Quantum Computation

Пат $\mu \alpha v i \delta \eta \varsigma ~ \Sigma \pi u ́ p o s$ इHMMY

Quantum Computation

The only difference between a probabilistic classical world and the equations of the quantum world is that somehow or other it appears as if the possibilities would have to go negative.
-Richard Feynman, in "Simulating Physics with Computers", 1982

Quantum Computation

Introduction

- Quantum computing is an new computational model that may be physically realizable and may provide an exponential advantage over "classical" computational models such as probabilistic and deterministic Turing machines.
- Quantum computers pose a serious challenge to the strong Church-Turing thesis - if quantum computers are physically realizable, then the strong Church-Turing thesis is wrong.

Quantum Computation

Introduction

- The physical parameters (energy, momentum, spic, etc.) of elementary particle such as an electron are quantized and can only take values in a discrete set.
- The value of a physical parameter of a particle (including location, energy, etc.) at any moment in time is not a single number. Rather the parameter has a kind of probability wave associated with it, involving a "smearing" or "superposition" over all possible values. The parameter only achieves a definite value when it is measured by an observer, at which point we say that the probability wave collapses to a single value.

Quantum Computation

Quantum Weirdness: The Two-Slit Experiment

Quantum Computation

Quantum Superposition and Qubits

- The unit of storage in quantum computing is a qubit.
- Elementary particle, which can be simultaneously in both basic states.
- The state of a qubit at any time is called a superposition of these basic states.
- We denote the basic states $|0\rangle$ and $|1\rangle$.
- We allow a qubit to be in any state of the form

$$
\alpha_{o}|0\rangle+\alpha_{1}|1\rangle
$$

where α_{o}, α_{1} are called amplitudes and are complex numbers satisfying

$$
\left|\alpha_{o}\right|^{2}+\left|\alpha_{1}\right|^{2}=1
$$

- When the qubit is observed, with probability $\left|\alpha_{o}\right|^{2}$, it is revealed to be in state zero and with probability $\left|\alpha_{1}\right|^{2}$, it is revealed to be in state one.
- After observation the amplitude wave collapses, and the values of the amplitudes are irretrievably lost.

Quantum Computation

Quantum Superposition and Qubits

- A system of two qubits can be in four states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$ and the state of a two-qubit system at any time is described by a superposition of the type

$$
a_{00}|00\rangle+a_{01}|01\rangle+a_{10}|10\rangle+a_{11}|11\rangle
$$

where $\sum_{b 1, b 2}\left|a_{b 1 b 2}\right|^{2}=1$. When this system is observed, its state is revealed to be $|b 1 b 2\rangle$ with probability $\left|a_{b 1 b 2}\right|^{2}$.

Quantum Computation

Quantum Superposition and Qubits - Examples

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
& \frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle
\end{aligned}
$$

- If the qubit is measured, what is the possibility it contains 0 ?
- If the qubit is measured, what is the possibility it contains 1 ?

Quantum Computation

Quantum Superposition and Qubits - Examples

We call the state where all the coefficients are equal the uniform state.

$$
\begin{aligned}
& |0\rangle+|1\rangle \text { denotes the state } \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
& |0\rangle-|1\rangle \text { denotes the state } \frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle
\end{aligned}
$$

The uniform state for a two-qubit system is

$$
|00\rangle+|01\rangle+|10\rangle+|11\rangle
$$

What is the normalization factor for a two-qubit system?

Quantum Computation

Quantum Superposition and Qubits

- We will sometimes denote the state $|x y\rangle$ as $|x\rangle|y\rangle$.
- Using this notation, we can write the uniform state of a two-qubit system as

$$
(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)
$$

which shows that this state just consists of two one-qubit systems in uniform state.

Quantum Computation

Some necessary Linear Algebra

- If $z=a+i b$ is a complex number (where $i=\sqrt{-1}$), then $\bar{z}=a-i b$ denotes complex conjugate of z. Note that $z \bar{z}=a^{2}+b^{2}=|z|^{2}$.
- The inner product of two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{M}$, denoted by $\langle\mathbf{u}, \mathbf{v}\rangle$, is equal to $\sum_{x \in[M]} \mathbf{u}_{x} \overline{\mathbf{v}}_{x}$.
- The norm of a vector \mathbf{u}, denoted by $\|\mathbf{u}\|_{2}$, is equal to $\sqrt{\langle\mathbf{u}, \boldsymbol{u}\rangle}=\sqrt{\sum_{x \in[M]}\left|\mathbf{u}_{x}\right|^{2}}$.
- If $\langle\mathbf{u}, \mathbf{v}\rangle=0$ we say that \mathbf{u} and \mathbf{v} are orthogonal.
- A set $\left\{\mathbf{v}^{i}\right\}_{i \in[M]}$ of vectors in \mathbb{C}^{M} is an orthonormal basis of \mathbb{C}^{M} if for every $i, j \in[M],\left\langle\mathbf{v}^{i}, \mathbf{v}^{j}\right\rangle$ is equal to 1 if $i=j$ and equal to 0 if $i \neq j$.
- If A is an $M \mathrm{x} M$ matrix, then A^{*} denotes the conjugate transpose of A. That is $A_{x, y}^{*}=\bar{A}_{y, x}$ for every $x, y \in[M]$.
- An $M \mathrm{x} M$ matrix A is unitary if $A A^{*}=I$, where I is the $M \mathrm{x} M$ identity matrix.

Quantum Computation

Some necessary Linear Algebra

Claim 10.5 For every $M x M$ complex matrix A, the following conditions are equivalent:

1. A is unitary (i.e. $A A^{*}=I$)
2. For every vector $\mathbf{v} \in \mathbb{C}^{M},\|A \mathbf{v}\|_{2}=\|\mathbf{v}\|_{2}$.
3. For every orthonormal basis $\left\{\mathbf{v}^{i}\right\}_{i \in[M]}$ of \mathbb{C}^{M}, the set $\left\{A \mathbf{v}^{i}\right\}_{i \in[M]}$ is a orthonormal basis of \mathbb{C}^{M}.
4. The columns of A form an orthonormal basis of \mathbb{C}^{M}.
5. The rows of A form an orthonormal basis of \mathbb{C}^{M}.

Quantum Computation

The quantum register and its state vector

- In a standard digital computer, by taking m physical objects (every object has two states) together we have an m-bit register whose state can be described by a string in $\{0,1\}^{m}$.
- A quantum register is composed of m qubits, and its state is a superposition of all 2^{m} basic states: a vector $\mathbf{v}=$ $\left\langle\mathbf{v}_{0}{ }^{\prime}, \mathbf{v}_{0^{m-1}}, \ldots, \mathbf{v}_{1}{ }^{m}\right\rangle \in \mathbb{C}^{2 m}$, where $\sum_{x}\left|\mathbf{v}_{x}\right|^{2}=1$.

Quantum Computation

Quantum Operations

Definition 10.6 (Quantum Operation) A quantum operation for an m-qubit register is a function $F: \mathbb{C}^{2 m} \rightarrow \mathbb{C}^{2 m}$ that maps its previous state to the new state and satisfies the following conditions:

Linearity: F is a linear function. That is, for every $\mathbf{v} \in \mathbb{C}^{2 m}$,

$$
F(\mathbf{v})=\sum_{x}\left|\mathbf{v}_{x}\right|^{2} F(|x\rangle)
$$

Norm preservation: F maps unit vectors to unit vectors. That is, for every \mathbf{v} with $\|\mathbf{v}\|_{2}=1,\|F(\mathbf{v})\|_{2}=1$.

Lemma 10.7 (Composition of quantum operations) If A_{1}, A_{2} are matrices representing any quantum operations, then their composition (i.e. applying A_{1} followed by applying A_{2}) is also a quantum operation whose matrix is $A_{2} A_{1}$.

Quantum Computation

Some examples of Quantum Operations

- Flipping qubits
- Reordering qubits
- Copying qubits
- Rotation on single qubit
- AND of two qubits - Toffoli Gate
- The Hadamard operation

Quantum Computation

Quantum Computation and BQP

Definition 10.8 (Elementary quantum operations or quantum gates) A quantum operation is called elementary, or sometimes quantum gate, if it acts on three or less qubits of the register.

Quantum Computation

Quantum Computation and BQP

Definition 10.9 (Quantum Computation and the class BQP) Let $f:\{0,1\}^{*} \rightarrow\{0,1\}$ and $T: \mathbb{N} \rightarrow \mathbb{N}$ be some functions. We say that f is computable in quantum $T(n)$-time if there is a polynomial-time classical TM that on input $\left(1^{n}, 1^{T(n)}\right)$ for any $n \in \mathbb{N}$ outputs the description of quantum gates F_{1}, \ldots, F_{T} such that for every $x \in\{0,1\}^{n}$, we can compute $f(x)$ by the following process with probability at least $2 / 3$:

1. Initialize an m qubit quantum register to state $\left|x 0^{n-m}\right\rangle$ (i.e., x padded with zeros), when $m \leq$ $T(n)$.
2. Apply one after the other $T(n)$ elementary quantum operations F_{1}, \ldots, F_{T} to the register.
3. Measure the register and let Y denote the obtained value. (That is, if \mathbf{v} is the final state of the register, then Y is a random variable that takes the value y with probability $\left|\mathbf{v}_{y}\right|^{2}$ for every $y \in\{0,1\}^{m}$.)
4. Output Y_{1}.

A Boolean function $f:\{0,1\}^{*} \rightarrow\{0,1\}$ is in BQP if there is some polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such as that f is computable in quantum $p(n)$-time.

Quantum Computation

Quantum Circuits

Quantum circuits are similar to Boolean circuits: These are directed acyclic graphs with sources (vertices with in-degree zero) denoting the inputs, sinks (vertices with out-degree zero) denoting the outputs and internal nodes denoting the gates.

Apply Hadamard operation on $\left|q_{0}\right\rangle$
Apply the mapping $\left|q_{0} q_{1}\right\rangle \mapsto\left|q_{0}\left(q_{0} \oplus q_{1}\right)\right\rangle$

Quantum Computation

Classical Computation as a subcase of Quantum Computation

Lemma $\mathbf{1 0 . 1 0}$ (Boolean circuits as a subcase of quantum circuits) If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is computable by a Boolean circuit of size S then there is a sequence of $2 S+m+n$ quantum operations computing the mapping $|x\rangle\left|0^{2 m+S}\right\rangle \mapsto|x\rangle|f(x)\rangle\left|0^{S+m}\right\rangle$.

Corollary $\mathbf{1 0 . 1 1}$ BPP \subseteq BQP

Quantum Computation

Universal Operations

Theorem 10.12 (Universal basis for quantum operations [Deu89, Kit97]) For every $D \geq 3$ and $\varepsilon>0$, there is $l \leq 100\left(D \log ^{1} / \varepsilon\right)^{3}$ such that the following is true. Every $D \times D$ unitary matrix U can be approximated as a product of unitary matrices U_{1}, \ldots, U_{l} in the sense that its (i, j) the entry for each $i, j \leq D$ satisfies

$$
\left|U_{i, j}-\left(U_{l} \cdots U_{1}\right)_{i, j}\right|<\varepsilon
$$

and each U_{r} corresponds to applying either the Hadamard gate $\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$, the Toffoli gate $|a b c\rangle \mapsto|a b(c \oplus a \wedge b)\rangle$, or the phase shift gate $\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$, on at most three qubits.

Quantum Computation

Shor's Algorithm: Integer Factorization using Quantum Computers

- The integer factorization problem is to find, given an integer N, the set of all prime factors of N.
- The best classical algorithm takes roughly $2^{(\log N)^{1 / 3}}$ steps to factor N [LLMP90].

Theorem 10.15 Shor's algorithm: Factoring in BQP [Sho97]
There is a quantum algorithm that given a number N, runs in poly $(\log (N))$ and outputs the prime factorization of N.

Quantum Computation

Shor's Algorithm: Integer Factorization using Quantum Computers

1. \quad Since N has at most $\log N$ factors, it clearly suffices to show how to find a single factor of N in poly $(\log N)$ time because we can then repeat the algorithm with N divided by that factor, and thus find all factors
2. It is a well-known fact that in order to find a single factor, it suffices to be able to find the order of a random number $A(\bmod N)$, in other words, the smallest r such that $A^{r} \equiv$ $1(\bmod N)$. With good probability, the order r of A will be even and $A^{r / 2}-1$ will have a nontrivial common factor with N, which we can find using a GCD computation.
3. The mapping $A \mapsto A^{x}(\bmod N)$ is computable in $\operatorname{poly}(\log N)$ time even on classical TMs.

Using those observations we can come up with a simple poly $(\log N)$ time quantum algorithm that transforms a quantum register initialized to all zeros into the state that is the uniform superposition of all states of the type $|x\rangle$, where $x \leq N$ and satisfies $A^{x} \equiv y_{0}(\bmod N)$ for some randomly chosen $y_{0} \leq N-1$. By elementary number theory, the set of x 's form an arithmetic progression of the type $x_{0}+r i$ for $i=1,2, \ldots$ where $A^{x_{0}} \equiv y_{0}(\bmod N)$ is the order of A.

Quantum Computation

Shor's Algorithm: Integer Factorization using Quantum Computers

- We created a quantum state involving strong periodicity (namely an arithmetic progression) and we are interested in determining its period.
- The Quantum Fourier Transform (QFT) allows us to detect periods in quantum state. This is a quantum algorithm that takes a register from some arbitrary state $f \in \mathbb{C}^{M}$ into a state whose vectors is the Fourier transform \hat{f} of f.
- The QFT takes only $O\left(\log ^{2} M\right)$ elementary steps and is thus very sufficient.

Quantum Computation

Thank You

