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Alternating Computation

Alternation: generalizes non-determinism, where each state

is either “existential” or “universal”:
Old: existential states @ New: universal states

» It alternates between N... (existential) and coN... (universal)

» Existential state is accepting iff any of its child states is accepting - OR
(without children-> rejects)

» Universal state is accepting iff all of its child states are accepting -
AND (without children—> accepts)

» Alternating computation is a “tree”

» Computation accepts iff its initial state (configuration) is accepting
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Alternating Turing Machines (ATMs)

& Computation Tree
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Alternating Complexity Classes

ATIME(f(n)): the class of all languages decided by an ATM, all
computations of which on input x halt after at most f(Ixl) steps.

AP = UMAT]ME(nk) alternating polynomial time

| ASPACE(f(n)): the class of all languages decided by an ATM that

uses no more than f(Ixl) space on input x.

AL = Uk> IASPACE (logn) alternating logarithmic space
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Alternating Complexity Classes

APSPACE = Uk>1 ASPACE(Ilk) alternating polynomial space
AEXPTIME =Uk>1 ATIME(an) alternating exponential time

AEXPSPACE =Uk>1 ASPACE(an) alternating exponential space
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Alternating Space/Time
Relationships

Theorem: P SNP CAP

= ATIME(f(n)) € DSPACE(f(n)) SATIME(f 2(n))
= PSPACE = NPSPACE CAPSPACE
= ASPACE(f(n)) = DTIME(20())

= AL=P

» AP = PSPACE Chandra
Stockmeyer &

= APSPACE = EXPTIME Kozen, 198

= AEXPTIME = EXPSPACE
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ATIME(f(n)) € DSPACE(f(n))
NSPACE(f(n)) SATIME(f2(n))
ASPACE(f(n)) = DTIME(20())

XPSPACE=AEXPTIME

EXP=APSPACE

NPSPACE=PSPACE=AP

P=AL
NL € ATIME (clog?n)

ATIME(logn)c L
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AL=P

= MCVP is P-Complete (Ch.8)

= MCVP is AL-Complete

= Both classes are closed under reductions and
they have the same complete problem

AND 2K anp The monotone circuit value

problem is composed of a set of

gates g, ..., 8, where each is:

= an AND gate, g, =g A g

= anORgate, g, =g V g

= aconstantvalue, gi = true or
false.

We wish to compute the value

of g,.
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AL=P (MCVP is AL-complete)

MCVP € AL

* The input of ATM is a circuit

» The machine examines the output gate of the circuit:
v' If it is an AND gate, then the machine enters an AND state;
v' if the output gate is an OR gate, then it enters an OR state.

» The machine determines the two gates that are predecessors of the output
and it nondeterministically chooses one.

= The same process is repeated at the new gate, till the input gate where the
machine accepts if it is a true gate, and rejects if it is a false gate.

Only logarithmic space is needed.
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AL=P (MCVP is AL-complete)

We will now show that any language in AL is reducible to MCVP.

Consider such a language, L, the corresponding Turing Machine, M, and an input, x.
We shall construct a circuit such that it evaluates to True if and only if M accepts x.

» The gates of the circuit are all pairs of the form (C,i), where C is a configuration
of M on input x, and i stands for the step number, an integer 0 and |x|¥

= There is an arc from gate (C1,i) to (C2,j) if and only if C2 yields in one step C1
andj=i+1

= (Gate type depends on the state:
v IfC € K, 2OR gate
v 1If C € K,p 2AND gate
v If C € F (yes) 2 TRUE gate
v' If C € F (no) > FALSE gate
v' If Cis s (initial state) = output gate
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AP=PSPACE

Let ¢ be a Boolean expression with n variables then the expression

3x,VX, . ..Q,X,, where the quantifiers alternate is a QSAT expression.

n’

= QSAT is PSPACE-Complete

= QSAT is AP-Complete

= Both classes are closed under reductions and they have the

same complete problem
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AP=PSPACE

(QSAT is PSPACE-complete)

QSAT € PSPACE
All possible truth assignments of the variables can be arranged as the leaves of a full
binary tree of depth n

=  We turn this tree into a Boolean circuit, where all gates at the i-th level are AND ifi is even
and OR gates if [ is odd.

» The input gate is true iff the truth assignment satisfies .

We can evaluate the circuit in O(n) space.

return true iff both

Xp=1 subproblems are true

return true iff either

X5 =7 < 1 / \ subproblem is true

(0, 0, 0) ®0,0,1) @0,1,00 @0,1,1) ®(1,0,0) @(1,0,1) @(1,1,00 o1,1,1)
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AP=PSPACE

(QSAT is PSPACE-complete)

We will now show that any language in PSPACE is reducible to QSAT

» For input x consider the configuration graph of M—> 2™ configurations,
m= O(nk)
= Reachability method:
Y. (X)Y) is true © configuration Y can be reached from configuration X
in < 21 steps, fori=0,1,...m
= QSAT:xeL -y (AB)
= y, (A B) can be written in DNF
*= Badidea: Y, =3Z [Y, (A,Z) A, (Z,B)]
= Savitch’s trick: y,,, = AZVXVY [((X=A A Y=Z)V(X=Z A Y=B)) — Y (X)Y)]
. Convert to prenex DNF
u coQSAT

—log
= PSPACE=coPSPACE
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AP=PSPACE

(QSAT is AP-complete)

QSAT € AP

= The computation will guess the truth values of the variables X;, X,, . ..

one- by-one, where existentially quantified variables are guessed at
states in K, , while universally quantified ones at states in K, yp.

= A final state is accepting if the guessed truth assignment satisfies the
expression, and rejecting otherwise.

= [t follows from the definition of acceptance for alternating machines
that a quantified expression is accepted iff it is true; the time needed
polynomial.

1S
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AP=PSPACE

(QSAT is AP-complete)

We will now show that any language in AP is reducible to QSAT

= The computation of a polynomial-time ATM can be captured by a table,
with extra nondeterministic choices.

* The quantifiers are universal if the current state is in K,y and
existential if the current state in K.

* The variables standing for nondeterministic choices at even levels are
existentially quantified, and at odd levels universally.

= The ATM accepts the input iff the resulting quantified expression is
true.
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ATMSs restricted to a fixed

number of alternations

For every i € N, we define X, TIME(T(n)) to be the set of languages accepted by a
T(n)-time ATM M whose initial state is labeled “3” and on which every input and on
every (directed) path from the starting configuration in the configuration graph, M

can alternate at most i-1 times from states with one label to states with the other
label.

Foreveryi €N, Zl-p: UCZITIME[I’IC]

For every i € N, we define II.TIME(T(n)) to be the set of languages accepted by a
T(n)-time ATM M whose initial state is labeled “V" and on which every input and on
every (directed) path from the starting configuration in the configuration graph, M

can alternate at most i-1 times from states with one label to states with the other
label.

Foreveryien, I17= U I TIME(n®)
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The class TISP

For every two functions S, T : N — N, define TISP(T(n), S(n))
to be the set of languages decided by a TM M that on every

input x takes at most O(T(|x|)) steps and uses at most O(S(|x|))
cells of its read-write tapes.

Note: TISP(T(n), S(n)) # DTIME(T(n)) N SPACE(S(n))

= SAT ¢ TISP(n'!, n%1)

= NTIME (n) ¢ TISP(n'2,n02)

= TISP(n'2 n?) C 3,TIME(n®)

* [f NTIME(n) € DTIME(n!?), then £,TIME(n®) € NTIME(n°*®)
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