coNP and Function Problems

Petros Barbagiannis $\mu \Pi \lambda \forall$

February 17, 2014

coNP

Definition: $\mathbf{c o N P}=\{L: \bar{L} \in \mathbf{N P}\}$

For every $L \subseteq\{0,1\}^{*}, L \in \mathbf{c o N P}$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial time TM M s.t. for every $x \in\{0,1\}^{*}$,

$$
x \in L \Leftrightarrow \forall u \in\{0,1\}^{p(|x|)}, M(x, u)=1
$$

coNP

If a language L is in coNP and every other language in coNP is polynomial-time Karp reducible to L, then L is coNP-complete.

TAUTOLOGY $=\{\varphi:$ every truth assignment satisfies $\varphi\}$

TAUTOLOGY is coNP-complete:
Let $L \in \mathbf{c o N P}$. Then $\bar{L} \in \mathbf{N P}$. By Cook-Levin theorem, there is a reduction R from \bar{L} to SAT. The reduction from L to TAUTOLOGY is $R^{\prime}=\neg R$.

$\mathrm{NP} \cap \mathrm{coNP}$

$L \in \mathbf{N P} \cap \operatorname{coNP}$ if $\forall x \in\{0,1\}^{*}$,

$$
\begin{aligned}
& x \in L \Rightarrow \exists u \in\{0,1\}^{p(|x|)} \text { s.t. } M(x, u)=1 \\
& x \notin L \Rightarrow \exists u \in\{0,1\}^{p(|x|)} \text { s.t. } M(x, u)=0
\end{aligned}
$$

FACTORING (D): Given two integers N, k does N have a prime factor $d<k$?
FACTORING $\in \mathbf{N P} \cap \mathbf{c o N P}$
*When two optimization problems are dual to each other, the decision versions of these problems are both in $\mathbf{N P} \cap$ coNP.

Algorithms and Complexity II

Function Problems

Definition: FNP

Let $L \in \mathbf{N P}$. There is a polynomially decidable relation R_{L} that for every input x there is a string $y,|y| \leq|x|^{O(1)}$ s.t. $R_{L}(x, y) \Leftrightarrow x \in L$. A function problem $F L$ associated with L is the following: given x, find any y s.t. $R_{L}(x, y)$. If no such y exists then return "no".

FP: The subclass of FNP problems that can be solved in polynomial time.
$\mathrm{FP} \subseteq \mathrm{TFNP} \subseteq \mathrm{FNP}$
$\mathbf{F P}=\mathbf{F N P} \Leftrightarrow \mathbf{P}=\mathbf{N P}$

Function Problems

FSAT: Given a Boolean expression φ, if φ is satisfiable return any satisfying truth assignment, otherwise return "no".

FSAT \in FNP

If SAT can be solved in polynomial time, so can FSAT. Let $A_{\text {SAT }}$ be a polynomial time algorithm for SAT. Given an expression φ with variables x_{1}, \ldots, x_{n} first check whether φ is satisfiable. If A_{SAT} says "no", then return "no". If it is satisfiable, by making $2 n$ calls of A_{SAT}, each time assigning true and false to variable x_{i}, and substituting the value that satisfies φ we can find a satisfying truth assignment for φ.

Total Function Problems

Definition: TFNP

$L \in$ TFNP if for every string x there is at least one y such that $R_{L}(x, y)$, that is, the function computing y is total.

FACTORING \in TFNP

Algorithms and Complexity II

TFNP Reductions

TFNP reduction from problem L to problem K is the following two functions:

- a function f that maps each instance x from L to an instance $f(x)$ of K
- a function g that, for each instance x of L and answer y for instance $f(x)$ yields an answer $g(x, y)$ for x

PLS

Definition: PLS

$L \in$ PLS

- y (solution) is polynomially bounded in the size of x (input)
- Polynomial time algorithm that $\forall x$ determines whether x is an instance of L and if so, outputs an initial solution for L
- Polynomial time algorithm that given x, y, determines whether y is a solution for x and if so, outputs an integer value $c(x, y)$
- Polynomial time algorithm that given x, y, either reports "locally optimal" or moves to a new neighbor/solution

PLS Reductions

Let $L, K \in \mathbf{P L S}$

L is PLS-reducible to K if there exist polynomial time computable functions f and g s.t.:

- f maps instances x of L to instances $f(x)$ of K
- g maps (solution of $f(x), x$) to solutions of x
- $\forall x$ of L if s is a local optimum for instance $f(x)$ of K , then $g(s, x)$ is local optimum for x
L is PLS-complete if every problem in PLS is PLS-reducible to L.

PLS Reductions

CIRCUIT FLIP:

Given a feedback-free Boolean circuit composed of AND, OR and NOT gates, with m inputs and n outputs, find an input string such that the output cannot be improved lexicographically by flipping a single input bit. A solution is any m-bit vector s.
A neighbor of s is any vector that can be obtained from s by changing exactly one bit.

CIRCUIT FLIP is PLS-complete
Proof: see [3].

PPAD

$L \in \mathbf{P P A D}_{\mathbf{0}}$ if:

- y is polynomially bounded
- a polynomial time algorithm that given a string x determines whether x is an instance of L and if so outputs an initial source solution y_{0}
- a polynomial time algorithm that given an instance x and a string y determines whether y is a solution for x and if so, outputs a string $\operatorname{pred}(x, y)=y^{\prime}$
- a polynomial time algorithm that given an instance x of L and a string y determines whether y is a solution for x and if so outputs a string $\operatorname{succ}(x, y)=y^{\prime}$

A problem is in PPAD if it is TFNP-reducible to a $\mathbf{P P A D}_{\mathbf{0}}$-complete problem.

END OF THE LINE $\in \mathbf{P P A D}_{\mathbf{0}}$

Bibliography

1. C. H. Papadimitriou, Computational Complexity, 1993
2. S. Arora, B. Barak, Computational Complexity-A modern approach, 2007
3. D. Johnson, C. Papadimitriou, M. Yannakakis, How easy is local search?, 1988
4. D. Johnson, The NP-completeness Column: Finding Needles in Haystacks, 2007
5. C. Daskalakis, P. Goldberg, C. Papadimitriou, The Complexity of Computing a Nash Equilibrium, 2008
