Approximation & Complexity

Ioannis Psarros

National & Kapodistrian University of Athens

April 11, 2014

Ioannis Psarros

Approximation & Complexity

April 11, 2014 1 / 24

Definitions

Definition

Let A an optimization problem.

- For each instance x we have a set of feasible solutions F(x).
- For each $s \in F(x)$ we have a positive integer cost c(s).
- The optimum cost is defined as OPT(x) = min_{s∈F(x)} c(s) (or max_{s∈F(x)} c(s)).

Definitions

Definition (Minimization)

Let M an algorithm which returns $M(x) \in F(x)$. M is an ρ -approximation algorithm, where $\rho > 1$, if for all x we have,

$$\frac{c(M(x))}{\operatorname{OPT}(x)} \le \rho.$$

Definition (Maximization)

Let *M* an algorithm which returns $M(x) \in F(x)$. *M* is an ρ -approximation algorithm, where $0 < \rho < 1$, if for all x we have,

$$\frac{c(M(x))}{\operatorname{OPT}(x)} \ge \rho.$$

MAXSAT

Definition (MAXSAT)

Given a set of m clauses in n boolean variables, find the truth assignment that satisfies the most.

Consider the following randomized algorithm:

- Set each Boolean variable to be *true* independently with probability 1/2.
- Return the resulting truth assignment.

MAXSAT

Consider a clause c_i with k_i literals. The probability $p(c_i)$ that this clause is satisfied is $1 - \frac{1}{2^{k_i}}$. Hence,

$$\mathbb{E}(N) = \sum_{i=1}^{m} p(c_i) \ge \frac{1}{2}m \ge \frac{1}{2}\text{OPT}$$

where N denotes the number of satisfied clauses. Can we do it deterministically?

MAXSAT

The following holds:

$$\mathbb{E}(N) = \frac{1}{2}(\mathbb{E}(N|x_1 = true) + \mathbb{E}(N|x_1 = false)).$$

So, deterministically assign to the next variable the value that maximizes the expectation.

Theorem

There exists a polynomial time deterministic algorithm with approximation factor 1/2 for the MAXSAT problem.

The above is a general method for derandomizing known as the method of conditional expectation.

L-reductions

Ordinary reductions are inadequate for studying approximability.

Definition

Let A and B two optimization problems. An L-reduction from A to B is a pair of functions R and S, both computed in logarithmic space, with following two additional properties:

• If x an instance of A and R(x) an instance of B then:

 $OPT(R(x)) \leq \alpha \cdot OPT(x),$

where $\alpha > 0$.

• If s feasible solution of R(x) then S(s) is a feasible solution of x s.t.

$$|OPT(x) - c(S(s))| \le \beta \cdot |OPT(R(x)) - c(s)|,$$

where $\beta > 0$.

Properties

Proposition

If (R, S) is an L-reduction from problem A to problem B and (R', S') is an L-reduction from problem B to problem C, then their composition $(R \cdot R', S' \cdot S)$ is an L-reduction from A to C.

Proposition

If there is an L-reduction (R, S) from A to B with constants α , β and there is a polynomial-time $(1 + \epsilon)$ -approximation algorithm for B, then there is a polynomial-time $(1 \pm \alpha\beta\epsilon)$ -approximation algorithm for A.

Given an instance x of A apply the $(1 + \epsilon)$ -approx algorithm to the instance R(x) of B. We obtain solution s and we return S(s).

The class SNP

Fagin's theorem states that all graph theoretic properties in NP can be expressed in existential second-order logic.

Definition

SNP Strict NP or SNP consists of all properties expressible as

 $\exists S \forall x_1 \forall x_2 \cdots \forall x_k \phi(S, P, x_1, \cdots, x_k),$

where ϕ is a quantifier-free First-Order expression and P predicates (the input).

But SNP contains decision problems..

The class MAXSNP

Definition

Define MAXSNP₀ to be the class of optimization problems expressed as

$$\max_{S} |\{(x_1,\cdots,x_k)\} \in U^k : \phi(P_1,\cdots,P_m,S,x_1,\cdots,x_k)\}|,$$

where U is a finite universe and P_1, \dots, P_m, S predicates.

Definition

MAXSNP is the class of optimization problems that are L-reducible to a problem in $MAXSNP_0$.

The class MAXSNP

Example

 $\mathsf{MAX}\text{-}\mathsf{CUT}$ is in MAXSNP_0 and therefore in $\mathsf{MAXSNP}.$ It can be written as follows:

$$\max_{S} |\{(x,y) : ((G(x,y) \lor G(y,x)) \land S(x) \land \neg S(y))\}|.$$

The class MAXSNP

Example

MAX2SAT is in MAXSNP₀ and therefore in MAXSNP. Let P_0 , P_1 , P_2 predicates s.t.:

- $P_0(x, y) \Leftrightarrow x \lor y$ is a clause.
- $P_1(x,y) \Leftrightarrow \neg x \lor y$ is a clause.
- $P_2(x,y) \Leftrightarrow \neg x \lor \neg y$ is a clause.

MAX2SAT can be written as

$$\max_{S} |\{(x, y) : \phi(P_0, P_1, P_2, S, x, y)\}|,$$

where ϕ is the following expression:

 $(P_0(x,y) \land (S(x) \lor S(y))) \lor (P_1(x,y) \land (\neg S(x) \lor S(y))) \lor$

 $\lor (P_2(x,y) \land (\neg S(x) \lor \neg S(y))).$

Definition

A problem in MAXSNP is MAXSNP-complete if all problems in MAXSNP L-reduce to it.

Theorem

MAX3SAT is MAXSNP-complete.

Proof.

It suffices to show that all problems in $MAXSNP_0$ can be *L*-reduced to MAX3SAT. Consider a problem $A \in MAXSNP_0$ which is defined by the expression:

$$\max_{S} |\{(x_1,\cdots,x_k):\phi\}|.$$

Proof(Cont.)

- For each k-tuple $y \in U^k$ substitute for (x_1, \dots, x_k) in ϕ and obtain ϕ_y .
- φ_y contains atomic expressions that uses P_i and S. Evaluate atomic expressions that use P_i.
- ϕ_y now consists of atomic expressions of the form $S(y_{i_1}, \cdots, y_{i_r})$.
- k is independent of the input $\implies \phi_y$ can be transformed into an equivalent 3CNF expression ϕ'_y of constant size.

Proof(Cont.)

Each satisfiable 3CNF expression ϕ_y' consists of at most c clauses, where c depends on $\phi.$ Hence,

 $OPT(R(x)) \leq c \cdot m$

where m the number of satisfiable expressions $\phi_y.$ We can also see that

 $OPT(x) \ge 2^{-k}m.$

Hence,

$$OPT(x) \leq 2^k c \cdot OPT(x).$$

The first condition is satisfied for $\alpha = 2^k c$.

Proof(Cont.)

Second condition is also satisfied for $\beta = 1$. We can lift the cost function for MAX3SAT s.t. the number of unsatisfied clauses equals the number of unsatisfied expressions $\phi_{\rm Y}$. In other words,

$$|\operatorname{OPT}(x) - c(S(s))| \le |\operatorname{OPT}(R(x)) - c(s)|.$$

PTAS-FPTAS

Definition

An optimization problem has a polynomial time approximation scheme (PTAS) if there exists $(1 \pm \epsilon)$ -approximation algorithm for any $\epsilon > 0$ and running time bounded by a polynomial in the size of the input.

Definition

An optimization problem has a fully polynomial time approximation scheme (FPTAS) if there exists $(1 \pm \epsilon)$ -approximation algorithm for any $\epsilon > 0$ and running time bounded by a polynomial in the size of the input and $1/\epsilon$.

Essentialy, FPTAS is the best we can hope for an NP-hard optimization problem.

FPTAS for the knapshack problem

The knapshack problem admits a pseudo-polynomial algorithm with running time $O(n^2P)$ where P is the profit of the most valuable object. What if P is bounded by a polynomial in n? An FPTAS for the knapshack problem:

• Given
$$\epsilon > 0$$
, let $K = \frac{\epsilon P}{n}$.

- For each object a_i define profit $profit'(a_i) = \lfloor \frac{profit(a_i)}{K} \rfloor$.
- Using the dynamic programming algorithm, find the best solution S' for the new set of profits.

FPTAS for the knapshack problem

Lemma

Let A the output of our algorithm. Then,

$$profit(A) \ge (1 - \epsilon)OPT.$$

Proof

Let O the set that gives the optimum solution.

$$profit(O) - K \cdot profit'(O) \le nK$$

 $profit(S') \ge K \cdot profit'(O) \ge profit(O) - nK = OPT - \epsilon P \ge (1 - \epsilon)OPT$

The running time is $O(n^2 \lfloor \frac{P}{K} \rfloor) = O(\frac{n^3}{\epsilon}).$

FPRAS

Definition

Consider a problem in P whose counting version f is #P-complete. An algorithm A is a fully polynomial randomized approximation scheme (FPRAS) if for each instance $x \in \Sigma^*$ and error parameter $\epsilon > 0$,

$$Pr[|A(x) - f(x)| \le \epsilon f(x)] \ge \frac{3}{4}$$

and the running time of A is polynomial in |x| and $1/\epsilon$.

Counting DNF Solutions

Problem

Let $f = C_1 \vee C_2 \vee \cdots \vee C_m$ be a formula in disjunctive normal form on nBoolean variables x_1, \cdots, x_n . Compute #f, the number of satisfying truth assignments of f.

Let S_i be the set of truth assignments that satisfy C_i . Clearly $|S_i| = 2^{n-r_i}$ where r_i the number of literals in C_i .Let M be the multiset union of all S_i .Let $c(\tau)$ be the number of clauses that τ satisfies. Pick a satisfying truth assignment, τ , for f with probability $c(\tau)/|M|$ and define $X(\tau) = |M|/c(\tau)$.

Counting DNF Solutions

Pick at random a satisfying truth assignment, τ , for f with probability $c(\tau)/|M|$:

- First pick a clause so that the probability of picking clause C_i is $|S_i|/|M|$.
- Next, among the truth assignments satisfying the picked clause, pick one at random.

$$Pr[\tau \text{ is picked}] = \sum_{i:\tau \text{ satisfies } C_i} \frac{|S_i|}{|M|} \cdot \frac{1}{|S_i|} = \frac{c(\tau)}{|M|}$$
$$\mathbb{E}[X] = \sum_{\tau} Pr[\tau \text{ is picked}] \cdot X(\tau) = \sum_{\tau \text{ satisfies } f} \frac{c(\tau)}{|M|} \cdot \frac{|M|}{c(\tau)} = \#f.$$

Counting DNF Solutions

Luckily,

$$\frac{\sigma(X)}{\mathbb{E}[X]} \le m - 1.$$

Sampling X polynomially many times (in *n* and $1/\epsilon$) and simply outputting the mean leads to an FPRAS for #f. In particular, if we set $k = 4(m-1)^2/\epsilon^2$, the following holds (by Chebyshev's inequality)

$$\Pr[|X_k - \mathbb{E}[X_k]| \ge \epsilon \mathbb{E}[X_k]] \le (\frac{\sigma(X_k)}{\epsilon \mathbb{E}[X_k]})^2 = (\frac{\sigma(X)}{\epsilon \sqrt{k} \mathbb{E}[X]})^2 \le \frac{1}{4}$$

Thank You!