3d matching knapsack pseudo-polynomial algorithms & strong np completeness dímítrís myrísíotís

3d matching

3d matching

• input

- 3 sets
 - boys, girls, homes
 - *n* elements in each
- *m* preferences
 - (boy, girl, home)
 - can be viewed as a graph

• output

- yes
 - if there exists a set of *n* triplets (*boy*, *girl*, *home*) such that, every triplet has unique elements

g

- no
 - otherwise

3d matching

• input

- 3 sets
 - boys, girls, homes
 - *n* elements in each
- *m* preferences
 - (boy, girl, home)
 - can be viewed as a graph

• output

- yes
 - if there exists a set of n triplets (boy, girl, home)
 such that, every triplet has unique elements

g

g

that decomposes to K_3 graphs

g

g

h

h

- no
 - otherwise

3d matching is np complete

- why?
 - 3d matching $\in \mathbf{NP}$
 - 3sat ≤ 3d matching
 - 3sat is NP-complete
- reduction R
 - input
 - a CNF formula
 - output
 - a graph

 $(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_6 \vee x_3) \wedge \dots \wedge (\neg x_8 \vee \neg x_5 \vee x_7)$

3d matching is np complete

- input
 - CNF formula
 - variables *x*₁, *x*₂, ..., *x*_n
- output
 - graph
 - for each variable

• after we apply the 3d matching algorithm

- what about the clauses?
- for clause $c = (x_i \vee \neg x_j \vee x_k)$
 - introduce a new *boy* and a new *girl*,
 - b_c and g_c
 - relate the clause to three triplets
 - $(b_c, g_c, h_{1,i})$
 - $(b_c, g_c, h_{2,j})$
 - $(b_c, g_c, h_{1,k})$
- c = 1 if and only if
 - $x_i = 1$ or, $x_j = 0$ or, $x_k = 1$

 $(b_c, g_c, h_{1,i})$

 $(b_c, g_c, h_{2,i})$

 $(b_c, g_c, h_{1,k})$

3sat \leq 3d matching $b_c, g_c \rightarrow h_{1,i}$ empty!

- what about the clauses?
 - clause $c = (x_i)' \neg x_j \lor x_k$
 - three triplets
 - $(b_c, g_c, h_{1,i})$
 - $(b_c, g_c, h_{2,j})$
 - $(b_c, g_c, h_{1,k})$

$$x_i = 1$$

($b_c, g_c, h_{1,i}$)

- what about the clauses?
 - clause $c = (x_i)' \neg x_j \lor x_k$

 $h_{4,i}$

- three triplets
 - $(b_c, g_c, h_{1,i})$
 - $(b_c, g_c, h_{2,j})$
 - $(b_c, g_c, h_{1,k})$

what if... $x_i = 0$? $(b_c, g_c, h_{1,i})$

- what about clauses?
 - clause $c = (x_i \setminus \neg x_j / x_k)$
 - three triplets
 - $(b_c, g_c, h_{1,i})$
 - $(b_c, g_c, h_{2,j})$
 - $(b_c, g_c, h_{1,k})$

$$x_j = 0$$

($b_c, g_c, h_{2,j}$)

- what about clauses?
 - clause $c = (x_i \setminus \neg x_j / x_k)$
 - three triplets
 - $(b_c, g_c, h_{1,i})$
 - $(b_c, g_c, h_{2,j})$
 - $(b_c, g_c, h_{1,k})$

what if...
$$x_j = 1$$
 ?
 $(b_c, g_c, h_{2,j})$

• graph

knapsack

• input

- a set of *n* items, *S*
 - each has a weight, w_i
 - each has a value, v_i
- a number *W*
 - the maximum weight we can lift
- a number *K*
 - the minimum value that satisfies us
- output
 - yes
 - if there is a subset of S that weights at most W and its value is at least K
 - no
 - otherwise

knapsack (special case)

- input
 - a set of integers *S*
 - a number W
- output
 - yes
 - if there is a subset of S that adds up to W
 - no
 - otherwise

knapsack (special case) is np complete

• why?

- knapsack $\in \mathbf{NP}$
- exact cover by 3-sets \leq knapsack
- exact cover by 3-sets is NP-complete
- exact cover by 3-sets
 - input
 - a set U, |U| = 3m
 - a collection *F* of *n* subsets of *U*
 - each subset contains 3 elements
 - output
 - yes
 - if there are *m* sets in *F* that are disjoint and have *U* as their union
 - no
 - otherwise

knapsack (special case) is np complete

• why?

- knapsack $\in \mathbf{NP}$
- exact cover by 3-sets \leq knapsack
- exact cover by 3-sets is NP-complete
- exact cover by 3-sets
 - input
 - a set U, |U| = 3m
 - a collection *F* of *n* subsets of *U*
 - each subset contains 3 elements
 - output
 - yes
 - if there are *m* sets in *F* that are disjoint and have *U* as their union
 - no
 - otherwise

exact cover by 3-sets \leq knapsack

- *input*(exact cover by 3 sets) \rightarrow *input*(knapsack)
 - subset collection F becomes,
 - *F*′
 - F' is a collection of n strings of $\{0,1\}^{3m}$
 - each respective to a subset of *F*
 - 011001 is respective to the subset that contains the 2^{nd} , the 3^{rd} and the *last* element of U, if U is a 6-element set
 - set union becomes,
 - number addition

exact cover by 3-sets \leq knapsack

- solve knapsack,
 - for set F' and for number $W = 2^{3m} 1$
 - *m* subsets that cover $U \rightarrow m$ numbers that add up to $2^{3m} 1$
 - number $2^{3m} 1 \leftrightarrow \text{string } 1^{3m} = 11111 \dots 1$
- but, there is a bug!
 - $U = \{1,2,3,4\}$ $\{3,4\}, \{2,4\}, \{2,3,4\}$ 0011 + 0101 + 0111 = 1111 $\{3,4\} \cup \{2,4\} \cup \{2,3,4\} = \{2,3,4\} \neq \{1,2,3,4\}$

change representation base to $3 \cdot m + 1$ pseudo-polynomial algorithms

pseudo-polynomial algorithms

- solving knapsack
 - via dynamic programming
 - using this,

$$V(w, i + 1) = \max\{V(w, i), v_{i+1} + V(w - w_{i+1}, i)\}$$

 $0 \le w \le W, 0 \le i \le n$

• Also $V(w, 0) = 0, \forall w$

pseudo-polynomial algorithms, solving knapsack

• $V(w, i + 1) = \max\{V(w, i), v_{i+1} + V(w - w_{i+1}, i)\}$ V(w, i) =

maximum attainable value using *i* items that weight at most *w*

- what happens at the end?
- $V(W, n) = \max\{V(W, n 1), v_n + V(W w_n, n 1)\}$
 - item *n* is not chosen

V(W,n) = V(W,n-1)

• item *n* is chosen

 $V(W,n) = v_n + V(W - w_n, n - 1)$

pseudo-polynomial algorithms

- so, we can solve knapsack in $n \cdot W$ steps
- but, is $n \cdot W$ polynomial time?
 - actually, no
 - input
 - n + 1 numbers: $item_1$, $item_2$, ..., $item_n$ and W
 - input size
 - $\log(item_1) + \log(item_2) + \dots + \log(item_n) + \log W$
 - $\log(item_1) = \log(item_2) = \dots = \log(item_n) = \log W$
 - input size

$$(n+1) \cdot \log W = \Theta(n \cdot \log W)$$

• complexity as a function of the input size $n \cdot W = n \cdot 2^{\log W}$

pseudo-polynomial algorithms

- so, we can solve knapsack in $n \cdot W$ steps
- input size

 $\Theta(n \cdot \log W)$

- complexity as a function of the input size $n \cdot 2^{\log W}$
- increase in *n*
 - more items in the set *S*
 - linear increase in performance cost
- increase in logW
 - more representation bits
 - exponential increase in performance cost!

strong np-completeness

strong np completeness

- strongly NP-complete problems
 - the problems that remain NP-complete even if

∀instance, ∀number :

number \in instance \rightarrow number \leq poly(size(instance))

where,

size(\blacksquare) = # of representation bits of \blacksquare

- knapsack is not strongly NP-complete
 - we created *exponentially large* numbers in its reduction
- bin packing is strongly NP-complete!

bin packing

bin packing

- input
 - a set of *n* integers, *S*
 - a set of items
 - an integer *B*
 - bins
 - an integer C
 - bin capacity
- output
 - yes
 - if S can be partitioned into B subsets such that, the total sum of each subset is at most C
 - no
 - otherwise

bin packing is strongly np complete

- why?
 - bin packing $\in NP$
 - 3d matching \leq bin packing
 - 3d matching is NP-complete
 - the numbers that we create for our reduction are at most,

 $(size(input))^4$

- $input(3d matching) \rightarrow input(bin packing)$
- *input*(3d matching)
 - *n* boys, *n* girls, *n* homes and *m* triplets
- *input*(bin packing)
 - m bins
 - 4*m* items
 - one for each triplet
 - one for each boy, girl or home occurrence in the triplets

- what are the 4*m* items?
 - *b_i*[*q*]
 - $b_2[5] \rightarrow 5^{th}$ occurrence of boy b_2
 - *g_j*[*q*]
 - girl occurrences
 - $h_k[q]$
 - home occurrences
 - t_l
 - triplet occurrences
 - each triplet appears only once!

m triplets*m* boy occurrences*m* girl occurrences*m* home occurrences

• what are the item sizes? $M = \Theta(n)$		
	item	size
first occu	rrence $b_i[1]$	$10M^4 + iM + 1$
	$b_i[q]$	$11M^4 + iM + 1$
first occu	rrence $g_j[1]$	$10M^4 + jM^2 + 2$
	$g_j[q]$	$11M^4 + jM^2 + 2$
first occu	rrence $h_k[1]$	$10M^4 + kM^3 + 4$
	$h_k[q]$	$8M^4 + kM^3 + 4$
	$t_l = (b_i, g_j, h_k)$	$10M^4 + 8 - iM - jM^2 - kM^3$

• *bin capacity* = $C = 40M^4 + 15$

• suppose there is a way to fit these items into *m* bins,

then,

• there is 3d matching in the sets of boys, girls and homes!

why?

- we have that,
 - each bin is full
 - each bin contains exactly 4 items
 - a triplet and,
 - its 3 respective elements (*b*, *g*, *h*)
 - these 3 respective elements are either *all* first occurrences or,

none is a first occurrence

- the bins that contain the first occurrences compose a 3d matching
- ng

• because *only* these bins have *unique* elements!

- some questions
 - why are the bins full?
 - why each bin contains 4 elements?
 - why each bin contains a triple, a boy, a girl and a home?
 - why each triple is contained in a common bin with its *respective* boy, girl and home?
 - why in each bin the boy girl home items are either all first occurrences
 or none is a first occurrence?

• why are all the bins full?

 $total item weight = m \cdot bin capacity = total capacity$

total item weight = boys total size + girls total size +

homes total size + *triplets* total size

- boys total size = $\sum \sum size(b_i[j])$
 - similarly for girls, homes and triplets
- we supposed that the items fit in the bins
 - so, every bin is full!

• why each bin contains 4 elements?

because each item has size ~ $\frac{1}{4} \cdot (bin \ capacity)$

- why each bin contains a triple, a boy, a girl and a home?
 - triplet (b_i, g_j, h_k)
 - *b_i*[1]
 - *b*_{*j*}[1] two boys
 - $h_k[1]$
 - total size =

 $(10M^{4} + 8 - iM - jM^{2} - kM^{3}) + (10M^{4} + iM + 1) +$ + (10M⁴ + jM + 1) + (10M⁴ + kM^{3} + 4) = (10M⁴ + 10M⁴ + 10M⁴ + 10M⁴) + (iM - iM) + (jM - jM^{2}) + (kM^{3} - kM^{3}) + (8 + 1 + 1 + 4) = 40M⁴ + 14 + (jM - jM^{2}) \neq C

$$C = 40M^4 + 15$$

$3d matching \leq bin packing$

- why each triple is contained in a common bin with its *respective* boy, girl and home?
 - triplet (b_i, g_j, h_k)
 - *b_i*[*q*]
 - $g_f[q']$ mismatched girl
 - $h_k[q'']$
 - total size =

 $(10M^{4} + 8 - iM - jM^{2} - kM^{3}) + (11M^{4} + iM + 1) + (11M^{4} + fM^{2} + 2) + (8M^{4} + kM^{3} + 4)$

 $= (10M^4 + 11M^4 + 11M^4 + 8M^4) + (iM - iM) + (fM^2 - jM^2) + (kM^3 - kM^3) +$

(8+1+2+4)

 $= 40M^4 + 15 + (fM^2 - jM^2) \neq C$

$$C = 40M^4 + 15$$

- why, in each bin, the boy-girl-home items are either all first occurrences or none is a first occurrence?
 - triplet (b_i, g_j, h_k)
 - *b_i*[1]
 - $g_j[1]$ first occurrences
 - $h_k[1]$
 - total size =

 $(10M^4 + 8 - iM - jM^2 - kM^3) + (10M^4 + iM + 1) +$

 $+ (10M^4 + jM^2 + 2) + (10M^4 + kM^3 + 4)$

 $= (10M^4 + 10M^4 + 10M^4 + 10M^4) + (iM - iM) + (jM^2 - jM^2) + (kM^3 - kM^3) + (iM - iM) + (jM^2 - jM^2) + (kM^3 - kM^3) + (iM - iM) + (jM^2 - jM^2) + (kM^3 - kM^3) + (iM - iM) + (jM^2 - jM^2) + (kM^3 - kM^3) + (iM - iM) + (jM^2 - jM^2) + (kM^3 - kM^3) + (iM - iM) + (jM^2 - jM^2) + (kM^3 - kM^3) + (iM - iM) + (jM^2 - jM^2) + (kM^3 - kM^3) + (iM - iM) + (jM^2 - jM^2) + (kM^3 - kM^3) + (iM - iM) + (jM^2 - jM^2) + (kM^3 - kM^3) + (iM - iM) + (jM^2 - jM^2) + (kM^3 - kM^3) + (iM - iM) + (iM - iM$

 $(8+1+2+4) = 40M^4 + 15 = C$

$$C = 40M^4 + 15$$

- why, in each bin, the *boy-girl-home* items are either all first occurrences or none is a first occurrence?
 - triplet (b_i, g_j, h_k)
 - *b_i*[*q*]
 - $g_j[q']$ non first occurrences
 - $h_k[q'']$
 - total size =

 $(10M^4 + 8 - iM - jM^2 - kM^3) + (11M^4 + iM + 1) +$

 $+(11M^4 + jM^2 + 2) + (8M^4 + kM^3 + 4)$

 $= (10M^4 + 11M^4 + 11M^4 + 8M^4) + (iM - iM) + (jM^2 - jM^2) + (kM^3 - kM^3) +$

(8+1+2+4)

 $=40M^4 + 15 = C$

$$C = 40M^4 + 15$$

 why, in each bin, the boy-girl-home items are either all first occurrences or none is a first occurrence?

 $C = 40M^4 + 15$

- triplet (b_i, g_j, h_k)
- *b_i*[*q*]
- $g_j[1]$ mixed occurrences
- $h_k[q'']$
- total size =

 $(10M^{4} + 8 - iM - jM^{2} - kM^{3}) + (11M^{4} + iM + 1) +$ +(10M⁴ + jM² + 2) + (8M⁴ + kM³ + 4) = (10M⁴ + 11M⁴ + 10M⁴ + 8M⁴) + (iM - iM) + (jM² - jM²) + (kM³ - kM³) + (8 + 1 + 2 + 4) = 39M⁴ + 15 \neq C

final remarks (on strong np completeness)

• if we had a pseudo-polynomial algorithm for bin packing,

then,

 we would have a polynomial algorithm for it! because,

$$M^4 = \Theta(n^4)$$

the numbers that emerged in the reduction from 3d matching to bin packing are *polynomially large* in the input length

• and, since bin packing is strongly NP-complete, we would get,

$$\mathbf{P} = \mathbf{N}\mathbf{P}$$

