Approximation \& Complexity

loannis Psarros

National \& Kapodistrian University of Athens
April 11, 2014

Definitions

Definition

Let A an optimization problem.

- For each instance x we have a set of feasible solutions $F(x)$.
- For each $s \in F(x)$ we have a positive integer cost $c(s)$.
- The optimum cost is defined as $\operatorname{OPT}(x)=\min _{s \in F(x)} c(s)$ (or $\left.\max _{s \in F(x)} c(s)\right)$.

Definitions

Definition (Minimization)

Let M an algorithm which returns $M(x) \in F(x) . M$ is an ρ-approximation algorithm, where $\rho>1$, if for all x we have,

$$
\frac{c(M(x))}{\operatorname{OPT}(x)} \leq \rho
$$

Definition (Maximization)

Let M an algorithm which returns $M(x) \in F(x) . M$ is an ρ-approximation algorithm, where $0<\rho<1$, if for all x we have,

$$
\frac{c(M(x))}{\operatorname{OPT}(x)} \geq \rho
$$

MAXSAT

Definition (MAXSAT)

Given a set of m clauses in n boolean variables, find the truth assignment that satisfies the most.

Consider the following randomized algorithm:

- Set each Boolean variable to be true independently with probability $1 / 2$.
- Return the resulting truth assignment.

MAXSAT

Consider a clause c_{i} with k_{i} literals. The probability $p\left(c_{i}\right)$ that this clause is satisfied is $1-\frac{1}{2^{k_{i}}}$.
Hence,

$$
\mathbb{E}(N)=\sum_{i=1}^{m} p\left(c_{i}\right) \geq \frac{1}{2} m \geq \frac{1}{2} \mathrm{OPT}
$$

where N denotes the number of satisfied clauses.
Can we do it deterministically?

MAXSAT

The following holds:

$$
\mathbb{E}(N)=\frac{1}{2}\left(\mathbb{E}\left(N \mid x_{1}=\text { true }\right)+\mathbb{E}\left(N \mid x_{1}=\text { false }\right)\right)
$$

So, deterministically assign to the next variable the value that maximizes the expectation.

Theorem
There exists a polynomial time deterministic algorithm with approximation factor $1 / 2$ for the MAXSAT problem.

The above is a general method for derandomizing known as the method of conditional expectation.

L-reductions

Ordinary reductions are inadequate for studying approximability.

Definition

Let A and B two optimization problems. An L-reduction from A to B is a pair of functions R and S, both computed in logarithmic space, with following two additional properties:

- If x an instance of A and $R(x)$ an instance of B then:

$$
\operatorname{OPT}(R(x)) \leq \alpha \cdot \operatorname{OPT}(x)
$$

where $\alpha>0$.

- If s feasible solution of $R(x)$ then $S(s)$ is a feasible solution of x s.t.

$$
|\mathrm{OPT}(x)-c(S(s))| \leq \beta \cdot|\mathrm{OPT}(R(x))-c(s)|,
$$

where $\beta>0$.

Properties

Proposition

If (R, S) is an L-reduction from problem A to problem B and $\left(R^{\prime}, S^{\prime}\right)$ is an L-reduction from problem B to problem C, then their composition $\left(R \cdot R^{\prime}, S^{\prime} \cdot S\right)$ is an L-reduction from A to C.

Proposition

If there is an L-reduction (R, S) from A to B with constants α, β and there is a polynomial-time $(1+\epsilon)$-approximation algorithm for B, then there is a polynomial-time $(1 \pm \alpha \beta \epsilon)$-approximation algorithm for A.

Given an instance x of A apply the $(1+\epsilon)$-approx algorithm to the instance $R(x)$ of B. We obtain solution s and we return $S(s)$.

The class SNP

Fagin's theorem states that all graph theoretic properties in NP can be expressed in existential second-order logic.

Definition

SNP Strict NP or SNP consists of all properties expressible as

$$
\exists S \forall x_{1} \forall x_{2} \cdots \forall x_{k} \phi\left(S, P, x_{1}, \cdots, x_{k}\right)
$$

where ϕ is a quantifier-free First-Order expression and P predicates (the input).

But SNP contains decision problems..

The class MAXSNP

Definition

Define MAXSNP_{0} to be the class of optimization problems expressed as

$$
\left.\max _{S} \mid\left\{\left(x_{1}, \cdots, x_{k}\right)\right\} \in U^{k}: \phi\left(P_{1}, \cdots P_{m}, S, x_{1}, \cdots, x_{k}\right)\right\} \mid
$$

where U is a finite universe and P_{1}, \cdots, P_{m}, S predicates.

Definition

MAXSNP is the class of optimization problems that are L-reducible to a problem in MAXSNP ${ }_{0}$.

The class MAXSNP

Example

MAX-CUT is in MAXSNP 0 and therefore in MAXSNP. It can be written as follows:

$$
\max _{S}|\{(x, y):((G(x, y) \vee G(y, x)) \wedge S(x) \wedge \neg S(y))\}|
$$

The class MAXSNP

Example

MAX2SAT is in MAXSNP 0_{0} and therefore in MAXSNP. Let P_{0}, P_{1}, P_{2} predicates s.t.:

- $P_{0}(x, y) \Leftrightarrow x \vee y$ is a clause.
- $P_{1}(x, y) \Leftrightarrow \neg x \vee y$ is a clause.
- $P_{2}(x, y) \Leftrightarrow \neg x \vee \neg y$ is a clause.

MAX2SAT can be written as

$$
\max _{S}\left|\left\{(x, y): \phi\left(P_{0}, P_{1}, P_{2}, S, x, y\right)\right\}\right|,
$$

where ϕ is the following expression:

$$
\begin{gathered}
\left(P_{0}(x, y) \wedge(S(x) \vee S(y))\right) \vee\left(P_{1}(x, y) \wedge(\neg S(x) \vee S(y))\right) \vee \\
\vee\left(P_{2}(x, y) \wedge(\neg S(x) \vee \neg S(y))\right) .
\end{gathered}
$$

MAXSNP-Completeness

Definition

A problem in MAXSNP is MAXSNP-complete if all problems in MAXSNP L-reduce to it.

Theorem
MAX3SAT is MAXSNP-complete.

Proof.

It suffices to show that all problems in MAXSNP 0 can be L-reduced to MAX3SAT. Consider a problem $A \in$ MAXSNP $_{0}$ which is defined by the expression:

$$
\max _{S}\left|\left\{\left(x_{1}, \cdots, x_{k}\right): \phi\right\}\right| .
$$

MAXSNP-Completeness

Proof(Cont.)

- For each k-tuple $y \in U^{k}$ substitute for $\left(x_{1}, \cdots, x_{k}\right)$ in ϕ and obtain ϕ_{y}.
- ϕ_{y} contains atomic expressions that uses P_{i} and S. Evaluate atomic expressions that use P_{i}.
- ϕ_{y} now consists of atomic expressions of the form $S\left(y_{i_{1}}, \cdots, y_{i_{r}}\right)$.
- k is independent of the input $\Longrightarrow \phi_{y}$ can be transformed into an equivalent 3CNF expression ϕ_{y}^{\prime} of constant size.

MAXSNP-Completeness

Proof(Cont.)

Each satisfiable 3CNF expression ϕ_{y}^{\prime} consists of at most c clauses, where c depends on ϕ. Hence,

$$
\mathrm{OPT}(R(x)) \leq c \cdot m,
$$

where m the number of satisfiable expressions ϕ_{y}.
We can also see that

$$
\mathrm{OPT}(x) \geq 2^{-k} m
$$

Hence,

$$
\mathrm{OPT}(x) \leq 2^{k} c \cdot \mathrm{OPT}(x)
$$

The first condition is satisfied for $\alpha=2^{k} c$.

MAXSNP-Completeness

Proof(Cont.)

Second condition is also satisfied for $\beta=1$. We can lift the cost function for MAX3SAT s.t. the number of unsatisfied clauses equals the number of unsatisfied expressions ϕ_{y}. In other words,

$$
|\mathrm{OPT}(x)-c(S(s))| \leq|\mathrm{OPT}(R(x))-c(s)|
$$

PTAS-FPTAS

Definition

An optimization problem has a polynomial time approximation scheme (PTAS) if there exists ($1 \pm \epsilon$)-approximation algorithm for any $\epsilon>0$ and running time bounded by a polynomial in the size of the input.

Definition

An optimization problem has a fully polynomial time approximation scheme (FPTAS) if there exists ($1 \pm \epsilon$)-approximation algorithm for any $\epsilon>0$ and running time bounded by a polynomial in the size of the input and $1 / \epsilon$.

Essentialy, FPTAS is the best we can hope for an NP-hard optimization problem.

FPTAS for the knapshack problem

The knapshack problem admits a pseudo-polynomial algorithm with running time $O\left(n^{2} P\right)$ where P is the profit of the most valuable object. What if P is bounded by a polynomial in n ?
An FPTAS for the knapshack problem:

- Given $\epsilon>0$, let $K=\frac{\epsilon P}{n}$.
- For each object a_{i} define profit profit $\left(a_{i}\right)=\left\lfloor\frac{\text { profit }\left(a_{i}\right)}{K}\right\rfloor$.
- Using the dynamic programming algorithm, find the best solution S^{\prime} for the new set of profits.

FPTAS for the knapshack problem

Lemma

Let A the output of our algorithm. Then,

$$
\operatorname{profit}(A) \geq(1-\epsilon) \text { OPT. }
$$

Proof

Let O the set that gives the optimum solution.

$$
\operatorname{profit}(O)-K \cdot \operatorname{profit}^{\prime}(O) \leq n K
$$

$\operatorname{profit}\left(S^{\prime}\right) \geq K \cdot \operatorname{profit}^{\prime}(O) \geq \operatorname{profit}(O)-n K=O P T-\epsilon P \geq(1-\epsilon) O P T$
The running time is $O\left(n^{2}\left\lfloor\frac{P}{K}\right\rfloor\right)=O\left(\frac{n^{3}}{\epsilon}\right)$.

FPRAS

Definition

Consider a problem in P whose counting version f is $\# P$-complete. An algorithm A is a fully polynomial randomized approximation scheme (FPRAS) if for each instance $x \in \Sigma^{*}$ and error parameter $\epsilon>0$,

$$
\operatorname{Pr}[|A(x)-f(x)| \leq \epsilon f(x)] \geq \frac{3}{4}
$$

and the running time of A is polynomial in $|x|$ and $1 / \epsilon$.

Counting DNF Solutions

Problem

Let $f=C_{1} \vee C_{2} \vee \cdots \vee C_{m}$ be a formula in disjunctive normal form on n Boolean variables x_{1}, \cdots, x_{n}. Compute $\# f$, the number of satisfying truth assignments of f.

Let S_{i} be the set of truth assignments that satisfy C_{i}. Clearly $\left|S_{i}\right|=2^{n-r_{i}}$ where r_{i} the number of literals in C_{i}. Let M be the multiset union of all S_{i}. Let $c(\tau)$ be the number of clauses that τ satisfies. Pick a satisfying truth assignment, τ, for f with probability $c(\tau) /|M|$ and define $X(\tau)=|M| / c(\tau)$.

Counting DNF Solutions

Pick at random a satisfying truth assignment, τ, for f with probability $c(\tau) /|M|$:

- First pick a clause so that the probability of picking clause C_{i} is $\left|S_{i}\right| /|M|$.
- Next, among the truth assignments satisfying the picked clause, pick one at random.

$$
\begin{gathered}
\operatorname{Pr}[\tau \text { is picked }]=\sum_{i: \tau \text { satisfies }} \frac{\left|S_{i}\right|}{|M|} \cdot \frac{1}{\left|S_{i}\right|}=\frac{c(\tau)}{|M|} \\
\mathbb{E}[X]=\sum_{\tau} \operatorname{Pr}[\tau \text { is picked }] \cdot X(\tau)=\sum_{\tau \text { satisfies } f} \frac{c(\tau)}{|M|} \cdot \frac{|M|}{c(\tau)}=\# f .
\end{gathered}
$$

Counting DNF Solutions

Luckily,

$$
\frac{\sigma(X)}{\mathbb{E}[X]} \leq m-1
$$

Sampling X polynomially many times (in n and $1 / \epsilon$) and simply outputting the mean leads to an FPRAS for $\# f$.
In particular, if we set $k=4(m-1)^{2} / \epsilon^{2}$, the following holds (by Chebyshev's inequality)

$$
\operatorname{Pr}\left[\left|X_{k}-\mathbb{E}\left[X_{k}\right]\right| \geq \epsilon \mathbb{E}\left[X_{k}\right]\right] \leq\left(\frac{\sigma\left(X_{k}\right)}{\epsilon \mathbb{E}\left[X_{k}\right]}\right)^{2}=\left(\frac{\sigma(X)}{\epsilon \sqrt{k} \mathbb{E}[X]}\right)^{2} \leq \frac{1}{4}
$$

Thank You!

