M-j M^{2}\right) \neq C
\end{aligned}
$$

3d matching \leq bin packing

- why each triple is contained in a common bin with its respective boy, girl and home?
- triplet $\left(b_{i}, g_{j}, h_{k}\right)$
- $b_{i}[q]$
- $g_{f}\left[q^{\prime}\right]$ mismatched girl
- $h_{k}\left[q^{\prime \prime}\right]$
- total size $=$

$$
\begin{aligned}
& \left(10 M^{4}+8-i M-j M^{2}-k M^{3}\right)+\left(11 M^{4}+i M+1\right)+ \\
& +\left(11 M^{4}+f M^{2}+2\right)+\left(8 M^{4}+k M^{3}+4\right) \\
& =\left(10 M^{4}+11 M^{4}+11 M^{4}+8 M^{4}\right)+(i M-i M)+\left(f M^{2}-j M^{2}\right)+\left(k M^{3}-k M^{3}\right)+ \\
& (8+1+2+4) \\
& =40 M^{4}+15+\left(f M^{2}-j M^{2}\right) \neq C
\end{aligned}
$$

3d matching \leq bin packing

- why, in each bin, the boy-girl-home items are either all first occurrences or none is a first occurrence?
- triplet $\left(b_{i}, g_{j}, h_{k}\right)$
- $b_{i}[1]$

$$
C=40 M^{4}+15
$$

- $g_{j}[1]$ first occurrences
- h_{k} [1]
- total size $=$

$$
\begin{aligned}
& \left(10 M^{4}+8-i M-j M^{2}-k M^{3}\right)+\left(10 M^{4}+i M+1\right)+ \\
& +\left(10 M^{4}+j M^{2}+2\right)+\left(10 M^{4}+k M^{3}+4\right) \\
& =\left(10 M^{4}+10 M^{4}+10 M^{4}+10 M^{4}\right)+(i M-i M)+\left(j M^{2}-j M^{2}\right)+\left(k M^{3}-k M^{3}\right)+ \\
& (8+1+2+4)=40 M^{4}+15=C
\end{aligned}
$$

3d matching \leq bin packing

- why, in each bin, the boy-girl-home items are either all first occurrences or none is a first occurrence?
- triplet $\left(b_{i}, g_{j}, h_{k}\right)$
- $b_{i}[q]$
- $g_{j}\left[q^{\prime}\right]$ non - first occurrences
- $h_{k}\left[q^{\prime \prime}\right]$
- total size $=$

$$
\begin{aligned}
& \left(10 M^{4}+8-i M-j M^{2}-k M^{3}\right)+\left(11 M^{4}+i M+1\right)+ \\
& +\left(11 M^{4}+j M^{2}+2\right)+\left(8 M^{4}+k M^{3}+4\right) \\
& =\left(10 M^{4}+11 M^{4}+11 M^{4}+8 M^{4}\right)+(i M-i M)+\left(j M^{2}-j M^{2}\right)+\left(k M^{3}-k M^{3}\right)+ \\
& (8+1+2+4) \\
& =40 M^{4}+15=C
\end{aligned}
$$

3d matching \leq bin packing

- why, in each bin, the boy-girl-home items are either all first occurrences or none is a first occurrence?
- triplet $\left(b_{i}, g_{j}, h_{k}\right)$
- $b_{i}[q]$
- $g_{j}[1]$
mixed occurrences
- $h_{k}\left[q^{\prime \prime}\right]$
- total size $=$

$$
\begin{aligned}
& \left(10 M^{4}+8-i M-j M^{2}-k M^{3}\right)+\left(11 M^{4}+i M+1\right)+ \\
& +\left(10 M^{4}+j M^{2}+2\right)+\left(8 M^{4}+k M^{3}+4\right) \\
& =\left(10 M^{4}+11 M^{4}+10 M^{4}+8 M^{4}\right)+(i M-i M)+\left(j M^{2}-j M^{2}\right)+\left(k M^{3}-k M^{3}\right)+ \\
& (8+1+2+4) \\
& =39 M^{4}+15 \neq C
\end{aligned}
$$

final remarks (on strong np completeness)

- if we had a pseudo-polynomial algorithm for bin packing, then,
- we would have a polynomial algorithm for it! because,

$$
M^{4}=\Theta\left(n^{4}\right)
$$

the numbers that emerged in the reduction from 3d matching to bin packing are polynomially large in the input length

- and, since bin packing is strongly NP-complete, we would get,

$$
\mathbf{P}=\mathbf{N P}
$$

thank you!

