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Reducing 3-SAT to 0/1 IP

Definition 1.1 (0/1 IP).

Input: an integer matrix C and vector b.
Output: decide if there is a 0/1 vector x such that: Cx ≥ b.

u 0/1 IP ∈ NP(why?)

u We choose 3-SAT as our known NP-complete problem and
consider the formula:

φ = C1 ∧ C2 ∧ ... ∧ Cm

with literals x1, ...xn

We will construct our m× n matrix C : cij =


1, if xj ∈ Ci
−1, if x̄j ∈ Ci
0, otherwise

and

bi = 1−(the number of complemented variables in Ci)
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Reducing 3-SAT to 0/1 IP

Note that: Cx ≥ b actually means
∑n

j=1 cijxj ≥ bi, ∀i.

u If 3-SAT is satisfiable, then every Ci is True. Focus on a line of
C and discard the zeros:

u cij1xj1 + cij2xj2 + cij3xj3 ≥ 1−#(complemented)⇒
1xj1 + 1xj2 + 1xj3 ≥ 1

1xj1 + 1xj2−1xj3 ≥ 0

1xj1−1xj2−1xj3 ≥ −1

−1xj1−1xj2−1xj3 ≥ −2

4
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3-SAT ≤
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Reducing 3-SAT to 3-COLOR

Definition 2.1 (3-COLOR).

Input: a graph G(V,E).
Output: decide if χ(G) ≤ 3?

u 3-COLOR ∈ NP(why?)

u We choose 3-SAT as our known NP-complete problem and
consider (again) the formula:

φ = C1 ∧ C2 ∧ ... ∧ Cm

with literals x1, ...xn
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Constructing the graph Gφ

u We’ll consider the forumla φ = (x ∨ y ∨ ¬z) ∧ (¬y ∨ z ∨ ¬w).

u Let’s start with the vertices of the literals: for each xi we create
vi and v̄i.

u In order to dictate an equivalent True/False coloring of vi, v̄i, we
draw all edges viv̄i plus we link all vi, v̄i with a “base” vertex b.
Check that now we have n triangles, all having b in common.

x ¬x

y ¬y

z ¬z

w ¬w

b
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Constructing the graph Gφ

The gadget: a color-driven “or” gate

a

b

c

→Ci’s literals as input

←Ci evaluation

a

b

c

a

b

c

a

c

u If all a,b,c are colored “False”, the output vertex has to be
False.

u If a or b or c is “True”, then the output vertex can also be True.
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Completing Gφ

u φ = (x ∨ y ∨ ¬z) ∧ (¬y ∨ z ∨ ¬w)

x ¬x

y ¬y

z ¬z

w ¬w

b

G1

G2

ft

x

z

¬x

¬z

G1

G2

ft

u Let’s satisfy φ...

⇒ χ(Gφ) ≤ 3
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Checking the “if and only if”

u Now let Gφ be 3-colorable.

u And pay attention to the coloring of ui, ūi

u1 ¬u1

u2 ¬u2

u3 ¬u3

u4 ¬u4
...

b

G1

G2

...

ft

u1 ¬u1

u2 ¬u2

u3 ¬u3

u4 ¬u4

3-SAT ≤
P 3-COLOR

u Since the gadgets output orange, they must each have an orange
input.

u So our true color is the orange, and an assignment that satisfies
φ follows the orange u-nodes.
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Reducing 3-SAT to Hamilton Path

Definition 3.1 (Hamilton Path).

Input: graph G.
Output: decide whether G allows a path visiting all nodes excatly
once.

u Hamilton Path ∈ NP. We can guess n− 1 edges and verify if
they add up to a Hamilton Path.

u We need 3 gadgets for this problem..
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Gadgets (1/3)

The choice gadget - one per literal

T F

u Actually, the colored edges will become subgraphs that allow a
path between the blue nodes.

u They sure translate to an evaluation “True” of “False” for the
literal.
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Gadgets (2/3)

The consistency gadget - an “xor” gate

⊕

u A part o a Hamilton Path must either enter and exit this
subgraph using both top vertices

or both bottom vertices.

u That “exclusive or” functionality will be the hint for gadget 3
to prove useful.
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Gadgets (3/3)

The constraint gadget - one per clause

Ci

⊕

⊕

⊕

x
1¬
x
1

x2

¬x2

¬x
3

x 3

u Let’s take Ci = (x1 ∨ x2 ∨ ¬x3)

u We must force that the “edges” (paths) of the triangle are
traversed by a Hamilton Path if and only if the corresponding
literal is false.

u Then the clause is True, or else there would be no
Hamilton Path!
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Constructing the full R(φ)

Let φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
Orange nodes
form a clique

s

t
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φ is satisfiable ⇒ R(φ) has a Hamilton Path

Let φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨¬x2 ∨¬x3) ∧ (¬x1 ∨¬x2 ∨ x3)

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

s

t

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
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R(φ) has a Hamilton Path ⇒ φ is satisfiable

Remember the costraint gadget.

If the red edge-“xor” path belongs
to the Hamilton Path, then both green edges do not belong to the
path.

But this defines a truth assignment, where no clause gets all 3
literals false.

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

s

t

3-SAT ≤
P Hamilton

Path
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Outline

0/1 Integer Programming

3-colorability

Hamilton Path (HP)

Traveling Salesman Problem (TSP)
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The Traveling Salesman Problem

Definition 4.1 (TSP).

Given a set of n cities and the distance between any two of them,
find the shortest tour covering all cities.

Definition 4.2 (TSP (decision problem)).

Input: a complete graph G with weighted edges, budget (target cost)
B
Output: is there a tour (cycle) visiting every vertex of G with total
cost ≤ B?

u Verify that TSP(D) belongs to class NP...

u We shall use Hamilton Path as ou known NP-complete
problem.
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Hamilton Path ≤P TSP(D)

u Take any instance of Hamilton Path (i.e. any graph G with n
vertices) and take a copy of it, Ḡ.

u Set all edges of Ḡ to have a weight equal to 1.

u Insert all missing edges of Ḡ with weight 2.

u To finalize the instance of TSP(D), take B = n+ 1.

u G has a Hamilton Path ⇒ Ḡ has a tour of cost ≤ n+ 1...

u Ḡ has a tour of cost ≤ n+ 1⇒ G has a Hamilton Path...

Hamilton
Path≤

P TSP(D)
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Thank you!

Alexandros Angelopoulos (M.P.L.A.) Reductions & NP-completeness 23/23


	0/1 Integer Programming
	3-colorability
	Hamilton Path (HP)
	Traveling Salesman Problem (TSP)

