ALTERNATION

Algorithms & Complexity II Avarikioti Zeta

March 17, 2014

Alternating Computation

Alternation: generalizes non-determinism, where each state is either "existential" or "universal": Old: existential states (I) New: universal states

- It alternates between N... (existential) and coN... (universal)
- Existential state is accepting iff <u>any</u> of its child states is accepting OR (without children -> rejects)
- Universal state is accepting iff <u>all</u> of its child states are accepting AND (without children -> accepts)
- Alternating computation is a "tree"
- Computation accepts iff its initial state (configuration) is accepting

Alternating Turing Machines (ATMs) & Computation Tree

A nondeterministic TM N = (K, Σ , Δ , s) in which the set of states K is partitioned into two sets, K = K_{AND} U K_{OR}.

Let x be the input and consider the tree of computations of N on input x.

Each node in this tree is a configuration of the precise machine, and includes the step number of the machine.

Alternating Complexity Classes

ATIME(f(n)): the class of all languages decided by an ATM, all computations of which on input x halt after at most f(lxl) steps.

 $AP = U_{k>1}ATIME(n^k)$

alternating polynomial time

ASPACE(f(n)): the class of all languages decided by an ATM that uses no more than f(lxl) space on input x.

 $AL = U_{k>1}ASPACE (logn)$ alternating logarithmic space

Alternating Complexity Classes

 $APSPACE = U_{k>1} ASPACE(n^k) \qquad alternating polynomial space$

AEXPTIME = $U_{k>1}$ ATIME(2^{nk}) alternating exponential time

AEXPSPACE = $U_{k>1}$ ASPACE(2^{nk}) alternating exponential space

Alternating Space/Time Relationships

Theorem: $P \subseteq NP \subseteq AP$

- $ATIME(f(n)) \subseteq DSPACE(f(n)) \subseteq ATIME(f^{2}(n))$
- $PSPACE = NPSPACE \subseteq APSPACE$
- $ASPACE(f(n)) = DTIME(2^{O(f(n))})$
- AL = P
- AP = PSPACE
- APSPACE = EXPTIME
- AEXPTIME = EXPSPACE

6/18

Chandra.

Kozen, 1981

AL=P

- MCVP is P-Complete (Ch.8)
- MCVP is AL-Complete
- Both classes are closed under reductions and they have the same complete problem

The monotone circuit value problem is composed of a set of gates g_1, \ldots, g_n where each is:

- an AND gate, $g_i = g_i \wedge g_k$,
- an OR gate, $g_i = g_i \vee g_k$
- a constant value, gi = true or false.

We wish to compute the value of \boldsymbol{g}_{n}

AL=P (MCVP is AL-complete)

$\textbf{MCVP} \in \textbf{AL}$

- The input of ATM is a circuit
- The machine examines the output gate of the circuit:
 - ✓ If it is an AND gate, then the machine enters an AND state;
 - \checkmark if the output gate is an OR gate, then it enters an OR state.
- The machine determines the two gates that are predecessors of the output and it nondeterministically chooses one.
- The same process is repeated at the new gate, till the input gate where the machine accepts if it is a true gate, and rejects if it is a false gate.

Only logarithmic space is needed.

AL=P (MCVP is AL-complete)

We will now show that any language in AL is reducible to MCVP.

Consider such a language, L, the corresponding Turing Machine, M, and an input, x. We shall construct a circuit such that it evaluates to True if and only if M accepts x.

- The gates of the circuit are all pairs of the form (C,i), where C is a configuration of M on input x, and i stands for the step number, an integer 0 and |x|^k
- There is an arc from gate (C1,i) to (C2,j) if and only if C2 yields in one step C1 and j = i + 1
- Gate type depends on the state:
 - ✓ If $C \in K_{OR}$ → OR gate
 - ✓ If $C \in K_{AND}$ → AND gate
 - ✓ If $C \in F$ (yes) → TRUE gate
 - ✓ If $C \in F$ (no) → FALSE gate
 - ✓ If C is s (initial state) → output gate

AP=PSPACE

Let φ be a Boolean expression with n variables then the expression $\exists x_1 \forall x_2 \dots Q_n x_n$, where the quantifiers alternate is a QSAT expression.

- QSAT is PSPACE-Complete
- QSAT is AP-Complete
- Both classes are closed under reductions and they have the same complete problem

AP=PSPACE (QSAT is PSPACE-complete)

$QSAT \in PSPACE$

- All possible truth assignments of the variables can be arranged as the leaves of a full binary tree of depth n
- We turn this tree into a Boolean circuit, where all gates at the i-th level are AND if i is even and OR gates if I is odd.
- The input gate is true iff the truth assignment satisfies φ.

We can evaluate the circuit in O(n) space.

AP=PSPACE (QSAT is PSPACE-complete)

We will now show that any language in PSPACE is reducible to QSAT

- For input x consider the configuration graph of M→ 2^m configurations, m= O(n^k)
- Reachability method:

 ψ_i (X,Y) is true \Leftrightarrow configuration Y can be reached from configuration X in $\leq 2^i$ steps, for i= 0,1,...,m

- **QSAT**: $x \in L \rightarrow \psi_m$ (A,B)
- ψ_0 (A,B) can be written in DNF
- Bad idea: $\psi_{i+1} = \exists Z [\psi_i (A,Z) \land \psi_i (Z,B)]$
- Savitch's trick: $\psi_{i+1} = \exists Z \forall X \forall \Upsilon [((X=A \land Y=Z) \lor (X=Z \land Y=B)) \rightarrow \psi_i (X,Y)]$
- Convert to prenex DNF
- $L \leq_{\log} coQSAT$
- PSPACE=coPSPACE

AP=PSPACE (QSAT is AP-complete)

$\textbf{QSAT} \in \textbf{AP}$

- The computation will guess the truth values of the variables X₁, X₂, ... one- by-one, where existentially quantified variables are guessed at states in K_{OR}, while universally quantified ones at states in K_{AND}.
- A final state is accepting if the guessed truth assignment satisfies the expression, and rejecting otherwise.
- It follows from the definition of acceptance for alternating machines that a quantified expression is accepted iff it is true; the time needed is polynomial.

AP=PSPACE (QSAT is AP-complete)

We will now show that any language in AP is reducible to QSAT

- The computation of a polynomial-time ATM can be captured by a table, with extra nondeterministic choices.
- The quantifiers are universal if the current state is in K_{AND} and existential if the current state in K_{OR}.
- The variables standing for nondeterministic choices at even levels are existentially quantified, and at odd levels universally.
- The ATM accepts the input iff the resulting quantified expression is true.

ATMs restricted to a fixed number of alternations

For every $i \in N$, we define $\Sigma_i TIME(T(n))$ to be the set of languages accepted by a T(n)-time ATM M whose initial state is labeled " \exists " and on which every input and on every (directed) path from the starting configuration in the configuration graph, M can alternate at most i-1 times from states with one label to states with the other label.

For every
$$i \in \mathbb{N}$$
, $\Sigma_i^p = \bigcup_c \Sigma_i \mathbf{TIME}(n^c)$

For every $i \in N$, we define $\Pi_i TIME(T(n))$ to be the set of languages accepted by a T(n)-time ATM M whose initial state is labeled " \forall " and on which every input and on every (directed) path from the starting configuration in the configuration graph, M can alternate at most i-1 times from states with one label to states with the other label.

For every $i \in \mathbb{N}$, $\Pi_i^p = \bigcup_c \Pi_i \mathbf{TIME}(n^c)$

• SAT \notin **TISP**(n^{1.1}, n^{0.1})

Note: TISP(T(n), S(n)) \neq DTIME(T(n)) \cap SPACE(S(n))

The class TISP

- NTIME (n) $\not\subseteq$ TISP(n^{1.2},n^{0.2})
- **TISP** $(n^{12}, n^2) \subseteq \Sigma_2$ **TIME** (n^8)
- If **NTIME**(n) \subseteq **DTIME**(n^{1.2}), then Σ_2 **TIME**(n⁸) \subseteq **NTIME**(n^{9.6})

For every two functions S, $T : \mathbb{N} \to \mathbb{N}$, define **TISP(T(n), S(n))** to be the set of languages decided by a TM M that on every input x takes at most O(T(|x|)) steps and uses at most O(S(|x|))cells of its read-write tapes.

BIBLIOGRAPHY

- CHRISTOS PAPADIMITRIOU, COMPUTATIONAL COMPLEXITY, ADDISON WESLEY, 1994
- SANJEEV ARORA AND BOAZ BARAK, COMPUTATIONAL COMPLEXITY: A MODERN APPROACH, CAMBRIDGE UNIVERSITY PRESS, 2009
- MICHAEL SIPSER, INTRODUCTION TO THE THEORY OF COMPUTATION, THOMSON COURSE TECHNOLOGY, 2006

DEXTER KOZEN

LARRY STOCKMEYER

ASHOK K. CHANDRA