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Reducing 3-SAT to 0/1 IP
Definition 1.1 (0/1 IP).

Input: an integer matrix C' and vector b.
Output: decide if there is a 0/1 vector x such that: Cxz > b.
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Definition 1.1 (0/1 IP).

Input: an integer matrix C' and vector b.
Output: decide if there is a 0/1 vector x such that: Cxz > b.

¢ 0/1 IP € NP(why?)

@ We choose 3-SAT as our known NP-complete problem and
consider the formula:

o= Ch N Col N 2N @

with literals z1, ...z,

1, I8 .eC;
We will construct our m x n matrix C : ¢;; = ¢ —1, if ; € C; and
0, otherwise

b; = 1—(the number of complemented variables in C;)
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Note that: C'xz > b actually means 27:1 o T YT

@ [If 3-SAT is satisfiable, then every C; is True. Focus on a line of
C' and discard the zeros:

® CijiTj; + Cija X2 + Cijs X3 = 1-— #(M) =
Lo 12, 7 1z ;, 2l
g+ 12, — 1 fel
b7 — Lo o o]
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C' and discard the zeros:
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Reducing 3-SAT to 3-COLOR

Definition 2.1 (3-COLOR).

Input: a graph G(V, E).
Output: decide if x(G) < 3?7
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Reducing 3-SAT to 3-COLOR

Definition 2.1 (3-COLOR).

Input: a graph G(V, E).
Output: decide if x(G) < 3?7

¢ 3-COLOR € NP(why?)

@ We choose 3-SAT as our known NP-complete problem and
consider (again) the formula:

DI=iC] N Cor/ e\ @

with literals =1, ...z,
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Constructing the graph G

¢ We'll consider the forumla ¢ = (zVyV —2) A (-y V2V —w).
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¢ We'll consider the forumla ¢ = (zVyV —2) A (-y V2V —w).

@ Let's start with the vertices of the literals: for each z; we create
v; and v;.

@ In order to dictate an equivalent True/False coloring of v;, v;, we

draw all edges v;v; plus we link all v;, v; with a “base” vertex b.
Check that now we have n triangles, all having b in common.
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Constructing the graph G
The gadget: a color-driven “or” gate

Cjy's literals as input
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¢ If all a,b,c are colored “False”, the output vertex has to be
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Completing G

St (V y V. S \/ —ud
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Completing G

® Let's satisfy ¢... = x(G¢) <3
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Checking the “if and only if”

¢ Now let G4 be 3-colorable.
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4 And pay attention to the coloring of u;, @;

@ Since the gadgets output , they must each have an orange
input.
@ So our true color is the orange, and an assignment that satisfies

¢ follows the orange u-nodes.
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Reducing 3-SAT to Hamilton Path

Definition 3.1 (Hamilton Path).

Input: graph G.
Output: decide whether G allows a path visiting all nodes excatly
once.
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once.

¢ Hamilton Path € NP. We can guess n — 1 edges and verify if
they add up to a Hamilton Path.
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Reducing 3-SAT to Hamilton Path

Definition 3.1 (Hamilton Path).

Input: graph G.
Output: decide whether G allows a path visiting all nodes excatly
once.

¢ Hamilton Path € NP. We can guess n — 1 edges and verify if
they add up to a Hamilton Path.

@ We need 3 gadgets for this problem..
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Gadgets (1/3)

The choice gadget - one per literal
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Gadgets (1/3)

The choice gadget - one per literal

@ Actually, the colored edges will become subgraphs that allow a
path between the blue nodes.

@ They sure translate to an evaluation “True” of “False” for the
literal.
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Gadgets (2/3)

The consistency gadget - an “xor” gate
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The consistency gadget - an “xor” gate

@ A part o a Hamilton Path must either enter and exit this
subgraph using both top vertices
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The consistency gadget - an “xor” gate

® A part o a Hamilton Path must either enter and exit this
subgraph using both top vertices or both bottom vertices.

Alexandros Angelopoulos (M.P.L.A.) Reductions & NP-completeness 15/23



Gadgets (2/3)

The consistency gadget - an “xor” gate

T
2]
l

® A part o a Hamilton Path must either enter and exit this
subgraph using both top vertices or both bottom vertices.

@ That “exclusive or” functionality will be the hint for gadget 3
to prove useful.
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Gadgets (3/3)

The constraint gadget - one per clause
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The constraint gadget - one per clause

I&@ﬁ

L ctsiliake C; = (1405 a8l
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Gadgets (3/3)

The constraint gadget - one per clause

N

L ctsiliake C; = (1405 a8l

¢ We must force that the “edges” (paths) of the triangle are
traversed by a Hamilton Path if and only if the corresponding

literal is false.
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Gadgets (3/3)

The constraint gadget - one per clause

9

L ctsiliake C; = (1405 a8l

¢ We must force that the “edges” (paths) of the triangle are
traversed by a Hamilton Path if and only if the corresponding
literal is false.

® Then the clause is True, or else there would be no
Hamilton Path!
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Constructing the full R(¢)

Let ¢ = ((L‘l VA 333) VAN (—|1'1 V 2ol —|1'3) A (—h%‘l V —xo V .133)
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¢ is satisfiable = R(¢) has a Hamilton Path

Letgth= (1 V 20088 48T \/ g —x3) N (—xy V 2oV &3)
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¢ is satisfiable = R(¢) has a Hamilton Path

Letgth= (1 V 20088 48T \/ g —x3) N (—xy V 2oV &3)
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¢ is satisfiable = R(¢) has a Hamilton Path
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R(¢) has a Hamilton Path = ¢ is satisfiable

Remember the costraint gadget.

N
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R(¢) has a Hamilton Path = ¢ is satisfiable

Remember the costraint gadget. If the red edge-“xor" path belongs
to the Hamilton Path, then both green edges do not belong to the
path.

~
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R(¢) has a Hamilton Path = ¢ is satisfiable

Remember the costraint gadget. If the red edge-“xor" path belongs
to the Hamilton Path, then both green edges do not belong to the
path. But this defines a truth assignment, where no clause gets all 3
literals false.
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The Traveling Salesman Problem

Definition 4.1 (TSP).

Given a set of n cities and the distance between any two of them,
find the shortest tour covering all cities.
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The Traveling Salesman Problem

Definition 4.1 (TSP).

Given a set of n cities and the distance between any two of them,
find the shortest tour covering all cities.

Definition 4.2 (TSP (decision problem)).

Input: a complete graph G with weighted edges, budget (target cost)
B

Output: is there a tour (cycle) visiting every vertex of G with total
cost < B?
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& We shall use Hamilton Path as ou known NP-complete
problem.
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# Take any instance of Hamilton Path (i.e. any graph G with n
vertices) and take a copy of it, G.

@ Set all edges of G to have a weight equal to 1.
@ Insert all missing edges of G with weight 2.
@ To finalize the instance of TSP(D), take B = n + 1.
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Hamilton Path <P TSP(D)

# Take any instance of Hamilton Path (i.e. any graph G with n
vertices) and take a copy of it, G.

& Set all edges of G to have a Welght equal to 1.

< as a Hamilton Path = G has a tour of cost < n + 1...
¢ G has a tour of cost < n+ 1= G has a Hamilton Path...
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Thank youl!
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