ALTERNATION

Algorithms \& Complexity II Avarikioti Zeta

Alternating Computation

Alternation: generalizes non-determinism, where each state is either "existential" or "universal":
Old: existential states (3) New: universal states \forall
> It alternates between $\mathrm{N} .$. (existential) and coN... (universal)
$>$ Existential state is accepting iff any of its child states is accepting - OR (without children \rightarrow rejects)
$>$ Universal state is accepting iff all of its child states are accepting AND (without children \rightarrow accepts)
$>$ Alternating computation is a "tree"
$>$ Computation accepts iff its initial state (configuration) is accepting

Alternating Turing Machines (ATMs) \& Computation Tree

A nondeterministic TM $\mathrm{N}=(\mathrm{K}, \Sigma, \Delta, \mathrm{s})$ in which the set of states K is partitioned into two sets, $\mathrm{K}=\mathrm{K}_{\text {AND }} \mathrm{U} \mathrm{K}_{\mathrm{OR}}$.

Let x be the input and consider the tree of computations of N on input x .

Each node in this tree is a configuration of the precise machine, and includes the step number of the machine.

Alternating Complexity Classes

ATIME(f(n)): the class of all languages decided by an ATM, all computations of which on input x halt after at most f(lxl) steps.

$$
\mathrm{AP}=\mathrm{U}_{\mathrm{k} 11} \mathrm{ATIME}\left(\mathrm{n}^{k}\right)
$$

alternating polynomial time

ASPACE($\mathrm{f}(\mathrm{n})$): the class of all languages decided by an ATM that uses no more than f(lxl) space on input x.

$\mathrm{AL}=\mathrm{U}_{\mathrm{k} \geqslant 1} \mathrm{ASPACE}(\log n)$ alternating logarithmic space

Alternating Complexity Classes

APSPACE $=\mathrm{U}_{\mathrm{k}>1} \operatorname{ASPACE}\left(\mathrm{n}^{\mathrm{k}}\right)$
alternating polynomial space

AEXPTIME $=\mathrm{U}_{\mathrm{k}>1} \operatorname{ATIME}\left(2^{\mathrm{n}}{ }^{\mathrm{k}}\right)$ alternating exponential time
$\operatorname{AEXPSPACE}=\mathrm{U}_{\mathrm{k}>1} \operatorname{ASPACE}\left(2^{\mathrm{n}^{\mathrm{k}}}\right) \quad$ alternating exponential space

Alternating Space/Time Relationships

Theorem: P $\subseteq \mathrm{NP} \subseteq A P$

- $\operatorname{ATIME}(\mathrm{f}(\mathrm{n})) \subseteq \operatorname{DSPACE}(\mathrm{f}(\mathrm{n})) \subseteq \operatorname{ATIME}\left(\mathrm{f}^{2}(\mathrm{n})\right)$
- PSPACE = NPSPACE $\subseteq A P S P A C E$
- $\operatorname{ASPACE}(\mathrm{f}(\mathrm{n}))=\operatorname{DTIME}\left(2^{0(f(\mathrm{fn}))}\right)$
- $\mathbf{A L}=\mathbf{P}$
- AP = PSPACE
- APSPACE = EXPTIME
- AEXPTIME = EXPSPACE

AL=P

- MCVP is P-Complete (Ch.8)
- MCVP is AL-Complete
- Both classes are closed under reductions and they have the same complete problem

The monotone circuit value problem is composed of a set of gates g_{1}, \ldots, g_{n} where each is:

- an AND gate, $g_{i}=g_{i} \wedge g_{k}$,
- an OR gate, $g_{i}=g_{i} \vee g_{k}$
- a constant value, gi = true or false.
We wish to compute the value of g_{n}.

$A L=P \quad$ (MCVP is AL-complete)

$\mathbf{M C V P} \in \mathrm{AL}$

- The input of ATM is a circuit
- The machine examines the output gate of the circuit:
\checkmark If it is an AND gate, then the machine enters an AND state;
\checkmark if the output gate is an OR gate, then it enters an OR state.
- The machine determines the two gates that are predecessors of the output and it nondeterministically chooses one.
- The same process is repeated at the new gate, till the input gate where the machine accepts if it is a true gate, and rejects if it is a false gate.

Only logarithmic space is needed.

$A L=P \quad$ (MCVP is AL-complete)

We will now show that any language in AL is reducible to MCVP.

Consider such a language, L, the corresponding Turing Machine, M , and an input, x . We shall construct a circuit such that it evaluates to True if and only if M accepts x.

- The gates of the circuit are all pairs of the form (C,i), where C is a configuration of M on input x, and i stands for the step number, an integer 0 and $|x|^{k}$
- There is an arc from gate (C1,i) to (C2,j) if and only if C2 yields in one step C1 and $\mathrm{j}=\mathrm{i}+1$
- Gate type depends on the state:
\checkmark If $\mathrm{C} \in \mathrm{K}_{\mathrm{OR}} \rightarrow$ OR gate
\checkmark If $\mathrm{C} \in \mathrm{K}_{\text {AND }} \rightarrow$ AND gate
\checkmark If $C \in F$ (yes) \rightarrow TRUE gate
\checkmark If $C \in F(n o) \rightarrow$ FALSE gate
\checkmark If C is s (initial state) \rightarrow output gate

AP=PSPACE

Let φ be a Boolean expression with n variables then the expression $\exists x_{1} \forall x_{2} \ldots Q_{n} x_{n}$, where the quantifiers alternate is a QSAT expression.

- QSAT is PSPACE-Complete
- QSAT is AP-Complete
- Both classes are closed under reductions and they have the same complete problem

$A P=P S P A C E$
 (QSAT is PSPACE-complete)

QSAT \in PSPACE

- All possible truth assignments of the variables can be arranged as the leaves of a full binary tree of depth n
- We turn this tree into a Boolean circuit, where all gates at the i-th level are AND if i is even and OR gates if I is odd.
- The input gate is true iff the truth assignment satisfies φ.

We can evaluate the circuit in $\mathrm{O}(\mathrm{n})$ space.

$A P=P S P A C E$ (QSAT is PSPACE-complete)

We will now show that any language in PSPACE is reducible to QSAT

- For input x consider the configuration graph of $\mathrm{M} \rightarrow 2^{\mathrm{m}}$ configurations, $\mathrm{m}=\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
- Reachability method:
$\psi_{\mathrm{i}}(\mathrm{X}, \mathrm{Y})$ is true \Leftrightarrow configuration Y can be reached from configuration X in $\leq 2^{\text {i }}$ steps, for $\mathrm{i}=0,1, \ldots, \mathrm{~m}$
- QSAT: $x \in L \rightarrow \psi_{m}(A, B)$
- $\Psi_{0}(\mathrm{~A}, \mathrm{~B})$ can be written in DNF
- Bad idea: $\psi_{i+1}=\exists Z\left[\psi_{i}(\mathrm{~A}, \mathrm{Z}) \wedge \psi_{\mathrm{i}}(\mathrm{Z}, \mathrm{B})\right]$
- Savitch's trick: $\psi_{i+1}=\exists Z \forall X \forall \Upsilon\left[((X=A \wedge Y=Z) \vee(X=Z \wedge Y=B)) \rightarrow \psi_{i}(X, Y)\right]$
- Convert to prenex DNF
- $\mathrm{L} \leq_{\text {log }}$ coQSAT
- PSPACE=coPSPACE

$A P=P S P A C E$ (QSAT is AP-complete)

QSAT \in AP

- The computation will guess the truth values of the variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$ one- by-one, where existentially quantified variables are guessed at states in $K_{O R}$, while universally quantified ones at states in $\mathrm{K}_{\mathrm{AND}}$.
- A final state is accepting if the guessed truth assignment satisfies the expression, and rejecting otherwise.
- It follows from the definition of acceptance for alternating machines that a quantified expression is accepted iff it is true; the time needed is polynomial.

$A P=P S P A C E$ (QSAT is AP-complete)

We will now show that any language in AP is reducible to QSAT

- The computation of a polynomial-time ATM can be captured by a table, with extra nondeterministic choices.
- The quantifiers are universal if the current state is in $\mathrm{K}_{\text {AND }}$ and existential if the current state in K_{OR}.
- The variables standing for nondeterministic choices at even levels are existentially quantified, and at odd levels universally.
- The ATM accepts the input iff the resulting quantified expression is true.

ATMs restricted to a fixed number of alternations

For every $i \in N$, we define $\Sigma_{i} \operatorname{TIME}(T(n))$ to be the set of languages accepted by a $T(n)$-time ATM M whose initial state is labeled " \exists " and on which every input and on every (directed) path from the starting configuration in the configuration graph, M can alternate at most i-1 times from states with one label to states with the other label.

$$
\text { For every } i \in \mathbb{N}, \sum_{i}^{p}=\cup_{c} \Sigma_{i} \operatorname{TIME}\left(n^{c}\right)
$$

For every $i \in N$, we define $\Pi_{i} T I M E(T(n))$ to be the set of languages accepted by a $T(n)$-time ATM M whose initial state is labeled " \forall " and on which every input and on every (directed) path from the starting configuration in the configuration graph, M can alternate at most i-1 times from states with one label to states with the other label.

$$
\text { For every } i \in \mathbb{N}, \Pi_{i}^{p}=\cup_{c} \Pi_{i} \mathbf{T I M E}\left(n^{c}\right)
$$

The class TISP

For every two functions $S, T: N \rightarrow \mathrm{~N}$, define $\operatorname{TISP}(T(n), S(n))$ to be the set of languages decided by a TM M that on every input x takes at most $O(T(|x|))$ steps and uses at most $O(S(|x|))$ cells of its read-write tapes.

Note: $\operatorname{TISP}(T(n), S(n)) \neq \operatorname{DTIME}(T(n)) \cap \operatorname{SPACE}(S(n))$

- SAT $\notin \operatorname{TISP}\left(\mathrm{n}^{1.1}, \mathrm{n}^{0.1}\right)$
- NTIME (n) $\ddagger \operatorname{TISP}\left(\mathrm{n}^{1.2}, \mathrm{n}^{0.2}\right)$
- TISP $\left(\mathrm{n}^{12}, \mathrm{n}^{2}\right) \subseteq \Sigma_{2} \operatorname{TIME}\left(\mathrm{n}^{8}\right)$
- If NTIME $(\mathrm{n}) \subseteq \operatorname{DTIME}\left(\mathrm{n}^{1.2}\right)$, then $\Sigma_{2} \operatorname{TIME}\left(\mathrm{n}^{8}\right) \subseteq \operatorname{NTIME}\left(\mathrm{n}^{9.6}\right)$

BIBLIOGRAPHY

- CHRISTOS PAPADIMITRIOU, COMPUTATIONAL COMPLEXITY,ADDISONWESLEY, 1994
- SANJEEV ARORA AND BOAZ BARAK, COMPUTATIONAL COMPLEXITY:A MODERN APPROACH, CAMBRIDGE UNIVERSITY PRESS, 2009
- MICHAEL SIPSER, INTRODUCTION TO THETHEORY OF COMPUTATION, THOMSON COURSE TECHNOLOGY, 2006

LARRY STOCKMEYER

ASHOK K. CHANDRA

