Reductions \& NP-completeness

Alexandros Angelopoulos

> M.P.L.A.

February 7, 2014

Outline

0/1 Integer Programming

3-colorability

 Hamilton Path (HP)Traveling Salesman Problem (TSP)

Reducing 3-SAT to 0/1 IP

Definition 1.1 (0/1 IP).

Input: an integer matrix C and vector b.
Output: decide if there is a $0 / 1$ vector x such that: $C x \geq b$.

$0 / 1$ IP $\in N P($ why? $)$
 Min choose B-SAT as our known NP-complete problem and consider the formula

with literals $x_{1}, \ldots x_{n}$

Reducing 3-SAT to 0/1 IP

Definition 1.1 (0/1 IP).

Input: an integer matrix C and vector b.
Output: decide if there is a $0 / 1$ vector x such that: $C x \geq b$.

- 0/1 IP $\in N P($ why? $)$
consider the formula
with literals $x_{1}, \ldots x_{n}$

Reducing 3-SAT to 0/1 IP

Definition 1.1 (0/1 IP).

Input: an integer matrix C and vector b.
Output: decide if there is a $0 / 1$ vector x such that: $C x \geq b$.

- 0/1 IP $\in N P($ why? $)$
- We choose 3-SAT as our known NP-complete problem and consider the formula:

$$
\phi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}
$$

with literals $x_{1}, \ldots x_{n}$

Reducing 3-SAT to 0/1 IP

Definition 1.1 (0/1 IP).

Input: an integer matrix C and vector b.
Output: decide if there is a 0/1 vector x such that: $C x \geq b$.

- 0/1 IP $\in N P($ why? $)$
- We choose 3-SAT as our known NP-complete problem and consider the formula:

$$
\phi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}
$$

with literals $x_{1}, \ldots x_{n}$
We will construct our $m \times n$ matrix $C: c_{i j}=\left\{\begin{array}{ll}1, & \text { if } x_{j} \in C_{i} \\ -1, & \text { if } \overline{x_{j}} \in C_{i} \\ 0, & \text { otherwise }\end{array}\right.$ and
$b_{i}=1$-(the number of complemented variables in C_{i})

Reducing 3-SAT to 0/1 IP

Note that: $C x \geq b$ actually means $\sum_{j=1}^{n} c_{i j} x_{j} \geq b_{i}$, $\forall i$.

Reducing 3-SAT to 0/1 IP

Note that: $C x \geq b$ actually means $\sum_{j=1}^{n} c_{i j} x_{j} \geq b_{i}$, $\forall i$.

- If 3-SAT is satisfiable, then every C_{i} is True. Focus on a line of C and discard the zeros:

Reducing 3-SAT to 0/1 IP

Note that: $C x \geq b$ actually means $\sum_{j=1}^{n} c_{i j} x_{j} \geq b_{i}$, $\forall i$.

- If 3-SAT is satisfiable, then every C_{i} is True. Focus on a line of C and discard the zeros:
$-c_{i j_{1}} x_{j_{1}}+c_{i j_{2}} x_{j 2}+c_{i j_{3}} x_{j 3} \geq 1-\#(\overline{\text { complemented }}) \Rightarrow$

$$
\left\{\begin{array}{l}
1 x_{j_{1}}+1 x_{j_{2}}+1 x_{j_{3}} \geq 1 \\
1 x_{j_{1}}+1 x_{j_{2}}-1 x_{j_{3}} \geq 0 \\
1 x_{j_{1}}-1 x_{j_{2}}-1 x_{j_{3}} \geq-1 \\
-1 x_{j_{1}}-1 x_{j_{2}}-1 x_{j_{3}} \geq-2
\end{array}\right.
$$

Reducing 3-SAT to 0/1 IP

Note that: $C x \geq b$ actually means $\sum_{j=1}^{n} c_{i j} x_{j} \geq b_{i}$, $\forall i$.

- If 3-SAT is satisfiable, then every C_{i} is True. Focus on a line of C and discard the zeros:
- $c_{i j_{1}} x_{j_{1}}+c_{i j_{2}} x_{j 2}+c_{i j_{3}} x_{j 3} \geq 1-\#(\overline{\text { complemented }}) \Rightarrow$

$$
\left\{\begin{array}{l}
1 x_{j_{1}}+1 x_{j_{2}}+1 x_{j_{3}} \geq 1 \\
1 x_{j_{1}}+1 x_{j_{2}}-1 x_{j_{3}} \geq 0 \\
1 x_{j_{1}}-1 x_{j_{2}}-1 x_{j_{3}} \geq-1 \\
-1 x_{j_{1}}-1 x_{j_{2}}-1 x_{j_{3}} \geq-2
\end{array}\right.
$$

Reducing 3-SAT to 0/1 IP

Note that: $C x \geq b$ actually means $\sum_{j=1}^{n} c_{i j} x_{j} \geq b_{i}$, $\forall i$.

- If 3-SAT is satisfiable, then every C_{i} is True. Focus on a line of C and discard the zeros:
- $c_{i j_{1}} x_{j_{1}}+c_{i j_{2}} x_{j 2}+c_{i j_{3}} x_{j 3} \geq 1-\#(\overline{\text { complemented }}) \Leftrightarrow$

$$
\left\{\begin{array}{l}
1 x_{j_{1}}+1 x_{j_{2}}+1 x_{j_{3}} \geq 1 \\
1 x_{j_{1}}+1 x_{j_{2}}-1 x_{j_{3}} \geq 0 \\
1 x_{j_{1}}-1 x_{j_{2}}-1 x_{j_{3}} \geq-1 \\
-1 x_{j_{1}}-1 x_{j_{2}}-1 x_{j_{3}} \geq-2
\end{array}\right.
$$

Reducing 3-SAT to 0/1 IP

Note that: $C x \geq b$ actually means $\sum_{j=1}^{n} c_{i j} x_{j} \geq b_{i}$, $\forall i$.

- If 3-SAT is satisfiable, then every C_{i} is True. Focus on a line of C and discard the zeros:

Outline

0/1 Integer Programming

3-colorability

Hamilton Path (HP)

Traveling Salesman Problem (TSP)

Reducing 3-SAT to 3-COLOR

Definition 2.1 (3-COLOR).
Input: a graph $G(V, E)$.
Output: decide if $\chi(G) \leq 3$?

$3-$ COLOR $\in N P$ (why?)

with literals $x_{1}, \ldots x_{n}$

Reducing 3-SAT to 3-COLOR

Definition 2.1 (3-COLOR).
 Input: a graph $G(V, E)$.
 Output: decide if $\chi(G) \leq 3$?

- $3-\mathrm{COLOR} \in N P($ why? $)$ consider (again) the formula:

Reducing 3-SAT to 3-COLOR

Definition 2.1 (3-COLOR).
Input: a graph $G(V, E)$.
Output: decide if $\chi(G) \leq 3$?

- $3-\mathrm{COLOR} \in N P($ why? $)$
- We choose 3-SAT as our known NP-complete problem and consider (again) the formula:

$$
\phi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}
$$

with literals $x_{1}, \ldots x_{n}$

Constructing the graph G_{ϕ}

- We'll consider the forumla $\phi=(x \vee y \vee \neg z) \wedge(\neg y \vee z \vee \neg w)$.

Constructing the graph G_{ϕ}

- We'll consider the forumla $\phi=(x \vee y \vee \neg z) \wedge(\neg y \vee z \vee \neg w)$.
- Let's start with the vertices of the literals: for each x_{i} we create v_{i} and $\overline{v_{i}}$.

Constructing the graph G_{ϕ}

- We'll consider the forumla $\phi=(x \vee y \vee \neg z) \wedge(\neg y \vee z \vee \neg w)$.
- Let's start with the vertices of the literals: for each x_{i} we create v_{i} and $\overline{v_{i}}$.
- In order to dictate an equivalent True/False coloring of v_{i}, \bar{v}_{i}, we draw all edges $v_{i} \bar{v}_{i}$ plus we link all v_{i}, \bar{v}_{i} with a "base" vertex b. Check that now we have n triangles, all having b in common.

Constructing the graph G_{ϕ}

- We'll consider the forumla $\phi=(x \vee y \vee \neg z) \wedge(\neg y \vee z \vee \neg w)$.
- Let's start with the vertices of the literals: for each x_{i} we create v_{i} and $\overline{v_{i}}$.
- In order to dictate an equivalent True/False coloring of v_{i}, \bar{v}_{i}, we draw all edges $v_{i} \bar{v}_{i}$ plus we link all v_{i}, \bar{v}_{i} with a "base" vertex b. Check that now we have n triangles, all having b in common.

Constructing the graph G_{ϕ}

The gadget: a color-driven "or" gate

Constructing the graph G_{ϕ}

The gadget: a color-driven "or" gate

Constructing the graph G_{ϕ}

The gadget: a color-driven "or" gate

Constructing the graph G_{ϕ}

The gadget: a color-driven "or" gate

- If all a, b, c are colored "False", the output vertex has to be False.

Constructing the graph G_{ϕ}

The gadget: a color-driven "or" gate

- If all a, b, c are colored "False", the output vertex has to be False.

Constructing the graph G_{ϕ}

The gadget: a color-driven "or" gate

- If all a, b, c are colored "False", the output vertex has to be False.
- If a or b or c is "True", then the output vertex can also be True.

Constructing the graph G_{ϕ}

The gadget: a color-driven "or" gate

- If all a, b, c are colored "False", the output vertex has to be False.
- If a or b or c is "True", then the output vertex can also be True.

Constructing the graph G_{ϕ}

The gadget: a color-driven "or" gate

- If all a, b, c are colored "False", the output vertex has to be False.
- If a or b or c is "True", then the output vertex can also be True.

Completing G_{ϕ}

- $\phi=(x \vee y \vee \neg z) \wedge(\neg y \vee z \vee \neg w)$

Completing G_{ϕ}

- $\phi=(x \vee y \vee \neg z) \wedge(\neg y \vee z \vee \neg w)$

G_{1}

Completing G_{ϕ}

- $\phi=(x \vee y \vee \neg z) \wedge(\neg y \vee z \vee \neg w)$

Completing G_{ϕ}

- $\phi=(x \vee y \vee \neg z) \wedge(\neg y \vee z \vee \neg w)$

Completing G_{ϕ}

- $\phi=(x \vee y \vee \neg z) \wedge(\neg y \vee z \vee \neg w)$

Completing G_{ϕ}

- $\phi=(x \vee y \vee \neg z) \wedge(\neg y \vee z \vee \neg w)$

- Let's satisfy $\phi .$.

Completing G_{ϕ}

- $\phi=(x \vee y \vee \neg z) \wedge(\neg y \vee z \vee \neg w)$

- Let's satisfy $\phi .$.

Completing G_{ϕ}

- $\phi=(x \vee y \vee \neg z) \wedge(\neg y \vee z \vee \neg w)$

- Let's satisfy $\phi \ldots \Rightarrow \chi\left(\boldsymbol{G}_{\phi}\right) \leq \mathbf{3}$

Checking the "if and only if"

- Now let G_{ϕ} be 3-colorable.

Checking the "if and only if"

- Now let G_{ϕ} be 3-colorable.
- And pay attention to the coloring of $u_{i}, \overline{u_{i}}$

Checking the "if and only if"

- Now let G_{ϕ} be 3-colorable.
- And pay attention to the coloring of $u_{i}, \overline{u_{i}}$

- Since the gadgets output orange, they must each have an orange input.

Checking the "if and only if"

- Now let G_{ϕ} be 3-colorable.
- And pay attention to the coloring of $u_{i}, \overline{u_{i}}$

- Since the gadgets output orange, they must each have an orange input.
- So our true color is the orange, and an assignment that satisfies ϕ follows the orange u-nodes.

Checking the "if and only if"

- Now let G_{ϕ} be 3-colorable.
- And pay attention to the coloring of $u_{i}, \overline{u_{i}}$

- Since the gadgets output orange, they must each have an orange input.
- So our true color is the orange, and an assignment that satisfies ϕ follows the orange u-nodes.

Outline

0/1 Integer Programming

3-colorability

Hamilton Path (HP)

Traveling Salesman Problem (TSP)

Reducing 3-SAT to Hamilton Path

Definition 3.1 (Hamilton Path).

Input: graph G.
Output: decide whether G allows a path visiting all nodes excatly once.

Reducing 3-SAT to Hamilton Path

Definition 3.1 (Hamilton Path).

Input: graph G.
Output: decide whether G allows a path visiting all nodes excatly once.

- Hamilton Path $\in N P$. We can guess $n-1$ edges and verify if they add up to a Hamilton Path.

Reducing 3-SAT to Hamilton Path

Definition 3.1 (Hamilton Path).

Input: graph G.
Output: decide whether G allows a path visiting all nodes excatly once.

- Hamilton Path $\in N P$. We can guess $n-1$ edges and verify if they add up to a Hamilton Path.
- We need 3 gadgets for this problem..

Gadgets $(1 / 3)$

The choice gadget - one per literal

Gadgets $(1 / 3)$

The choice gadget - one per literal

- Actually, the colored edges will become subgraphs that allow a path between the blue nodes.

Gadgets $(1 / 3)$

The choice gadget - one per literal

- Actually, the colored edges will become subgraphs that allow a path between the blue nodes.
- They sure translate to an evaluation "True" of "False" for the literal.

Gadgets $(2 / 3)$

The consistency gadget - an "xor" gate

Gadgets $(2 / 3)$

The consistency gadget - an "xor" gate

- A part o a Hamilton Path must either enter and exit this subgraph using both top vertices

Gadgets $(2 / 3)$

The consistency gadget - an "xor" gate

- A part o a Hamilton Path must either enter and exit this subgraph using both top vertices or both bottom vertices.

Gadgets $(2 / 3)$

The consistency gadget - an "xor" gate

- A part o a Hamilton Path must either enter and exit this subgraph using both top vertices or both bottom vertices.
- That "exclusive or" functionality will be the hint for gadget 3 to prove useful.

Gadgets (3/3)

The constraint gadget - one per clause

Gadgets (3/3)

The constraint gadget - one per clause

- Let's take $C_{i}=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right)$

Gadgets (3/3)

The constraint gadget - one per clause

- Let's take $C_{i}=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right)$
- We must force that the "edges" (paths) of the triangle are traversed by a Hamilton Path if and only if the corresponding literal is false.

Gadgets (3/3)

The constraint gadget - one per clause

- Let's take $C_{i}=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right)$
- We must force that the "edges" (paths) of the triangle are traversed by a Hamilton Path if and only if the corresponding literal is false.

Gadgets (3/3)

The constraint gadget - one per clause

- Let's take $C_{i}=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right)$
- We must force that the "edges" (paths) of the triangle are traversed by a Hamilton Path if and only if the corresponding literal is false.
- Then the clause is True, or else there would be no Hamilton Path!

Constructing the full $R(\phi)$

Let $\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$

Constructing the full $R(\phi)$

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

Constructing the full $R(\phi)$

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

Constructing the full $R(\phi)$

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

Constructing the full $R(\phi)$

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow \boldsymbol{R}(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow \boldsymbol{R}(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow \boldsymbol{R}(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow \boldsymbol{R}(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow \boldsymbol{R}(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow \boldsymbol{R}(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow R(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow \boldsymbol{R}(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow \boldsymbol{R}(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow \boldsymbol{R}(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow \boldsymbol{R}(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow \boldsymbol{R}(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow \boldsymbol{R}(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

ϕ is satisfiable $\Rightarrow \boldsymbol{R}(\phi)$ has a Hamilton Path

$$
\text { Let } \phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

$R(\phi)$ has a Hamilton Path $\Rightarrow \phi$ is satisfiable

Remember the costraint gadget.

$R(\phi)$ has a Hamilton Path $\Rightarrow \phi$ is satisfiable

Remember the costraint gadget. If the red edge- "xor" path belongs to the Hamilton Path, then both green edges do not belong to the path.

$R(\phi)$ has a Hamilton Path $\Rightarrow \phi$ is satisfiable

Remember the costraint gadget. If the red edge- "xor" path belongs to the Hamilton Path, then both green edges do not belong to the path. But this defines a truth assignment, where no clause gets all 3 literals false.

$R(\phi)$ has a Hamilton Path $\Rightarrow \phi$ is satisfiable

Remember the costraint gadget. If the red edge- "xor" path belongs to the Hamilton Path, then both green edges do not belong to the path. But this defines a truth assignment, where no clause gets all 3 literals false.

Outline

0/1 Integer Programming 3-colorability Hamilton Path (HP)
 Traveling Salesman Problem (TSP)

The Traveling Salesman Problem

Definition 4.1 (TSP).

Given a set of n cities and the distance between any two of them, find the shortest tour covering all cities.

Definition 4.2 (TSP (decision problem)).
Input: a complete graph G with weighted edges, budget (target cost) B
Output: is there a tour (cycle) visiting every vertex of G with total cost $\leq B$?
problem

The Traveling Salesman Problem

Definition 4.1 (TSP).

Given a set of n cities and the distance between any two of them, find the shortest tour covering all cities.

Definition 4.2 (TSP (decision problem)).

Input: a complete graph G with weighted edges, budget (target cost) B
Output: is there a tour (cycle) visiting every vertex of G with total cost $\leq B$?
problem

The Traveling Salesman Problem

Definition 4.1 (TSP).

Given a set of n cities and the distance between any two of them, find the shortest tour covering all cities.

Definition 4.2 (TSP (decision problem)).

Input: a complete graph G with weighted edges, budget (target cost) B
Output: is there a tour (cycle) visiting every vertex of G with total cost $\leq B$?

- Verify that TSP (D) belongs to class NP...
problem

The Traveling Salesman Problem

Definition 4.1 (TSP).

Given a set of n cities and the distance between any two of them, find the shortest tour covering all cities.

Definition 4.2 (TSP (decision problem)).

Input: a complete graph G with weighted edges, budget (target cost) B
Output: is there a tour (cycle) visiting every vertex of G with total cost $\leq B$?

- Verify that TSP (D) belongs to class NP...
- We shall use Hamilton Path as ou known NP-complete problem.

Hamilton Path $\leq^{P} \operatorname{TSP}$ (D)

- Take any instance of Hamilton Path (i.e. any graph G with n vertices) and take a copy of it, \bar{G}.

Hamilton Path $\leq^{P} \operatorname{TSP}$ (D)

- Take any instance of Hamilton Path (i.e. any graph G with n vertices) and take a copy of it, \bar{G}.
- Set all edges of \bar{G} to have a weight equal to 1 .

Hamilton Path $\leq^{P} \operatorname{TSP}$ (D)

- Take any instance of Hamilton Path (i.e. any graph G with n vertices) and take a copy of it, \bar{G}.
- Set all edges of \bar{G} to have a weight equal to 1 .
- Insert all missing edges of \bar{G} with weight 2 .

Hamilton Path $\leq^{P} \operatorname{TSP}$ (D)

- Take any instance of Hamilton Path (i.e. any graph G with n vertices) and take a copy of it, \bar{G}.
- Set all edges of \bar{G} to have a weight equal to 1 .
- Insert all missing edges of \bar{G} with weight 2 .
- To finalize the instance of $\operatorname{TSP}(\mathrm{D})$, take $B=n+1$.

Hamilton Path $\leq^{P} \operatorname{TSP}$ (D)

- Take any instance of Hamilton Path (i.e. any graph G with n vertices) and take a copy of it, \bar{G}.
- Set all edges of \bar{G} to have a weight equal to 1 .
- Insert all missing edges of \bar{G} with weight 2 .
- To finalize the instance of $\operatorname{TSP}(\mathrm{D})$, take $B=n+1$.
- G has a Hamilton Path $\Rightarrow \bar{G}$ has a tour of cost $\leq n+1 \ldots$

Hamilton Path $\leq^{P} \operatorname{TSP}$ (D)

- Take any instance of Hamilton Path (i.e. any graph G with n vertices) and take a copy of it, \bar{G}.
- Set all edges of \bar{G} to have a weight equal to 1 .
- Insert all missing edges of \bar{G} with weight 2 .
- To finalize the instance of $\operatorname{TSP}(\mathrm{D})$, take $B=n+1$.
- G has a Hamilton Path $\Rightarrow \bar{G}$ has a tour of cost $\leq n+1 \ldots$
- \bar{G} has a tour of cost $\leq n+1 \Rightarrow G$ has a Hamilton Path...

Hamilton Path $\leq^{P} \operatorname{TSP}$ (D)

- Take any instance of Hamilton Path (i.e. any graph G with n vertices) and take a copy of it, \bar{G}.
- Set all edges of \bar{G} to have a weight equal to 1 .
- Insert all missing edges of \bar{G} with weig TSP (D)
- Halizilton Path \leq B Hamilton
- G has a Hamilton Path $\Rightarrow \bar{G}$ has a tour of cost $\leq n+1 \ldots$
- \bar{G} has a tour of cost $\leq n+1 \Rightarrow G$ has a Hamilton Path...

Thank you!

