
Algorithms & Complexity II

Avarikioti Zeta

March 17, 2014

 It alternates between N… (existential) and coN… (universal)

 Existential state is accepting iff any of its child states is accepting - OR
(without children rejects)

 Universal state is accepting iff all of its child states are accepting –
AND (without children accepts)

 Alternating computation is a “tree”

 Computation accepts iff its initial state (configuration) is accepting

Alternation: generalizes non-determinism, where each state
is either “existential” or “universal”:
Old: existential states New: universal states

2 / 1 8

Alternating Computation

3 / 1 8

Alternating Turing Machines (ATMs)

& Computation Tree

A nondeterministic TM
N = (K , Σ, Δ, s) in which the
set of states K is partitioned
into two sets, K = KAND ᴜ KOR.

Let x be the input and
consider the tree of
computations of N on input x.

Each node in this tree is a
configuration of the precise
machine, and includes the
step number of the machine.

universal

existential

Yes!

initial state

4 / 1 8

Alternating Complexity Classes

ATIME(f(n)): the class of all languages decided by an ATM, all
computations of which on input x halt after at most f(lxl) steps.

AP = U
k>1

ATIME(nk) alternating polynomial time

ASPACE(f(n)): the class of all languages decided by an ATM that
uses no more than f(lxl) space on input x.

AL = U
k>1

ASPACE (logn) alternating logarithmic space

5 / 1 8

APSPACE = U
k>1

ASPACE(nk) alternating polynomial space

AEXPTIME =U
k>1

ATIME(2nk
) alternating exponential time

AEXPSPACE =U
k>1

ASPACE(2nk
) alternating exponential space

Alternating Complexity Classes

Alternating Space/Time

Relationships

Theorem: P ⊆NP ⊆AP

6 / 1 8

Chandra,

Stockmeyer &

Kozen, 1981

EXPSPACE=AEXPTIME

NPSPACE=PSPACE=AP

P=AL

NL ⊆ ATIME (clog2n)

NL

ATIME(logn)⊆ L

L

NP

NEXP

EXP=APSPACE

ATIME(f(n)) ⊆ DSPACE(f(n))

NSPACE(f(n)) ⊆ATIME(f 2(n))

ASPACE(f(n)) = DTIME(2O(f(n)))

7 / 1 8

 MCVP is P-Complete (Ch.8)
 MCVP is AL-Complete
 Both classes are closed under reductions and

they have the same complete problem

AL=P

8 / 1 8

AND

AND

OR

OROR

OR

TRUE FALSE TRUE TRUE

KAND

KOR

The monotone circuit value
problem is composed of a set of
gates g1, . . . , gn where each is:
 an AND gate, gi = gi ∧ gk,
 an OR gate, gi = gi ∨ gk

 a constant value, gi = true or
false.

We wish to compute the value
of gn.

AL=P (MCVP is AL-complete)

9 / 1 8

MCVP ∈ AL

 The input of ATM is a circuit

 The machine examines the output gate of the circuit:
 If it is an AND gate, then the machine enters an AND state;
 if the output gate is an OR gate, then it enters an OR state.

 The machine determines the two gates that are predecessors of the output
and it nondeterministically chooses one.

 The same process is repeated at the new gate, till the input gate where the
machine accepts if it is a true gate, and rejects if it is a false gate.

Only logarithmic space is needed.

AL=P (MCVP is AL-complete)

We will now show that any language in AL is reducible to MCVP.

Consider such a language, L, the corresponding Turing Machine, M, and an input, x.
We shall construct a circuit such that it evaluates to True if and only if M accepts x.

 The gates of the circuit are all pairs of the form (C,i), where C is a configuration
of M on input x, and i stands for the step number, an integer 0 and |x|k

 There is an arc from gate (C1,i) to (C2,j) if and only if C2 yields in one step C1
and j = i + 1

 Gate type depends on the state:
 If C ∈ KOR OR gate
 If C ∈ KAND AND gate
 If C ∈ F (yes)TRUE gate
 If C ∈ F (no)FALSE gate
 If C is s (initial state) output gate

1 0 / 1 8

AP=PSPACE

Let φ be a Boolean expression with n variables then the expression
∃x1∀x2 . . .Qnxn, where the quantifiers alternate is a QSAT expression.

 QSAT is PSPACE-Complete

 QSAT is AP-Complete

 Both classes are closed under reductions and they have the
same complete problem

1 1 / 1 8

AP=PSPACE
(QSAT i s PSPACE-complete)

QSAT ∈ PSPACE
 All possible truth assignments of the variables can be arranged as the leaves of a full

binary tree of depth n
 We turn this tree into a Boolean circuit, where all gates at the i-th level are AND if i is even

and OR gates if I is odd.
 The input gate is true iff the truth assignment satisfies φ.
We can evaluate the circuit in O(n) space.

1 2 / 1 8

AP=PSPACE
(QSAT i s PSPACE-complete)

We will now show that any language in PSPACE is reducible to QSAT

 For input x consider the configuration graph of M 2m configurations,

m= O(nk)

 Reachability method:

ψi (X,Y) is true ⇔ configuration Y can be reached from configuration X

in ≤ 2i steps, for i= 0,1,…,m

 QSAT: x∈L→ ψm (A,B)

 ψ0 (A,B) can be written in DNF

 Bad idea: ψi+1 = ∃Ζ [ψi (Α,Ζ) ∧ψi (Ζ,Β)]

 Savitch’s trick: ψi+1 = ∃Ζ∀Χ∀Υ [((X=A ∧ Y=Z)∨(X=Z ∧ Y=B))  ψi (X,Y)]

 Convert to prenex DNF

 L ≤log coQSAT

 PSPACE=coPSPACE
1 3 / 1 8

AP=PSPACE
(QSAT i s AP-complete)

QSAT ∈ AP

 The computation will guess the truth values of the variables X1, X2, . ..
one- by-one, where existentially quantified variables are guessed at
states in KOR , while universally quantified ones at states in KAND.

 A final state is accepting if the guessed truth assignment satisfies the
expression, and rejecting otherwise.

 It follows from the definition of acceptance for alternating machines
that a quantified expression is accepted iff it is true; the time needed is
polynomial.

1 4 / 1 8

AP=PSPACE
(QSAT i s AP-complete)

We will now show that any language in AP is reducible to QSAT

 The computation of a polynomial-time ATM can be captured by a table,
with extra nondeterministic choices.

 The quantifiers are universal if the current state is in KAND and
existential if the current state in KOR.

 The variables standing for nondeterministic choices at even levels are
existentially quantified, and at odd levels universally.

 The ATM accepts the input iff the resulting quantified expression is
true.

1 5 / 1 8

For every i ∈ ℕ, Πi
p
= ∪cΠiTIME(nc)

For every i ∈ N, we define ΣiTIME(T(n)) to be the set of languages accepted by a
T(n)-time ATM M whose initial state is labeled “∃” and on which every input and on
every (directed) path from the starting configuration in the configuration graph, M
can alternate at most i−1 times from states with one label to states with the other
label.

For every i ∈ N, we define ΠiTIME(T(n)) to be the set of languages accepted by a
T(n)-time ATM M whose initial state is labeled “∀” and on which every input and on
every (directed) path from the starting configuration in the configuration graph, M
can alternate at most i−1 times from states with one label to states with the other
label.

For every i ∈ ℕ, Σi
p
= ∪cΣiTIME(nc)

ATMs restricted to a fixed

number of alternations

1 6 / 1 8

For every two functions S, T : N → N, define TISP(T(n), S(n))
to be the set of languages decided by a TM M that on every
input x takes at most O(T(|x|)) steps and uses at most O(S(|x|))
cells of its read-write tapes.

The class TISP

Note: TISP(T(n), S(n)) ≠ DTIME(T(n)) ∩ SPACE(S(n))

 SAT ∉ TISP(n1.1, n0.1)

 NTIME (n) ⊈ TISP(n1.2,n0.2)

 TISP(n12, n2) ⊆ Σ2TIME(n8)

 If NTIME(n) ⊆ DTIME(n1.2), then Σ2TIME(n8) ⊆ NTIME(n9.6)

1 7 / 1 8

BIBLIOGRAPHY
 CHRISTOS PAPADIMITRIOU, COMPUTATIONAL COMPLEXITY, ADDISON WESLEY,

1994

 SANJEEV ARORA AND BOAZ BARAK, COMPUTATIONAL COMPLEXITY: A MODERN

APPROACH, CAMBRIDGE UNIVERSITY PRESS, 2009

 MICHAEL SIPSER , INTRODUCTION TO THE THEORY OF COMPUTATION,

THOMSON COURSE TECHNOLOGY, 2006

DEXTER KOZEN ASHOK K. CHANDRALARRY STOCKMEYER

1 8 / 1 8

