
Algorithms & Complexity II

Avarikioti Zeta

March 17, 2014

 It alternates between N… (existential) and coN… (universal)

 Existential state is accepting iff any of its child states is accepting - OR
(without children rejects)

 Universal state is accepting iff all of its child states are accepting –
AND (without children accepts)

 Alternating computation is a “tree”

 Computation accepts iff its initial state (configuration) is accepting

Alternation: generalizes non-determinism, where each state
is either “existential” or “universal”:
Old: existential states New: universal states

2 / 1 8

Alternating Computation

3 / 1 8

Alternating Turing Machines (ATMs)

& Computation Tree

A nondeterministic TM
N = (K , Σ, Δ, s) in which the
set of states K is partitioned
into two sets, K = KAND ᴜ KOR.

Let x be the input and
consider the tree of
computations of N on input x.

Each node in this tree is a
configuration of the precise
machine, and includes the
step number of the machine.

universal

existential

Yes!

initial state

4 / 1 8

Alternating Complexity Classes

ATIME(f(n)): the class of all languages decided by an ATM, all
computations of which on input x halt after at most f(lxl) steps.

AP = U
k>1

ATIME(nk) alternating polynomial time

ASPACE(f(n)): the class of all languages decided by an ATM that
uses no more than f(lxl) space on input x.

AL = U
k>1

ASPACE (logn) alternating logarithmic space

5 / 1 8

APSPACE = U
k>1

ASPACE(nk) alternating polynomial space

AEXPTIME =U
k>1

ATIME(2nk
) alternating exponential time

AEXPSPACE =U
k>1

ASPACE(2nk
) alternating exponential space

Alternating Complexity Classes

Alternating Space/Time

Relationships

Theorem: P ⊆NP ⊆AP

6 / 1 8

Chandra,

Stockmeyer &

Kozen, 1981

EXPSPACE=AEXPTIME

NPSPACE=PSPACE=AP

P=AL

NL ⊆ ATIME (clog2n)

NL

ATIME(logn)⊆ L

L

NP

NEXP

EXP=APSPACE

ATIME(f(n)) ⊆ DSPACE(f(n))

NSPACE(f(n)) ⊆ATIME(f 2(n))

ASPACE(f(n)) = DTIME(2O(f(n)))

7 / 1 8

 MCVP is P-Complete (Ch.8)
 MCVP is AL-Complete
 Both classes are closed under reductions and

they have the same complete problem

AL=P

8 / 1 8

AND

AND

OR

OROR

OR

TRUE FALSE TRUE TRUE

KAND

KOR

The monotone circuit value
problem is composed of a set of
gates g1, . . . , gn where each is:
 an AND gate, gi = gi ∧ gk,
 an OR gate, gi = gi ∨ gk

 a constant value, gi = true or
false.

We wish to compute the value
of gn.

AL=P (MCVP is AL-complete)

9 / 1 8

MCVP ∈ AL

 The input of ATM is a circuit

 The machine examines the output gate of the circuit:
 If it is an AND gate, then the machine enters an AND state;
 if the output gate is an OR gate, then it enters an OR state.

 The machine determines the two gates that are predecessors of the output
and it nondeterministically chooses one.

 The same process is repeated at the new gate, till the input gate where the
machine accepts if it is a true gate, and rejects if it is a false gate.

Only logarithmic space is needed.

AL=P (MCVP is AL-complete)

We will now show that any language in AL is reducible to MCVP.

Consider such a language, L, the corresponding Turing Machine, M, and an input, x.
We shall construct a circuit such that it evaluates to True if and only if M accepts x.

 The gates of the circuit are all pairs of the form (C,i), where C is a configuration
of M on input x, and i stands for the step number, an integer 0 and |x|k

 There is an arc from gate (C1,i) to (C2,j) if and only if C2 yields in one step C1
and j = i + 1

 Gate type depends on the state:
 If C ∈ KOR OR gate
 If C ∈ KAND AND gate
 If C ∈ F (yes)TRUE gate
 If C ∈ F (no)FALSE gate
 If C is s (initial state) output gate

1 0 / 1 8

AP=PSPACE

Let φ be a Boolean expression with n variables then the expression
∃x1∀x2 . . .Qnxn, where the quantifiers alternate is a QSAT expression.

 QSAT is PSPACE-Complete

 QSAT is AP-Complete

 Both classes are closed under reductions and they have the
same complete problem

1 1 / 1 8

AP=PSPACE
(QSAT i s PSPACE-complete)

QSAT ∈ PSPACE
 All possible truth assignments of the variables can be arranged as the leaves of a full

binary tree of depth n
 We turn this tree into a Boolean circuit, where all gates at the i-th level are AND if i is even

and OR gates if I is odd.
 The input gate is true iff the truth assignment satisfies φ.
We can evaluate the circuit in O(n) space.

1 2 / 1 8

AP=PSPACE
(QSAT i s PSPACE-complete)

We will now show that any language in PSPACE is reducible to QSAT

 For input x consider the configuration graph of M 2m configurations,

m= O(nk)

 Reachability method:

ψi (X,Y) is true ⇔ configuration Y can be reached from configuration X

in ≤ 2i steps, for i= 0,1,…,m

 QSAT: x∈L→ ψm (A,B)

 ψ0 (A,B) can be written in DNF

 Bad idea: ψi+1 = ∃Ζ [ψi (Α,Ζ) ∧ψi (Ζ,Β)]

 Savitch’s trick: ψi+1 = ∃Ζ∀Χ∀Υ [((X=A ∧ Y=Z)∨(X=Z ∧ Y=B)) ψi (X,Y)]

 Convert to prenex DNF

 L ≤log coQSAT

 PSPACE=coPSPACE
1 3 / 1 8

AP=PSPACE
(QSAT i s AP-complete)

QSAT ∈ AP

 The computation will guess the truth values of the variables X1, X2, . ..
one- by-one, where existentially quantified variables are guessed at
states in KOR , while universally quantified ones at states in KAND.

 A final state is accepting if the guessed truth assignment satisfies the
expression, and rejecting otherwise.

 It follows from the definition of acceptance for alternating machines
that a quantified expression is accepted iff it is true; the time needed is
polynomial.

1 4 / 1 8

AP=PSPACE
(QSAT i s AP-complete)

We will now show that any language in AP is reducible to QSAT

 The computation of a polynomial-time ATM can be captured by a table,
with extra nondeterministic choices.

 The quantifiers are universal if the current state is in KAND and
existential if the current state in KOR.

 The variables standing for nondeterministic choices at even levels are
existentially quantified, and at odd levels universally.

 The ATM accepts the input iff the resulting quantified expression is
true.

1 5 / 1 8

For every i ∈ ℕ, Πi
p
= ∪cΠiTIME(nc)

For every i ∈ N, we define ΣiTIME(T(n)) to be the set of languages accepted by a
T(n)-time ATM M whose initial state is labeled “∃” and on which every input and on
every (directed) path from the starting configuration in the configuration graph, M
can alternate at most i−1 times from states with one label to states with the other
label.

For every i ∈ N, we define ΠiTIME(T(n)) to be the set of languages accepted by a
T(n)-time ATM M whose initial state is labeled “∀” and on which every input and on
every (directed) path from the starting configuration in the configuration graph, M
can alternate at most i−1 times from states with one label to states with the other
label.

For every i ∈ ℕ, Σi
p
= ∪cΣiTIME(nc)

ATMs restricted to a fixed

number of alternations

1 6 / 1 8

For every two functions S, T : N → N, define TISP(T(n), S(n))
to be the set of languages decided by a TM M that on every
input x takes at most O(T(|x|)) steps and uses at most O(S(|x|))
cells of its read-write tapes.

The class TISP

Note: TISP(T(n), S(n)) ≠ DTIME(T(n)) ∩ SPACE(S(n))

 SAT ∉ TISP(n1.1, n0.1)

 NTIME (n) ⊈ TISP(n1.2,n0.2)

 TISP(n12, n2) ⊆ Σ2TIME(n8)

 If NTIME(n) ⊆ DTIME(n1.2), then Σ2TIME(n8) ⊆ NTIME(n9.6)

1 7 / 1 8

BIBLIOGRAPHY
 CHRISTOS PAPADIMITRIOU, COMPUTATIONAL COMPLEXITY, ADDISON WESLEY,

1994

 SANJEEV ARORA AND BOAZ BARAK, COMPUTATIONAL COMPLEXITY: A MODERN

APPROACH, CAMBRIDGE UNIVERSITY PRESS, 2009

 MICHAEL SIPSER , INTRODUCTION TO THE THEORY OF COMPUTATION,

THOMSON COURSE TECHNOLOGY, 2006

DEXTER KOZEN ASHOK K. CHANDRALARRY STOCKMEYER

1 8 / 1 8

