
Θεωρητική Πληροφορική Ι (ΣΗΜΜΥ)

Αλγόριθμοι & Πολυπλοκότητα ΙΙ (ΜΠΛΑ)

Εργαστήριο Λογικής και Επιστήμης Υπολογισμών

Εθνικό Μετσόβιο Πολυτεχνείο

2013-2014



Πληροφορίες Μαθήματος

Θεωρητική Πληροφορική Ι (ΣΗΜΜΥ)

Αλγόριθμοι & Πολυπλοκότητα ΙΙ (ΜΠλ∀), Λ4-Υπ.
Διδάσκοντες: Σ. Ζάχος, Ά. Παγουρτζής

Βοηθός Διδασκαλίας, Επιμέλεια Διαφανειών: Α. Αντωνόπουλος

Δευτέρα: 17:00 - 19:00 (1.1.31, Παλιά Κτίρια ΗΜΜΥ, ΕΜΠ)

Πέμπτη: 14:00 - 17:00 (1.1.31, Παλιά Κτίρια ΗΜΜΥ, ΕΜΠ)

΄Ωρες Γραφείου: Μετά από κάθε μάθημα, Παρασκευή 10:30-12:30

Σελίδα: www.corelab.ntua.gr/courses/grad-algo/

Βαθμολόγηση:

Διαγώνισμα: 6 μονάδες

Ασκήσεις: 2 μονάδες

Ομιλία: 2 μονάδες

Quizes : 1 μονάδα

http://www.corelab.ntua.gr/courses/grad-algo/


Theoretical Computer Science I (ECE)
Algorithms and Complexity II (MPLA)

Computation and Reasoning Laboratory
National Technical University of Athens

2013-2014

1st Part
Introduction - Turing Machines - Undecidability - Complexity Classes - Oracles & The Polynomial Hierarchy

Professors:
S. Zachos, Professor

A. Pagourtzis, Ass. Professor

TA-Slides: Antonis Antonopoulos



Bibliography

Textbooks

1 C. Papadimitriou, Computational Complexity, Addison
Wesley, 1994

2 S. Arora, B. Barak, Computational Complexity: A Modern
Approach, Cambridge University Press, 2009

3 O. Goldreich, Computational Complexity: A Conceptual
Perspective, Cambridge University Press, 2008

Lecture Notes

1 L. Trevisan, Lecture Notes in Computational Complexity,
2002, UC Berkeley

2 E. Allender, M. Loui, and K. Regan, Three chapters for the
CRC Handbook on Algorithms and Theory of
Computation (M.J. Atallah, ed.), (Boca Raton: CRC Press,
1998).



Algorithms & Complexity Turing Machines Undecidability

Contents

Introduction
Turing Machines

Undecidability

Complexity Classes

Oracles & Optimization Problems

Randomized Computation

Non-Uniform Complexity

Interactive Proofs

Counting Complexity



Algorithms & Complexity Turing Machines Undecidability

Why Complexity?

Computational Complexity: Quantifying the amount of
computational resources required to solve a given task.
Classify computational problems according to their inherent
difficulty in complexity classes, and prove relations among
them.

Structural Complexity: “The study of the relations between
various complexity classes and the global properties of
individual classes. [...] The goal of structural complexity is a
thorough understanding of the relations between the various
complexity classes and the internal structure of these
complexity classes.” [J. Hartmanis]



Algorithms & Complexity Turing Machines Undecidability

Problems....

Decision Problems

Have answers of the form “yes” or “no”

Encoding: each instance x of the problem is represented as a
string of an alphabet Σ (|Σ| ≥ 2).

Decision problems have the form “Is x in L?”, where L is a
language, L ⊆ Σ∗.

So, for an encoding of the input, using the alphabet Σ, we
associate the following language with the decision problem Π:

L(Π) = {x ∈ Σ∗ | x is a representation of a “yes” instance of the problem Π}

Example

Given a number x , is this number prime? (x
?
∈ PRIMES)

Given graph G and a number k , is there a clique with k (or more)
nodes in G ?



Algorithms & Complexity Turing Machines Undecidability

Problems....

Optimization Problems

For each instance x there is a set of Feasible Solutions F (x).

To each s ∈ F (x) we map a positive integer c(x), using the
objective function c(s).

We search for the solution s ∈ F (x) which minimizes (or maximizes)
the objective function c(s).

Example

The Traveling Salesperson Problem (TSP):
Given a finite set C = {c1, . . . , cn} of cities and a distance
d(ci , cj) ∈ Z+,∀(ci , cj) ∈ C 2, we ask for a permutation π of
C , that minimizes this quantity:

n−1∑
i=1

d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1))



Algorithms & Complexity Turing Machines Undecidability

Problems....

A Model Discussion

There are many computational models (RAM, Turing
Machines etc).

The Church-Turing Thesis states that all computation
models are equivalent. That is, every computation model can
be simulated by a Turing Machine.

In Complexity Theory, we consider efficiently computable
the problems which are solved (aka the languages that are
decided) in polynomial number of steps (Edmonds-Cobham
Thesis).

Efficiently Computable ≡ Polynomial-Time Computable



Algorithms & Complexity Turing Machines Undecidability

Contents

Introduction

Turing Machines
Undecidability

Complexity Classes

Oracles & Optimization Problems

Randomized Computation

Non-Uniform Complexity

Interactive Proofs

Counting Complexity



Algorithms & Complexity Turing Machines Undecidability

Definitions

Definition

A Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F ):

Q = {q1, q2, q3, . . . , qn, qhalt, qyes, qno} is a finite set of states.

Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.
q0 ∈ Q is the initial state.

F ⊆ S is the set of final states.

δ : (Q \ F )× Γ→ Q × Γ×{S , L,R} is the transition function.

A TM is a “programming language” with a single data
structure (a tape), and a cursor, which moves left and right
on the tape.

Function δ is the program of the machine.



Algorithms & Complexity Turing Machines Undecidability

Definitions

Turing Machines and Languages

Definition

Let L ⊆ Σ∗ be a language and M a TM such that, for every string
x ∈ Σ∗:

If x ∈ L, then M(x) = “yes”

If x /∈ L, then M(x) = “no”

Then we say that M decides L.

We can alternatively say that M(x) = χL(x), where χL(·) is
the characteristic function of L (if we consider 1 as “yes” and
0 as “no”).

If L is decided by some TM M, then L is called a recursive
language.



Algorithms & Complexity Turing Machines Undecidability

Definitions

Definition

If for a language L there is a TM M, which if x ∈ L then
M(x) = “yes”, and if x /∈ L then M(x) ↑, we call L recursively
enumerable.

*By M(x) ↑ we mean that M does not halt on input x (it runs forever).

Theorem

If L is recursive, then it is recursively enumerable.

Proof: Exercise

Definition

If f is a function, f : Σ∗ → Σ∗, we say that a TM M computes f
if, for any string x ∈ Σ∗, M(x) = f (x). If such M exists, f is
called a recursive function.

Turing Machines can be thought as algorithms for solving
string related problems.



Algorithms & Complexity Turing Machines Undecidability

Definitions

Definition

If for a language L there is a TM M, which if x ∈ L then
M(x) = “yes”, and if x /∈ L then M(x) ↑, we call L recursively
enumerable.

*By M(x) ↑ we mean that M does not halt on input x (it runs forever).

Theorem

If L is recursive, then it is recursively enumerable.

Proof: Exercise

Definition

If f is a function, f : Σ∗ → Σ∗, we say that a TM M computes f
if, for any string x ∈ Σ∗, M(x) = f (x). If such M exists, f is
called a recursive function.

Turing Machines can be thought as algorithms for solving
string related problems.



Algorithms & Complexity Turing Machines Undecidability

Definitions

Multitape Turing Machines

We can extend the previous Turing Machine definition to
obtain a Turing Machine with multiple tapes:

Definition

A k-tape Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F ):

Q = {q1, q2, q3, . . . , qn, qhalt, qyes, qno} is a finite set of states.

Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.
q0 ∈ Q is the initial state.

F ⊆ S is the set of final states.

δ : (Q \ F )× Γk → Q × (Γ× {S , L,R})k is the transition
function.



Algorithms & Complexity Turing Machines Undecidability

Properties of Turing Machines

Bounds on Turing Machines

We will characterize the “performance” of a Turing Machine
by the amount of time and space required on instances of size
n, when these amounts are expressed as a function of n.

Definition

Let T : N→ N. We say that machine M operates within time
T (n) if, for any input string x , the time required by M to reach a
final state is at most T (|x |). Function T is a time bound for M.

Definition

Let S : N→ N. We say that machine M operates within space
S(n) if, for any input string x , M visits at most S(|x |) locations on
its work tapes (excluding the input tape) during its computation.
Function S is a space bound for M.



Algorithms & Complexity Turing Machines Undecidability

Properties of Turing Machines

Multitape Turing Machines

Theorem

Given any k-tape Turing Machine M operating within time T (n),
we can construct a TM M ′ operating within time O

(
T 2(n)

)
such

that, for any input x ∈ Σ∗, M(x) = M ′(x).

Proof: See Th.2.1 (p.30) in [1].

This is a strong evidence of the robustness of our model:
Adding a bounded number of strings does not increase their
computational capabilities, and affects their efficiency only
polynomially.



Algorithms & Complexity Turing Machines Undecidability

Properties of Turing Machines

Linear Speedup

Theorem

Let M be a TM that decides L ⊆ Σ∗, that operates within time
T (n). Then, for every ε > 0, there is a TM M ′ which decides the
same language and operates within time T ′(n) = εT (n) + n + 2.

Proof: See Th.2.2 (p.32) in [1].

If, for example, T is linear, i.e. something like cn, then this theorem

states that the constant c can be made arbitrarily close to 1. So, it

is fair to start using the O (·) notation in our time bounds.

A similar theorem holds for space:

Theorem

Let M be a TM that decides L ⊆ Σ∗, that operates within space
S(n). Then, for every ε > 0, there is a TM M ′ which decides the
same language and operates within space S ′(n) = εS(n) + 2.



Algorithms & Complexity Turing Machines Undecidability

NTMs

Nondeterministic Turing Machines

We will now introduce an unrealistic model of computation:

Definition

A Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F ):

Q = {q1, q2, q3, . . . , qn, qhalt, qyes, qno} is a finite set of states.

Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.
q0 ∈ Q is the initial state.

F ⊆ S is the set of final states.

δ : (Q \ F )× Γ→ Pow(Q × Γ× {S , L,R}) is the transition
relation.



Algorithms & Complexity Turing Machines Undecidability

NTMs

Nondeterministic Turing Machines

In this model, an input is accepted if there is some sequence
of nondeterministic choices that results in “yes”.
An input is rejected if there is no sequence of choices that
lead to acceptance.
Observe the similarity with recursively enumerable languages.

Definition

We say that M operates within bound T (n), if for every input
x ∈ Σ∗ and every sequence of nondeterministic choices, M reaches
a final state within T (|x |) steps.

The above definition requires that M does not have
computation paths longer than T (n), where n = |x | the
length of the input.
The amount of time charged is the depth of the computation
tree.



Algorithms & Complexity Turing Machines Undecidability

Contents

Introduction

Turing Machines

Undecidability
Complexity Classes

Oracles & Optimization Problems

Randomized Computation

Non-Uniform Complexity

Interactive Proofs

Counting Complexity



Algorithms & Complexity Turing Machines Undecidability

Diagonalization

Diagonalization

Suppose there is a town with just
one barber, who is male. In this
town, the barber shaves all those,
and only those, men in town who
do not shave themselves. Who
shaves the barber?

Diagonalization is a technique that was used in many different cases:

http://www.coopertoons.com/education/diagonal/diagonalargument.html


Algorithms & Complexity Turing Machines Undecidability

Diagonalization

Diagonalization

Theorem

The functions from N to N are uncountable.

Proof: Let, for the sake of contradiction that are countable:
φ1, φ2, . . . . Consider the following function: f (x) = φx(x) + 1.
This function must appear somewhere in this enumeration, so let
φy = f (x). Then φy (x) = φx(x) + 1, and if we choose y as an
argument, then φy (y) = φy (y) + 1. �



Algorithms & Complexity Turing Machines Undecidability

Simulation

Machines as strings

It is obvious that we can represent a Turing Machine as a
string: just write down the description and encode it using an
alphabet, e.g. {0, 1}.
We denote by xMy the TM M’s representation as a string.

Also, if x ∈ Σ∗, we denote by Mx the TM that x represents.

Keep in mind that:

Every string represents some Turing Machine.

Every TM is represented by infinitely many strings.



Algorithms & Complexity Turing Machines Undecidability

Simulation

The Universal Turing Machine

So far, our computational models are specified to solve a
single problem.

Turing observed that there is a TM that can simulate any
other TM M, given M’s description as input.

Theorem

There exists a TM U such that for every x ,w ∈ Σ∗,
U(x ,w) = Mw (x).
Also, if Mw halts within T steps on input x, then U(x ,w) halts
within CT log T steps, where C is a constant indepedent of x, and
depending only on Mw ’s alphabet size number of tapes and
number of states.

Proof: See section 3.1 in [1], and Th. 1.9 and section 1.7 in [2].



Algorithms & Complexity Turing Machines Undecidability

Undecidability

The Halting Problem

Consider the following problem: “Given the description of a
TM M, and a string x, will M halt on input x? ” This is
called the HALTING PROBLEM.

We want to compute this problem ! ! ! (Given a
computer program and an input, will this program enter an
infinite loop?)

In language form: H = {xMy; x | M(x) ↓}, where “ ↓ ” means
that the machine halts, and “ ↑ ” that it runs forever.

Theorem

H is recursively enumerable.

Proof: See Th.3.1 (p.59) in [1]
In fact, H is not just a recursively enumerable language:
If we had an algorithm for deciding H, then we would be able to
derive an algorithm for deciding any r.e. language (RE-complete).



Algorithms & Complexity Turing Machines Undecidability

Undecidability

The Halting Problem

But....

Theorem

H is not recursive.

Proof: See Th.3.1 (p.60) in [1]

Suppose, for the sake of contradiction, that there is a TM MH

that decides H.

Consider the TM D:
D(xMy) : if MH(xMy; xMy) = “yes” then ↑ else “yes”

What is D(xDy)?

If D(xDy) ↑, then MH accepts the input, so xDy; xDy ∈ H, so
D(D) ↓.
If D(xDy) ↓, then MH rejects xDy; xDy, so xDy; xDy /∈ H, so
D(D) ↑. �



Algorithms & Complexity Turing Machines Undecidability

Undecidability

The Halting Problem

But....

Theorem

H is not recursive.

Proof: See Th.3.1 (p.60) in [1]

Suppose, for the sake of contradiction, that there is a TM MH

that decides H.

Consider the TM D:
D(xMy) : if MH(xMy; xMy) = “yes” then ↑ else “yes”

What is D(xDy)?

If D(xDy) ↑, then MH accepts the input, so xDy; xDy ∈ H, so
D(D) ↓.
If D(xDy) ↓, then MH rejects xDy; xDy, so xDy; xDy /∈ H, so
D(D) ↑. �



Algorithms & Complexity Turing Machines Undecidability

Undecidability

Recursive languages are a proper subset of recursive
enumerable ones.

Recall that the complement of a language L is defined as:

L = {x ∈ Σ∗ | x /∈ L} = Σ∗ \ L

Theorem

1 If L is recursive, so is L.

2 L is recursive if and only if L and L are recursively enumerable.

Proof: Exercise



Algorithms & Complexity Turing Machines Undecidability

Undecidability

More Undecidability

The HALTING PROBLEM, our first undecidable problem, was
the first, but not the only undecidable problem. Its spawns a
wide range of such problems, via reductions.

To show that a problem A is undecidable we establish that, if
there is an algorithm for A, then there would be an algorithm
for H, which is absurd.

Theorem

The following languages are not recursive:

1 {M | M halts on all inputs}
2 {M; x | There is a y such that M(x) = y}
3 {M; x | The computation of M uses all states of M}
4 {M; x ; y | M(x) = y}



Algorithms & Complexity Turing Machines Undecidability

Undecidability

Rice’s Theorem

The previous problems lead us to a more general conlusion:

�
�

�
�

Any non-trivial property of
Turing Machines is undecidable

If a TM M accepts a language L, we write L = L(M):

Theorem (Rice’s Theorem)

Suppose that C is a proper, non-empty subset of the set of all
recursively enumerable languages. Then, the following problem is
undecidable:

Given a Turing Machine M, is L(M) ∈ C?



Algorithms & Complexity Turing Machines Undecidability

Undecidability

Rice’s Theorem

Proof: See Th.3.2 (p.62) in [1]

We can assume that ∅ /∈ C (why? ).

Since C is nonempty, ∃ L ∈ C, accepted by the TM ML.

Let MH the TM deciding the HALTING PROBLEM for an
arbitrary input x . For each x ∈ Σ∗, we construct a TM M as
follows:

M(y) : if MH(x) = “yes” then ML(y) else ↑
We claim that: L(M) ∈ C if and only if x ∈ H.

Proof of the claim:

If x ∈ H, then MH(x) = “yes”, and so M will accept y or never
halt, depending on whether y ∈ L. Then the language
accepted by M is exactly L, which is in C.
If MH(x) ↑, M never halts, and thus M accepts the language
∅, which is not in C. �



Algorithms & Complexity Turing Machines Undecidability

Undecidability

Rice’s Theorem

Proof: See Th.3.2 (p.62) in [1]

We can assume that ∅ /∈ C (why? ).

Since C is nonempty, ∃ L ∈ C, accepted by the TM ML.

Let MH the TM deciding the HALTING PROBLEM for an
arbitrary input x . For each x ∈ Σ∗, we construct a TM M as
follows:

M(y) : if MH(x) = “yes” then ML(y) else ↑
We claim that: L(M) ∈ C if and only if x ∈ H.
Proof of the claim:

If x ∈ H, then MH(x) = “yes”, and so M will accept y or never
halt, depending on whether y ∈ L. Then the language
accepted by M is exactly L, which is in C.
If MH(x) ↑, M never halts, and thus M accepts the language
∅, which is not in C. �



Complexity Classes

Contents

Introduction

Turing Machines

Undecidability

Complexity Classes
Oracles & Optimization Problems

Randomized Computation

Non-Uniform Complexity

Interactive Proofs

Counting Complexity



Complexity Classes

Introduction

Parameters used to define complexity classes:

Model of Computation (Turing Machine, RAM, Circuits)

Mode of Computation (Deterministic, Nondeterministic,
Probabilistic)

Complexity Measures (Time, Space, Circuit Size-Depth)

Other Parameters (Randomization, Interaction)



Complexity Classes

Introduction

Our first complexity classes

Definition

Let L ⊆ Σ∗, and T , S : N→ N:

We say that L ∈ DTIME[T (n)] if there exists a TM M
deciding L, which operates within the time bound O (T (n)),
where n = |x |.
We say that L ∈ DSPACE[S(n)] if there exists a TM M
deciding L, which operates within space bound O (S(n)), that
is, for any input x , requires space at most S(|x |).

We say that L ∈ NTIME[T (n)] if there exists a
nondeterministic TM M deciding L, which operates within the
time bound O (T (n)).

We say that L ∈ NSPACE[S(n)] if there exists a
nondeterministic TM M deciding L, which operates within
space bound O (S(n)).



Complexity Classes

Introduction

Our first complexity classes

The above are Complexity Classes, in the sense that they
are sets of languages.

All these classes are parameterized by a function T or S , so
they are families of classes (for each function we obtain a
complexity class).

Definition (Complement of a complexity class)

For any complexity class C, coC denotes the class: {L | L ∈ C},
where L = Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}.

We want to define “reasonable” complexity classes, in the
sense that we want to “compute more problems”, given more
computational resources.



Complexity Classes

Constructible Functions

Constructible Functions

Can we use all computable functions to define Complexity
Classes?

Theorem (Gap Theorem)

For any computable functions r and a, there exists a computable
function f such that f (n) ≥ a(n), and

DTIME[f (n)] = DTIME[r(f (n))]

That means, for r(n) = 22f (n)
, the incementation from f (n) to

22f (n)
does not allow the computation of any new function!

So, we must use some restricted families of functions:



Complexity Classes

Constructible Functions

Constructible Functions

Definition (Time-Constructible Function)

A nondecreasing function T : N→ N is time constructible if
T (n) ≥ n and there is a TM M that computes the function
x 7→ xT (|x |)y in time T (n).

Definition (Space-Constructible Function)

A nondecreasing function S : N→ N is space-constructible if
S(n) > log n and there is a TM M that computes S(|x |) using
S(|x |) space, given x as input.

The restriction T (n) ≥ n is to allow the machine to read its input.

The restriction S(n) > log n is to allow the machine to “remember”
the index of the cell of the input tape that it is currently reading.

Also, if f1(n), f2(n) are time/space-constructible functions, so are
f1 + f2, f1 · f2 and f f2

1 .



Complexity Classes

Complexity Classes

Constructible Functions

Theorem (Hierarchy Theorems)

Let t1, t2 be time-constructible functions, and s1, s2 be
space-constructible functions. Then:

1 If t1(n) log t1(n) = o(t2(n)), then DTIME(t1) ( DTIME(t2).

2 If t1(n + 1) = o(t2(n)), then NTIME(t1) ( NTIME(t2).

3 If s1(n) = o(s2(n)), then DSPACE(s1) ( DSPACE(s2).

4 If s1(n) = o(s2(n)), then NSPACE(s1) ( NSPACE(s2).



Complexity Classes

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Theorem

DTIME[n] ( DTIME[n1.5]

Proof (Diagonalization): See Th.3.1 (p.69) in [2]

Let D be the following machine:

On input x, run for |x |1.4 steps U(Mx , x);
If U(Mx , x) = b, then return 1− b;
Else return 0;

Clearly, L = L(D) ∈ DTIME[n1.5]

We claim that L /∈ DTIME[n]:
Let L ∈ DTIME[n]⇒ ∃ M : M(x) = D(x) ∀x ∈ Σ∗, and M
works for O (x) steps.
The time to simulate M using U is c|x | log |x |, for some c .



Complexity Classes

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Theorem

DTIME[n] ( DTIME[n1.5]

Proof (Diagonalization): See Th.3.1 (p.69) in [2]

Let D be the following machine:

On input x, run for |x |1.4 steps U(Mx , x);
If U(Mx , x) = b, then return 1− b;
Else return 0;

Clearly, L = L(D) ∈ DTIME[n1.5]

We claim that L /∈ DTIME[n]:
Let L ∈ DTIME[n]⇒ ∃ M : M(x) = D(x) ∀x ∈ Σ∗, and M
works for O (x) steps.
The time to simulate M using U is c|x | log |x |, for some c .



Complexity Classes

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Proof (cont’d):
∃n0 : n1.4 > cn log n ∀n ≥ n0

There exists a xM , s.t. xM = xMy and |xM | > n0 (why? ) Then,
D(xM) = 1−M(xM) (while we have also that D(x) = M(x), ∀x)

Contradiction!! �

So, we have the hierachy:

DTIME[n] ( DTIME[n2] ( DTIME[n3] ( · · ·

We will later see that the class containing the problems we
can efficiently solve (recall the Edmonds-Cobham Thesis) is
the class P =

⋃
c∈N DTIME[nc ].



Complexity Classes

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Proof (cont’d):
∃n0 : n1.4 > cn log n ∀n ≥ n0

There exists a xM , s.t. xM = xMy and |xM | > n0 (why? ) Then,
D(xM) = 1−M(xM) (while we have also that D(x) = M(x), ∀x)
Contradiction!! �

So, we have the hierachy:

DTIME[n] ( DTIME[n2] ( DTIME[n3] ( · · ·

We will later see that the class containing the problems we
can efficiently solve (recall the Edmonds-Cobham Thesis) is
the class P =

⋃
c∈N DTIME[nc ].



Complexity Classes

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Proof (cont’d):
∃n0 : n1.4 > cn log n ∀n ≥ n0

There exists a xM , s.t. xM = xMy and |xM | > n0 (why? ) Then,
D(xM) = 1−M(xM) (while we have also that D(x) = M(x), ∀x)
Contradiction!! �

So, we have the hierachy:

DTIME[n] ( DTIME[n2] ( DTIME[n3] ( · · ·

We will later see that the class containing the problems we
can efficiently solve (recall the Edmonds-Cobham Thesis) is
the class P =

⋃
c∈N DTIME[nc ].



Complexity Classes

Relations among Complexity Classes

Hierarchy Theorems tell us how classes of the same kind
relate to each other, when we vary the complexity bound.

The most interesting results concern relationships between
classes of different kinds:

Theorem

Suppose that T (n), S(n) are time-constructible and
space-constructible functions, respectively.Then:

1 DTIME[T (n)] ⊆ NTIME[T (n)]

2 DSPACE[S(n)] ⊆ NSPACE[S(n)]

3 NTIME[T (n)] ⊆ DSPACE[T (n)]

4 NSPACE[S(n)] ⊆ DTIME[k log n+S(n)]

Corollary

NTIME[T (n)] ⊆
⋃
c>1

DTIME[cT (n)]



Complexity Classes

Relations among Complexity Classes

Proof: See Th.7.4 (p.147) in [1]

1 Trivial

2 Trivial

3 We can simulate the machine for each nondeterministic
choice, using at most T (n) steps in each simulation.
There are exponentially many simulations, but we can
simulate them one-by-one, reusing the same space.

4 Recall the notion of a configuration of a TM: For a k-tape
machine, is a 2k − 2 tuple: (q, i ,w2, u2, . . . ,wk−1, uk−1)
How many configurations are there?

|Q| choices for the state
n + 1 choices for i , and
Fewer than |Σ|(2k−2)S(n) for the remaining strings

So, the total number of configurations on input size n is at

most nc1 = c
log n+S(n)
1



Complexity Classes

Relations among Complexity Classes

Proof (cont’d):

Definition (Configuration Graph of a TM)

The configuration graph of M on input x , denoted G (M, x), has as
vertices all the possible configurations, and there is an edge
between two vertices C and C ′ if and only if C ′ can be reached
from C in one step, according to M’s transition function.

So, we have reduced this simulation to REACHABILITY*
problem (also known as S-T CONN), for which we know there
is a poly-time (O

(
n2
)
) algorithm.

So, the simulation takes c2c
2(log n+S(n))
1 ∼ k log n+S(n) steps. �

*REACHABILITY: Given a graph G and two nodes v1, vn ∈ V , is there a

path from v1 to vn?



Complexity Classes

Relations among Complexity Classes

The essential Complexity Hierarchy

Definition

L = DSPACE[log n]

NL = NSPACE[log n]

P =
⋃
c∈N

DTIME[nc ]

NP =
⋃
c∈N

NTIME[nc ]

PSPACE =
⋃
c∈N

DSPACE[nc ]

NPSPACE =
⋃
c∈N

NSPACE[nc ]



Complexity Classes

Relations among Complexity Classes

The essential Complexity Hierarchy

Definition

EXP =
⋃
c∈N

DTIME[2n
c
]

NEXP =
⋃
c∈N

NTIME[2n
c
]

EXPSPACE =
⋃
c∈N

DSPACE[2n
c
]

NEXPSPACE =
⋃
c∈N

NSPACE[2n
c
]

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP



Complexity Classes

Relations among Complexity Classes

The essential Complexity Hierarchy

Definition

EXP =
⋃
c∈N

DTIME[2n
c
]

NEXP =
⋃
c∈N

NTIME[2n
c
]

EXPSPACE =
⋃
c∈N

DSPACE[2n
c
]

NEXPSPACE =
⋃
c∈N

NSPACE[2n
c
]

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP



Complexity Classes

Certificates & Quantifiers

Certificate Characterization of NP

Definition

Let R ⊆ Σ∗ × Σ∗ a binary relation on strings.

R is called polynomially decidable if there is a DTM
deciding the language {x ; y | (x , y) ∈ R} in polynomial time.

R is called polynomially balanced if (x , y) ∈ R implies
|y | ≤ |x |k , for some k ≥ 1.

Theorem

Let L ⊆ Σ∗ be a language. L ∈ NP if and only if there is a
polynomially decidable and polynomially balanced relation R, such
that:

L = {x | ∃y R(x , y)}

This y is called succinct certificate, or witness.



Complexity Classes

Certificates & Quantifiers

Proof: See Pr.9.1 (p.181) in [1]

(⇐) If such an R exists, we can construct the following NTM
deciding L:
“On input x , guess a y , such that |y | ≤ |x |k , and then test (in
poly-time) if (x , y) ∈ R. If so, accept, else reject.” Observe that
an accepting computation exists if and only if x ∈ L.

(⇒) If L ∈ NP, then ∃ an NTM N that decides L in time |x |k , for
some k . Define the following R:
“(x , y) ∈ R if and only if y is an encoding of an accepting
computation of N(x).”
R is polynomially balanced and decidable (why? ), so, given by
assumption that N decides L, we have our conclusion. �



Complexity Classes

Certificates & Quantifiers

Can creativity be automated?

As we saw:

Class P: Efficient Computation

Class NP: Efficient Verification

So, if we can efficiently verify a mathematical proof, can we
create it efficiently?

If P = NP...

For every mathematical statement, and given a page limit, we would
(quickly) generate a proof, if one exists.

Given detailed constraints on an engineering task, we would
(quickly) generate a design which meets the given criteria, if one
exists.

Given data on some phenomenon and modeling restrictions, we
would (quickly) generate a theory to explain the date, if one exists.

See “A. Wigderson: Knowledge, Creativity and P versus NP”

http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/AW09/AW09.pdf


Complexity Classes

Certificates & Quantifiers

Complements of complexity classes

Deterministic complexity classes are in general closed under
complement (coL = L, coP = P, coPSPACE = PSPACE).

Complements of non-deterministic complexity classes are very
interesting:

The class coNP contains all the languages that have succinct
disqualifications (the analogue of succinct certificate for the
class NP). The “no” instance of a problem in coNP has a
short proof of its being a “no” instance.

So:

P ⊆ NP ∩ coNP

Note the similarity and the difference with R = RE ∩ coRE.



Complexity Classes

Certificates & Quantifiers

Quantifier Characterization of Complexity Classes

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃,∀}, the class C of
languages L satisfying:

x ∈ L⇒ Q1y R(x , y)

x /∈ L⇒ Q2y ¬R(x , y)

P = (∀/∀)

NP = (∃/∀)

coNP = (∀/∃)



Complexity Classes

Space Computation

Savitch’s Theorem

REACHABILITY ∈ NL. See Ex.2.10 (p.48) in [1]

Theorem (Savitch’s Theorem)

REACHABILITY ∈ DSPACE[log2 n]

Proof: See Th.7.4 (p.149) in [1]

PATH(x , y , i) : “There is a path from x to y, of length ≤ 2i”.

We can solve REACHABILITY if we can compute
PATH(x , y , dlog ne), for any nodes x , y ∈ V , since any path in
G can be at most n log n long.

If i = 0, we can check whether PATH(x , y , i).

If i ≥ 1:

forall nodes z test whether PATH(x , z , i − 1) and PATH(z , y , i − 1)



Complexity Classes

Space Computation

Savitch’s Theorem

Proof (cont’d):

We generate all nodes z one after the other, reusing space.

Once a z is generated, we add (x , z , i − 1) to the tape, and
start working on this recursively.

If a negative answer is obtained to PATH(x , z , i − 1), we erase
this triple and move to the next z .

If a positive answer is obtained to PATH(x , z , i − 1), we erase
the triple and move to PATH(z , y , i − 1).

If this is negative, we erase it and move to the next z .

If it is positive, we compare it to (x , y , i) to check that this is
the second recursive call, and then return a positive answer to
PATH(x , y , i).

The work tape contains at any moment at most dlog ne, each
of length at most 3 log n. �



Complexity Classes

Space Computation

Savitch’s Theorem

Corollary

NSPACE[S(n)] ⊆ DSPACE[S2(n)], for any space-constructible
function S(n) ≥ log n.

Proof:

Let M be the nondeterministic TM to be simulated.

We run the algorithm of Savitch’s Theorem proof on the
configuration graph of M on input x .

Since the configuration graph has cS(n) nodes, O
(
S2(n)

)
space suffices. �

Corollary

PSPACE = NPSPACE



Complexity Classes

Space Computation

NL-Completeness

In Complexity Theory, we “connect” problems in a complexity
class with partial ordering relations, called reductions, which
formalize the notion of “a problem that is at least as hard as
another”.

A reduction must be computationally weaker than the class in
which we use it.

Definition

A language L1 is logspace reducible to a language L2, denoted
L1 ≤l L2, if there is a function f : Σ∗ → Σ∗, computable by a
DTM in O (log n) space, such that for all x ∈ Σ∗:

x ∈ L1 ⇔ f (x) ∈ L2

We say that a language L is NL-complete if it is in NL and for
every A ∈ NL, A ≤l L.



Complexity Classes

Space Computation

NL-Completeness

Theorem

REACHABILITY is NL-complete.

Proof: See Th.4.18 (p.89) in [2]

We ’ve argued why REACHABILITY ∈ NL.

Let L ∈ NL, that is, it is decided by a O (log n) NTM N.

Given input x , we can construct the configuration graph of
N(x).

We can assume that this graph has a single accepting node.

We can construct this in logspace: Given configurations C ,C ′

we can in space O (|C |+ |C ′|) = O (log |x |) check the graph’s
adjacency matrix if they are connected by an edge.

It is clear that x ∈ L if and only if the produced instance of
REACHABILITY has a “yes” answer. �



Complexity Classes

Space Computation

NL-Completeness

Theorem

REACHABILITY is NL-complete.

Proof: See Th.4.18 (p.89) in [2]

We ’ve argued why REACHABILITY ∈ NL.

Let L ∈ NL, that is, it is decided by a O (log n) NTM N.

Given input x , we can construct the configuration graph of
N(x).

We can assume that this graph has a single accepting node.

We can construct this in logspace: Given configurations C ,C ′

we can in space O (|C |+ |C ′|) = O (log |x |) check the graph’s
adjacency matrix if they are connected by an edge.

It is clear that x ∈ L if and only if the produced instance of
REACHABILITY has a “yes” answer. �



Complexity Classes

Space Computation

Certificate Definition of NL

We want to give a characterization of NL, similar to the one
we gave for NP.

A certificate may be polynomially long, so a logspace machine
may not have the space to store it.

So, we will assume that the certificate is provided to the
machine on a separate tape that is read once.



Complexity Classes

Space Computation

Certificate Definition of NL

Definition

A language L is in NL if there exists a deterministic TM M with an
additional special read-once input tape, such that for every x ∈ Σ∗:

x ∈ L⇔ ∃y , |y | ∈ poly(|x |),M(x , y) = 1

where by M(x , y) we denote the output of M where x is placed on
its input tape, and y is placed on its special read-once tape, and M
uses at most O (log |x |) space on its read-write tapes for every
input x .

What if remove the read-once restriction and allow the TM’s head
to move back and forth on the certificate, and read each bit
multiple times?



Complexity Classes

Space Computation

Immerman-Szelepscényi

Theorem (The Immerman-Szelepscényi Theorem)

REACHABILITY ∈ NL

Proof: See Th.4.20 (p.91) in [2]

It suffices to show a O (log n) verification algorithm A such
that: ∀ (G , s, t), ∃ a polynomial certificate u such that:
A((G , s, t), u) = “yes” iff t is not reachable from s.

A has read-once access to u.

G ’s vertices are identified by numbers in {1, . . . , n} = [n]

Ci : “The set of vertices reachable from s in ≤ i steps.”

Membership in Ci is easily certified:

∀i ∈ [n]: v0, . . . , vk along the path from s to v , k ≤ i .

The certificate is at most polynomial in n.



Complexity Classes

Space Computation

Immerman-Szelepscényi

Theorem (The Immerman-Szelepscényi Theorem)

REACHABILITY ∈ NL

Proof: See Th.4.20 (p.91) in [2]

It suffices to show a O (log n) verification algorithm A such
that: ∀ (G , s, t), ∃ a polynomial certificate u such that:
A((G , s, t), u) = “yes” iff t is not reachable from s.

A has read-once access to u.

G ’s vertices are identified by numbers in {1, . . . , n} = [n]

Ci : “The set of vertices reachable from s in ≤ i steps.”

Membership in Ci is easily certified:

∀i ∈ [n]: v0, . . . , vk along the path from s to v , k ≤ i .

The certificate is at most polynomial in n.



Complexity Classes

Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont’d):

We can check the certificate using read-once access:
1 v0 = s
2 for j > 0, (vj−1, vj) ∈ E (G )
3 vk = v
4 Path ends within at most i steps

We now construct two types of certificates:
1 A certificate that a vertex v /∈ Ci , given |Ci |.
2 A certificate that |Ci | = c , for some c , given |Ci−1|.

Since C0 = {s}, we can provide the 2nd certificate to
convince the verifier for the sizes of C1, . . . ,Cn

Cn is the set of vertices reachable from s.



Complexity Classes

Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont’d):

Since the verifier has been convinced of |Cn|, we can use the
1st type of certificate to convince the verifier that t /∈ Cn.

Certifying that v /∈ Ci , given |Ci |
The certificate is the list of certificates that u ∈ Ci , for every
u ∈ Ci .
The verifier will check:

1 Each certificate is valid
2 Vertex u, given a certificate for u, is larger than the previous.
3 No certificate is provided for v .
4 The total number of certificates is exactly |Ci |.



Complexity Classes

Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont’d):
Certifying that v /∈ Ci , given |Ci−1|
The certificate is the list of certificates that u ∈ Ci−1, for every
u ∈ Ci−1

The verifier will check:

1 Each certificate is valid

2 Vertex u, given a certificate for u, is larger than the previous.

3 No certificate is provided for v or for a neighbour of v .

4 The total number of certificates is exactly |Ci−1|.
Certifying that |Ci | = c, given |Ci−1|
The certificate will consist of n certificates for each vertex.
The verifier will check all certificates, and count the vertices that
have been certified to be in Ci . If |Ci | = c , it accepts. �



Complexity Classes

Space Computation

The Immerman-Szelepscényi Theorem

Corollary

For every space constructible S(n) > log n:

NSPACE[S(n)] = coNSPACE[S(n)]

Proof:

Let L ∈ NSPACE[S(n)]. We will show that ∃ S(n)
space-bounded NTM M deciding L:

M on input x uses the above certification procedure on the
configuration graph of M. �

Corollary

NL = coNL



Complexity Classes

Space Computation

What about Undirected Reachability?

UNDIRECTED REACHABILITY captures the phenomenon of
configuration graphs with both directions.
H. Lewis and C. Papadimitriou defined the class SL
(Symmetric Logspace) as the class of languages decided by a
Symmetric Turing Machine using logarithmic space.
Obviously,

L ⊆ SL ⊆ NL

As in the case of NL, UNDIRECTED REACHABILITY is
SL-complete.
But in 2004, Omer Reingold showed, using expander graphs, a
deterministic logspace algorithm for UNDIRECTED
REACHABILITY, so:

Theorem (Reigold, 2004)

L = SL



Complexity Classes

Space Computation

Our Complexity Hierarchy Landscape

L

NL

= coNL

P N
P

NPC

co
N

P

PSPACE

= NPSPACE

EXP

NEXP


	Introduction
	Algorithms & Complexity
	Why Complexity?
	Problems....

	Turing Machines
	Definitions
	Properties of Turing Machines
	NTMs

	Undecidability
	Diagonalization
	Simulation
	Undecidability


	Complexity Classes
	Complexity Classes
	Introduction
	Constructible Functions
	Complexity Classes
	Relations among Complexity Classes
	Certificates & Quantifiers
	Space Computation



