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Quantum Computation

The only difference between a probabilistic classical world and the
equations of the quantum world is that somehow or other it appears as if
the possibilities would have to go negative.

-Richard Feynman, in “Simulating Physics with Computers”, 1982



Quantum Computation

• Quantum computing is an new computational model that may be
physically realizable and may provide an exponential advantage
over “classical” computational models such as probabilistic and
deterministic Turing machines.

• Quantum computers pose a serious challenge to the strong
Church-Turing thesis – if quantum computers are physically
realizable, then the strong Church-Turing thesis is wrong.

Introduction
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• The physical parameters (energy, momentum, spic, etc.) of 
elementary particle such as an electron are quantized and can 
only take values in a discrete set.

• The value of a physical parameter of a particle (including location, 
energy, etc.) at any moment in time is not a single number. Rather 
the parameter has a kind of probability wave associated with it, 
involving a “smearing” or “superposition” over all possible values. 
The parameter only achieves a definite value when it is measured 
by an observer, at which point we say that the probability wave 
collapses to a single value.

Introduction
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Quantum Weirdness: The Two-Slit Experiment
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• The unit of storage in quantum computing is a qubit.

• Elementary particle, which can be simultaneously in both basic states.

• The state of a qubit at any time is called a superposition of these basic states.

• We denote the basic states   0 and   1 .

• We allow a qubit to be in any state of the form
𝛼𝜊  0 + 𝛼1  1

where 𝛼𝜊, 𝛼1 are called amplitudes and are complex numbers satisfying
 𝛼𝜊 2 +  𝛼1 2 = 1

• When the qubit is observed, with probability  𝛼𝜊 2, it is revealed to be in state zero
and with probability  𝛼1 2, it is revealed to be in state one.

• After observation the amplitude wave collapses, and the values of the amplitudes are
irretrievably lost.

Quantum Superposition and Qubits
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• A system of two qubits can be in four states   00 ,   01 ,   10 ,   11
and the state of a two-qubit system at any time is described by a
superposition of the type

𝑎00  00 + 𝑎01  01 + 𝑎10  10 + 𝑎11  11

where  𝑏1,𝑏2 𝑎𝑏1𝑏2
2 = 1. When this system is observed, its

state is revealed to be   𝑏1𝑏2 with probability 𝑎𝑏1𝑏2
2.

Quantum Superposition and Qubits
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• If the qubit is measured, what is the possibility it contains 0?

• If the qubit is measured, what is the possibility it contains 1?

Quantum Superposition and Qubits - Examples
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We call the state where all the coefficients are equal the uniform state.

  0 +   1 denotes the state 
1
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The uniform state for a two-qubit system is

  00 +   01 +   10 +   11

What is the normalization factor for a two-qubit system?

Quantum Superposition and Qubits - Examples
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• We will sometimes denote the state   𝑥𝑦 as   𝑥   𝑦 .

• Using this notation, we can write the uniform state of a two-qubit
system as

  0 +   1   0 +   1

which shows that this state just consists of two one-qubit systems in
uniform state.

Quantum Superposition and Qubits
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• If 𝑧 = 𝑎 + 𝑖𝑏 is a complex number (where 𝑖 = −1), then  𝑧 = 𝑎 − 𝑖𝑏 denotes complex
conjugate of 𝑧. Note that 𝑧  𝑧 = 𝑎2 + 𝑏2 = 𝑧 2.

• The inner product of two vectors 𝐮, 𝐯 ∈ ℂ𝑀,denoted by 𝐮, 𝐯 , is equal to  𝑥∈ 𝑀 𝐮𝑥  𝐯𝑥.

• The norm of a vector 𝐮, denoted by 𝐮 2, is equal to 𝐮, 𝒖 =  𝑥∈ 𝑀  𝐮𝑥 2.

• If 𝐮, 𝐯 = 0 we say that 𝐮 and 𝐯 are orthogonal.

• A set 𝐯𝑖
𝑖∈ 𝑀

of vectors in ℂ𝑀 is an orthonormal basis of ℂ𝑀 if for every 𝑖, 𝑗 ∈ 𝑀 , 𝐯𝑖 , 𝐯𝑗 is

equal to 1 if 𝑖 = 𝑗 and equal to 0 if 𝑖 ≠ 𝑗.

• If 𝐴 is an 𝑀x𝑀 matrix, then 𝐴∗ denotes the conjugate transpose of 𝐴. That is 𝐴𝑥,𝑦
∗ =  𝐴𝑦,𝑥 for

every 𝑥, 𝑦 ∈ 𝑀 .

• An 𝑀x𝑀 matrix 𝐴 is unitary if 𝐴𝐴∗ = 𝐼, where 𝐼 is the 𝑀x𝑀 identity matrix.

Some necessary Linear Algebra
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Claim 10.5 For every 𝑀x𝑀 complex matrix 𝐴, the following conditions are
equivalent:

1. 𝐴 is unitary (i.e. 𝐴𝐴∗ = 𝐼)

2. For every vector 𝐯 ∈ ℂ𝑀, 𝐴𝐯 2 = 𝐯 2.

3. For every orthonormal basis 𝐯𝑖
𝑖∈ 𝑀

of ℂ𝑀 , the set 𝐴𝐯𝑖
𝑖∈ 𝑀

is a

orthonormal basis of ℂ𝑀.

4. The columns of 𝐴 form an orthonormal basis of ℂ𝑀.

5. The rows of 𝐴 form an orthonormal basis of ℂ𝑀.

Some necessary Linear Algebra
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• In a standard digital computer, by taking m physical objects (every
object has two states) together we have an m-bit register whose state
can be described by a string in 0,1 𝑚.

• A quantum register is composed of m qubits, and its state is a
superposition of all 2𝑚 basic states: a vector 𝐯 =
𝐯0𝑚 , 𝐯0𝑚−11, … , 𝐯1𝑚 ∈ ℂ2𝑚, where  𝑥  𝐯𝑥 2 = 1.

The quantum register and its state vector
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Definition 10.6 (Quantum Operation) A quantum operation for an m-qubit register
is a function 𝐹: ℂ2𝑚 → ℂ2𝑚 that maps its previous state to the new state and
satisfies the following conditions:

Linearity: 𝐹 is a linear function. That is, for every 𝐯 ∈ ℂ2𝑚,

𝐹 𝐯 =  𝑥  𝐯𝑥 2 𝐹   𝑥 .

Norm preservation: 𝐹 maps unit vectors to unit vectors. That is, for
every 𝐯 with 𝐯 2 = 1, 𝐹 𝐯 2 = 1.

Lemma 10.7 (Composition of quantum operations) If 𝐴1, 𝐴2 are matrices
representing any quantum operations, then their composition (i.e. applying 𝐴1

followed by applying 𝐴2) is also a quantum operation whose matrix is 𝐴2𝐴1.

Quantum Operations
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• Flipping qubits

• Reordering qubits

• Copying qubits

• Rotation on single qubit

• AND of two qubits – Toffoli Gate

• The Hadamard operation

Some examples of Quantum Operations
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Definition 10.8 (Elementary quantum operations or quantum gates) A
quantum operation is called elementary, or sometimes quantum gate, if it
acts on three or less qubits of the register.

Quantum Computation and BQP
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Definition 10.9 (Quantum Computation and the class BQP) Let 𝑓: 0,1 ∗ → 0,1 and 𝑇: ℕ → ℕ be
some functions. We say that 𝑓 is computable in quantum 𝑇 𝑛 -time if there is a polynomial-time

classical TM that on input 1𝑛, 1𝑇 𝑛 for any 𝑛 ∈ ℕ outputs the description of quantum gates

𝐹1, … , 𝐹𝑇 such that for every 𝑥 ∈ 0,1 𝑛, we can compute 𝑓 𝑥 by the following process with
probability at least  2 3:

1. Initialize an 𝑚 qubit quantum register to state   𝑥0𝑛−𝑚 (i.e., x padded with zeros), when 𝑚 ≤
𝑇 𝑛 .

2. Apply one after the other 𝑇 𝑛 elementary quantum operations 𝐹1, … , 𝐹𝑇 to the register.

3. Measure the register and let 𝑌 denote the obtained value. (That is, if 𝐯 is the final state of the

register, then 𝑌 is a random variable that takes the value 𝑦 with probability 𝐯𝑦
2

for every

𝑦 ∈ 0,1 𝑚.)

4. Output 𝑌1.

A Boolean function 𝑓: 0,1 ∗ → 0,1 is in BQP if there is some polynomial 𝑝: ℕ → ℕ such as that 𝑓
is computable in quantum 𝑝 𝑛 -time.

Quantum Computation and BQP
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Quantum circuits are similar to Boolean circuits: These are directed acyclic graphs with sources
(vertices with in-degree zero) denoting the inputs, sinks (vertices with out-degree zero) denoting
the outputs and internal nodes denoting the gates.

Apply Hadamard operation on   𝑞0

Apply the mapping   𝑞0𝑞1 ↦   𝑞0(𝑞0𝑞1)

Quantum Circuits
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Lemma 10.10 (Boolean circuits as a subcase of quantum circuits) If
𝑓: 0,1 𝑛 → 0,1 𝑚 is computable by a Boolean circuit of size 𝑆 then there
is a sequence of 2𝑆 + 𝑚 + 𝑛 quantum operations computing the mapping
  𝑥   02𝑚+𝑆 ↦   𝑥   𝑓 𝑥   0𝑆+𝑚 .

Corollary 10.11 BPPBQP

Classical Computation as a subcase of Quantum Computation
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Theorem 10.12 (Universal basis for quantum operations [Deu89, Kit97]) For every
𝐷 ≥ 3 and 𝜀 > 0, there is 𝑙 ≤ 100(𝐷log  1 𝜀)3 such that the following is true. Every
𝐷x𝐷 unitary matrix 𝑈 can be approximated as a product of unitary matrices
𝑈1, … , 𝑈𝑙 in the sense that its 𝑖, 𝑗 the entry for each 𝑖, 𝑗 ≤ 𝐷 satisfies

𝑈𝑖,𝑗 − 𝑈𝑙 ⋯ 𝑈1 𝑖,𝑗 < 𝜀

and each 𝑈𝑟 corresponds to applying either the Hadamard gate 1

2

1 1
1 −1

, the

Toffoli gate   𝑎𝑏𝑐 ↦   𝑎𝑏(𝑐𝑎𝑏) , or the phase shift gate 1 0
0 𝑖

, on at most three

qubits.

Universal Operations
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• The integer factorization problem is to find , given an integer 𝑁, the set
of all prime factors of 𝑁.

• The best classical algorithm takes roughly 2(𝑙𝑜𝑔𝑁)  1
3 steps to factor 𝑁

[LLMP90].

Theorem 10.15 Shor’s algorithm: Factoring in BQP [Sho97]

There is a quantum algorithm that given a number 𝑁 , runs in

𝑝𝑜𝑙𝑦 log 𝑁 and outputs the prime factorization of 𝑁.

Shor’s Algorithm: Integer Factorization using Quantum Computers
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1. Since 𝑁 has at most 𝑙𝑜𝑔𝑁 factors, it clearly suffices to show how to find a single factor of 𝑁 in
𝑝𝑜𝑙𝑦(log 𝑁) time because we can then repeat the algorithm with 𝑁 divided by that factor,
and thus find all factors

2. It is a well-known fact that in order to find a single factor, it suffices to be able to find the
order of a random number 𝐴 (𝑚𝑜𝑑 𝑁), in other words, the smallest 𝑟 such that 𝐴𝑟 ≡
1 (𝑚𝑜𝑑 𝑁). With good probability, the order 𝑟 of 𝐴 will be even and 𝐴𝑟/2 − 1 will have a
nontrivial common factor with 𝑁, which we can find using a GCD computation.

3. The mapping 𝐴 ↦ 𝐴𝑥 (𝑚𝑜𝑑 𝑁) is computable in 𝑝𝑜𝑙𝑦(log 𝑁) time even on classical TMs.

Using those observations we can come up with a simple 𝑝𝑜𝑙𝑦(log 𝑁) time quantum algorithm that
transforms a quantum register initialized to all zeros into the state that is the uniform superposition
of all states of the type   𝑥 , where 𝑥 ≤ 𝑁 and satisfies 𝐴𝑥 ≡ 𝑦0 (𝑚𝑜𝑑 𝑁) for some randomly
chosen 𝑦0 ≤ 𝑁 − 1. By elementary number theory, the set of 𝑥’s form an arithmetic progression of
the type 𝑥0 + 𝑟𝑖 for 𝑖 = 1,2, … where 𝐴𝑥0 ≡ 𝑦0 (𝑚𝑜𝑑 𝑁) is the order of 𝐴.

Shor’s Algorithm: Integer Factorization using Quantum Computers
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• We created a quantum state involving strong periodicity (namely an
arithmetic progression) and we are interested in determining its period.

• The Quantum Fourier Transform (QFT) allows us to detect periods in
quantum state. This is a quantum algorithm that takes a register from
some arbitrary state 𝑓 ∈ ℂ𝑀 into a state whose vectors is the Fourier

transform  𝑓 of 𝑓.

• The QFT takes only 𝑂(𝑙𝑜𝑔2𝑀) elementary steps and is thus very
sufficient.

Shor’s Algorithm: Integer Factorization using Quantum Computers
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Thank You


