Theoretical Computer Science (ECE) Algorithms and Complexity II (MPLA)

Computation and Reasoning Laboratory National Technical University of Athens

2013-2014

2st Part

Oracles - Polynomial Hierarchy - Randomization - Nonuniform Complexity - Interaction - Counting Complexity

Professors: S. Zachos, Professor A. Pagourtzis, Ass. Professor

TA-Slides: Antonis Antonopoulos

Bibliography

Textbooks

- C. Papadimitriou, Computational Complexity, Addison Wesley, 1994
- S. Arora, B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009
- 3 O. Goldreich, Computational Complexity: A Conceptual Perspective, Cambridge University Press, 2008

Lecture Notes

- L. Trevisan, Lecture Notes in Computational Complexity, 2002, UC Berkeley
- E. Allender, M. Loui, and K. Regan, Three chapters for the CRC Handbook on Algorithms and Theory of Computation (M.J. Atallah, ed.), (Boca Raton: CRC Press, 1998).

Contents

- Introduction
- Turing Machines
- Undecidability
- Complexity Classes
- Oracles & Optimization Problems
- Randomized Computation
- Non-Uniform Complexity
- o Interactive Proofs
- Counting Complexity

Oracles & Optimization Problems
Oracles & Introduction

Introduction

TSP Versions

- 1 TSP (D)
- 2 EXACT TSP
- 3 TSP COST
- TSP

 $(1)\leq_P(2)\leq_P(3)\leq_P(4)$

The Class DP

DP Class Definition

Definition

A language *L* is in the class **DP** if and only if there are two languages $L_1 \in \mathbf{NP}$ and $L_2 \in co\mathbf{NP}$ such that $L = L_1 \cap L_2$.

- **DP** is not $NP \cap coNP!$
- Also, **DP** is a *syntactic* class, and so it has complete problems.

SAT-UNSAT Definition

Given two Boolean expressions ϕ , ϕ' , both in 3CNF. Is it true that ϕ is satisfiable and ϕ' is not?

The Class DP

Complete Problems for DP

Theorem *SAT-UNSAT* is **DP**-complete.

Proof

- Firstly, we have to show it is in **DP**. So, let: $L_1 = \{(\phi, \phi'): \phi \text{ is satisfiable}\}.$ $L_2 = \{(\phi, \phi'): \phi' \text{ is unsatisfiable}\}.$ It is easy to see, $L_1 \in \mathbf{NP}$ and $L_2 \in co\mathbf{NP}$, thus $L \equiv L_1 \cap L_2 \in \mathbf{DP}.$
- For completeness, let $L \in \mathbf{DP}$. We have to show that $L \leq_P SAT$ -UNSAT. $L \in \mathbf{DP} \Rightarrow L = L_1 \cap L_2$, $L_1 \in \mathbf{NP}$ and $L_2 \in co\mathbf{NP}$.

SAT **NP**-complete $\Rightarrow \exists R_1: L_1 \leq_P SAT$ and $R_2: \overline{L_2} \leq_P SAT$. Hence, $L \leq_P SAT$ -UNSAT, by $R(x) = (R_1(x), R_2(x))$

The Class DP

Complete Problems for DP

Theorem

EXACT TSP is **DP**-complete.

Proof

• *EXACT* $TSP \in \mathbf{DP}$, by $L_1 \equiv TSP \in \mathbf{NP}$ and $L_2 \equiv TSP$ $COMPLEMENT \in co\mathbf{NP}$

Completeness: we'll show that SAT-UNSAT≤_PEXACT TSP.
 3SAT≤_PHP: (φ, φ') → (G, G')
 Broken Hamilton Path (2 node-disjoint paths that cover all nodes)
 Almost Satisfying Truth Assignement (satisfies all clauses except for one)

The Class DP

Complete Problems for DP

Proof

We define distances:

- ① If $(i,j) \in E(G)$ or E(G'): $d(i,j) \equiv 1$
- ② If $(i,j) \notin E(G)$, but i and j ∈ V(G): $d(i,j) \equiv 2$
- 3 Otherwise: $d(i,j) \equiv 4$

Let n be the size of the graph.

- 1) If ϕ and ϕ' satisfiable, then optCost = n
- 2 If ϕ and ϕ' unsatisfiable, then optCost = n + 3
- 3 If ϕ satisfiable and ϕ' not, then optCost = n + 2
- ④ If ϕ' satisfiable and ϕ not, then optCost = n + 1

"**yes**" instance of *SAT-UNSAT* \Leftrightarrow *optCost* = n + 2Let $B \equiv n + 2!$

The Class DP

Other DP-complete problems

Also:

- *CRITICAL SAT*: Given a Boolean expression ϕ , is it true that it's **un**satisfiable, but deleting any clause makes it satisfiable?
- CRITICAL HAMILTON PATH: Given a graph, is it true that it has **no** Hamilton path, but addition of any edge creates a Hamilton path?
- CRITICAL 3-COLORABILITY: Given a graph, is it true that it is not 3-colorable, but deletion of any node makes it 3-colorable?

are **DP**-complete!

Oracle Classes

Oracle TMs and Oracle Classes

Definition

A Turing Machine $M^{?}$ with *oracle* is a multi-string deterministic TM that has a special string, called **query string**, and three special states: $q_{?}$ (query state), and q_{YES} , q_{NO} (answer states). Let $A \subseteq \Sigma^{*}$ be an arbitrary language. The computation of oracle machine M^{A} proceeds like an ordinary TM except for transitions from the query state:

From the $q_?$ moves to either q_{YES} , q_{NO} , depending on whether the current query string is in A or not.

- The answer states allow the machine to use this answer to its further computation.
- The computation of $M^{?}$ with oracle A on iput x is denoted as $M^{A}(x)$.

Oracle Classes

Oracle TMs and Oracle Classes

Definition

Let C be a time complexity class (deterministic or nondeterministic). Define C^A to be the <u>class</u> of all languages decided by machines of the same sort and time bound as in C, only that the machines have now oracle A.

Theorem

There exists an oracle A for which $\mathbf{P}^{A} = \mathbf{N}\mathbf{P}^{A}$

Proof

Take A to be a **PSPACE**-complete language.Then: **PSPACE** \subseteq **P**^A \subseteq **NP**^A \subseteq **NPSPACE** \subseteq **PSPACE**.

Theorem

There exists an oracle *B* for which $\mathbf{P}^B \neq \mathbf{NP}^B$

Oracle Classes

The Classes P^{NP} and FP^{NP}

Alternative DP Definition

DP is the class of languages that can be decided by an oracle machine which makes 2 queries to a *SAT* oracle, and accepts iff the 1st answer is **yes**, and the 2nd is **no**.

- **P**^{SAT} is the class of languages decided in pol time with a SAT oracle.
 - Polynomial number of queries
 - Queries computed adaptively
- SAT NP-complete $\Rightarrow \mathbf{P}^{SAT} = \mathbf{P}^{\mathbf{NP}}$
- **FP**^{NP} is the class of <u>functions</u> that can be computed by a pol-time TM with a *SAT* oracle.
- □ Goal: *MAX OUTPUT*≤_P*MAX-WEIGHT SAT*≤_P*SAT*

Oracle Classes

FP^{NP}-complete Problems

MAX OUTPUT Definition

Given NTM N, with input 1^n , which halts after $\mathcal{O}(n)$, with output a string of length *n*. Which is the largest output, of any computation of N on 1^n ?

Theorem

MAX OUTPUT is **FP^{NP}**-complete.

Proof $MAX \ OUTPUT \in \mathbf{FP}^{NP}$. Let $F : \Sigma^* \to \Sigma^* \in \mathbf{FP}^{NP} \Rightarrow \exists \text{ pol-time TM } M^?, \text{ s.t.}$ $M^{SAT}(x) = F(x)$. We'll show: $F \leq MAX \ OUTPUT$! Reductions R and S (log space computable) s.t.:

- $\forall x, R(x)$ is a instance of MAX OUTPUT
- $S(\max \text{ output of } R(x)) \to F(x)$

Oracle Classes

FP^{NP}-complete Problems

Proof (cont.) NTM N: Let $n = p^2(|x|)$, $p(\cdot)$, is the pol bound of SAT. $N(1^n)$ generates x on a string. M^{SAT} query state (ϕ_1) : • If $z_1 = 0$ (ϕ_1 unsat), then continue from q_{NO} . • If $z_1 = 1$ (ϕ_1 sat), then guess assignment T_1 : • If test succeeds, continue from q_{YES} . • If test fails, $output=0^n$ and **halt**. (Unsuccessful computation) Continue to all guesses (z_i) , and **halt**, with output= $z_1z_2....00$

(Successful computation)

n

Oracle Classes

FP^{NP}-complete Problems

Proof (cont.)

We claim that the successful computation that outputs the largest integer, correspond to a correct simulation:

Let j the smallest integer, s.t.: $z_j = 0$, while ϕ_j was satisfiable.

Then, \exists another successful computation of *N*, s.t.: $z_j = 1$.

The computations agree to the first j-1 digits, \Rightarrow the 2nd

represents a larger number.

The S part: F(x) can be read off the end of the largest output of N.

Oracle Classes

<u>FP^{NP}-</u>complete Problems

MAX-WEIGHT SAT Definition

Given a set of clauses, each with an integer weight, find the truth assignment that satisfies a set of clauses with the most total weight.

Oracle Classes

FP^{NP}-complete Problems

MAX-WEIGHT SAT Definition

Given a set of clauses, each with an integer weight, find the truth assignment that satisfies a set of clauses with the most total weight.

Theorem

MAX-WEIGHT SAT is **FP^{NP}**-complete.

Proof

MAX-WEIGHT SAT is in \mathbf{FP}^{NP} : By binary search, and a SAT oracle, we can find the largest possible total weight of satisfied clauses, and then, by setting the variables 1-1, the truth assignment that achieves it. MAX OUTPUT \leq MAX-WEIGHT SAT:

Oracle Classes

FP^{NP}-complete Problems

Proof (cont.)

- $NTMN(1^n) \rightarrow \phi(N, m)$: Any satisfying truth assignment of $\phi(N, m) \rightarrow$ legal comp. of $N(1^n)$
- Clauses are given a huge weight (2^n) , so that any t.a. that aspires to be optimum satisfy all clauses of $\phi(N, m)$.
- Add more clauses: (y_i) : i = 1, ...n with weight 2^{n-i} .
- Now, optimum t.a. must *not* represent any legal computation, but this which produces the *largest* possible output value.
- S part: From optimum t.a. of the resulting expression (or the weight), we can recover the optimum output of $N(1^n)$.

Oracle Classes

And the main result:

Theorem

TSP is $\mathbf{FP}^{\mathbf{NP}}$ -complete.

Oracle Classes

And the main result:

Theorem

TSP is $\mathbf{FP}^{\mathbf{NP}}$ -complete.

Corollary TSP COST is **FP^{NP}**-complete.

Oracle Classes

The Class P^{NP[log n]}

Definition

 $\mathbf{P^{NP[logn]}}$ is the class of all languages decided by a polynomial time oracle machine, which on input x asks a total of $\mathcal{O}(\log |x|)$ SAT queries.

• **FP**^{NP[logn]} is the corresponding class of functions.

Oracle Classes

The Class P^{NP[log n]}

Definition

 $\mathbf{P^{NP[logn]}}$ is the class of all languages decided by a polynomial time oracle machine, which on input x asks a total of $\mathcal{O}(\log |x|)$ SAT queries.

• **FP^{NP[logn]}** is the corresponding class of functions.

CLIQUE SIZE Definition

Given a graph, determine the size of his largest clique.

Oracle Classes

The Class *P^{NP[log n]}*

Definition

 $\mathbf{P^{NP[logn]}}$ is the class of all languages decided by a polynomial time oracle machine, which on input x asks a total of $\mathcal{O}(\log |x|)$ SAT queries.

• **FP^{NP[logn]}** is the corresponding class of functions.

CLIQUE SIZE Definition

Given a graph, determine the size of his largest clique.

Theorem

CLIQUE SIZE is **FP^{NP[logn]}**-complete.

Oracle Classes

Conclusion

- 1 TSP (D) is **NP**-complete.
- 2 EXACT TSP is **DP**-complete.
- 3 *TSP COST* is **FP^{NP}**-complete.
- ④ TSP is FP^{NP}-complete.

And now,

- $\mathbf{P}^{\mathbf{NP}} \rightarrow \mathbf{NP}^{\mathbf{NP}}$?
- Oracles for NP^{NP} ?

The Polynomial Hierarchy

The Polynomial Hierarchy

Polynomial Hierarchy Definition

$$\bullet \ \Delta_0^p = \Sigma_0^p = \Pi_0^p = \mathbf{P}$$

$$\Delta_{i+1}^p = \mathbf{P}^{\Sigma_i^p}$$

$$\circ \ \Sigma_{i+1}^{p} = \mathbf{N} \mathbf{P}^{\Sigma_{i}^{p}}$$

$$\circ \Pi_{i+1}^p = co \mathbf{N} \mathbf{P}^{\Sigma_i^p}$$

$$\mathsf{PH} \equiv \bigcup_{i \geqslant 0} \Sigma_i^p$$

•
$$\Sigma_0^{\rho} = \mathbf{P}$$

• $\Delta_1^{\rho} = \mathbf{P}, \ \Sigma_1^{\rho} = \mathbf{NP}, \ \Pi_1^{\rho} = co\mathbf{NP}$
• $\Delta_1^{\rho} = \mathbf{P}^{\mathbf{NP}} \ \Sigma_2^{\rho} = \mathbf{NP}^{\mathbf{NP}} \ \Pi_2^{\rho} = co\mathbf{NP}^{\mathbf{NP}}$

Basic Theorems

Basic Theorems

Theorem

Let L be a language , and $i \ge 1$. $L \in \Sigma_i^p$ iff there is a polynomially balanced relation R such that the language $\{x; y : (x, y) \in R\}$ is in $\prod_{i=1}^p$ and

$$L = \{x : \exists y, s.t. : (x, y) \in R\}$$

Proof (by Induction)

• For i = 1 $\{x; y : (x, y) \in R\} \in \mathbf{P}$, so $L = \{x | \exists y : (x, y) \in R\} \in \mathbf{NP}$ • For i > 1If $\exists R \in \prod_{i=1}^{p}$, we must show that $L \in \Sigma_{i}^{p} \Rightarrow$ $\exists \text{ NTM with } \Sigma_{i=1}^{p} \text{ oracle: NTM}(x) \text{ guesses a } y \text{ and asks } \prod_{i=1}^{p}$ oracle whether $(x, y) \notin R$.

Basic Theorems

Basic Theorems

Proof (cont.)

If $L \in \Sigma_i^p$, we must show the existence or R. $L \in \Sigma_i^p \Rightarrow \exists \text{NTM } M^K$, $K \in \Sigma_{i-1}^p$, which decides L. $K \in \Sigma_{i-1}^p \Rightarrow \exists S \in \prod_{i-2}^p : (z \in K \Leftrightarrow \exists w : (z, w) \in S)$ We must describe a relation R (we know: $x \in L \Leftrightarrow$ accepting comp of $M^K(x)$) Query Steps: "yes" $\rightarrow z_i$ has a certificate w_i st $(z_i, w_i) \in S$. So, $R(x) = "(x, y) \in R$ iff yrecords an accepting computation of $M^?$ on x, together with a certificate w_i for each yes query z_i in the computation." We must show $\{x; y : (x, y) \in R\} \in \prod_{i=1}^p$.

Basic Theorems

Basic Theorems

Corollary

Let L be a language , and $i \ge 1$. $L \in \prod_i^p$ iff there is a polynomially balanced relation R such that the language $\{x; y : (x, y) \in R\}$ is in $\sum_{i=1}^p$ and

$$L = \{x : \forall y, |y| \le |x|^k, s.t. : (x, y) \in R\}$$

Corollary

Let L be a language , and $i \ge 1$. $L \in \Sigma_i^p$ iff there is a polynomially balanced, polynomially-time decicable (i + 1)-ary relation R such that:

$$L = \{x : \exists y_1 \forall y_2 \exists y_3 ... Q y_i, s.t. : (x, y_1, ..., y_i) \in R\}$$

where the *i*th quantifier Q is \forall , if *i* is even, and \exists , if *i* is odd.

Basic Theorems

Basic Theorems

Theorem

If for some $i \ge 1$, $\sum_{i=1}^{p} \prod_{i=1}^{p} \prod_{i=1}^{p} \prod_{j=1}^{p} \prod_{j=1}^{p} \prod_{j=1}^{p} \prod_{i=1}^{p} \prod_{j=1}^{p} \prod_{j=1}$

$$\Sigma_j^p = \Pi_j^p = \Delta_j^p = \Sigma_i^p$$

Or, the polynomial hierarchy *collapses* to the i^{th} level.

Proof

It suffices to show that:
$$\Sigma_i^p = \prod_i^p \Rightarrow \Sigma_{i+1}^p = \Sigma_i^p$$

Let $L \in \Sigma_{i+1}^p \Rightarrow \exists R \in \prod_i^p$: $L = \{x | \exists y : (x, y) \in R\}$
Since $\prod_i^p = \Sigma_i^p \Rightarrow R \in \Sigma_i^p$
 $(x, y) \in R \Leftrightarrow \exists z : (x, y, z) \in S, S \in \prod_{i=1}^p$.
Thus, $x \in L \Leftrightarrow \exists y; z : (x, y, z) \in S, S \in \prod_{i=1}^p$, which means $L \in \Sigma_i^p$.

Basic Theorems

Basic Theorems

Corollary

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses to the first level.

Basic Theorems

Basic Theorems

Corollary

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses to the first level.

MINIMUM CIRCUIT Definition

Given a Boolean Circuit C, is it true that there is no circuit with fewer gates that computes the same Boolean function

- MINIMUM CIRCUIT is in Π_2^p , and not known to be in any class below that.
- It is open whether *MINIMUM CIRCUIT* is Π_2^p -complete.

Theorem

If *SAT* has Polynomial Circuits, then the Polynomial Hierarchy collapses to the second level.

Basic Theorems

QSAT_i Definition

Given expression ϕ , with Boolean variables partitioned into *i* sets X_i , is ϕ satisfied by the overall truth assignment of the expression:

 $\exists X_1 \forall X_2 \exists X_3 \dots Q X_i \phi$

, where Q is \exists if *i* is *odd*, and \forall if *i* is even.

Theorem

For all $i \geq 1$ QSAT_i is Σ_i^p -complete.

Basic Theorems

Basic Theorems

Theorem

If there is a **PH**-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof

Let *L* is **PH**-complete. Since $L \in \mathbf{PH}$, $\exists i \geq 0 : L \in \Sigma_i^p$. But any $L' \in \Sigma_{i+1}^p$ reduces to *L*. Since PH is closed under reductions, we imply that $L' \in \Sigma_i^p$, so $\Sigma_i^p = \Sigma_{i+1}^p$.

Basic Theorems

Theorem

If there is a **PH**-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof

Let L is **PH**-complete. Since $L \in \mathbf{PH}$, $\exists i \geq 0 : L \in \Sigma_i^p$. But any $L' \in \Sigma_{i+1}^p$ reduces to L. Since PH is closed under reductions, we imply that $L' \in \Sigma_i^p$, so $\Sigma_i^p = \Sigma_{i+1}^p$.

Theorem

$\mathsf{PH} \subseteq \mathsf{PSPACE}$

• **PH** $\stackrel{?}{=}$ **PSPACE** (Open). If it was, then **PH** has complete problems, so it collapses to some finite level.

Contents

- Introduction
- Turing Machines
- Undecidability
- Complexity Classes
- Oracles & Optimization Problems
- Randomized Computation
- Non-Uniform Complexity
- Interactive Proofs
- Counting Complexity

Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Deterministic Quicksort

Input: A list L of integers; <u>If</u> $n \le 1$ then return L. <u>Else</u> {

- let i = 1;
- let L_1 be the sublist of L whose elements are $< a_i$;
- let L_1 be the sublist of L whose elements are $= a_i$;
- \circ let L₁ be the sublist of L whose elements are $> a_i$;
- Recursively Quicksort L₁ and L₃;
- return $L = L_1 L_2 L_3$;
Randomized Computation

••••••••

Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Randomized Quicksort

Input: A list L of integers; <u>If</u> $n \le 1$ then return L. <u>Else</u> {

- choose a random integer i, $1 \le i \le n$;
- let L_1 be the sublist of L whose elements are $< a_i$;
- let L_1 be the sublist of L whose elements are $= a_i$;
- \circ let L₁ be the sublist of L whose elements are $> a_i$;
- Recursively Quicksort L₁ and L₃;
- return $L = L_1 L_2 L_3$;

Examples of Randomized Algorithms

Warmup: Randomized Quicksort

• Let T_d the max number of comparisons for the Deterministic Quicksort:

Examples of Randomized Algorithms

Warmup: Randomized Quicksort

• Let T_d the max number of comparisons for the Deterministic Quicksort:

• Let T_r the *expected* number of comparisons for the Randomized Quicksort:

$$T_r \ge \frac{1}{n} \sum_{j=0}^{n-1} [T_r(j) - T_r(n-1-j)] + \mathcal{O}(n)$$

$$\downarrow$$

$$T_r(n) = \mathcal{O}(n \log n)$$

Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

- Two polynomials are equal if they have the same coefficients for corresponding powers of their variable.
- 2 A polynomial is *identically zero* if all its coefficients are equal to the additive identity element.
- 3 How we can test if a polynomial is identically zero?

Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

- Two polynomials are equal if they have the same coefficients for corresponding powers of their variable.
- 2 A polynomial is *identically zero* if all its coefficients are equal to the additive identity element.
- 3 How we can test if a polynomial is identically zero?
- We can choose uniformly at random r_1, \ldots, r_n from a set $S \subseteq \mathbb{F}$.
- We are wrong with a probability at most:

Theorem (Schwartz-Zippel Lemma)

Let $Q(x_1, ..., x_n) \in \mathbb{F}[x_1, ..., x_n]$ be a multivariate polynomial of total degree d. Fix any finite set $S \subseteq \mathbb{F}$, and let $r_1, ..., r_n$ be chosen independently and uniformly at random from S. Then:

$$\Pr[Q(r_1,\ldots,r_n)=0|Q(x_1,\ldots,x_n)\neq 0]\leq \frac{d}{|S|}$$

Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

Proof:

(By Induction on n)

• For n = 1: $\Pr[Q(r) = 0 | Q(x) \neq 0] \le d/|S|$

• <u>For n</u>:

$$Q(x_1,\ldots,x_n)=\sum_{i=0}^k x_1^i Q_i(x_2,\ldots,x_n)$$

where $k \leq d$ is the *largest* exponent of x_1 in Q. $deg(Q_k) \leq d - k \Rightarrow \Pr[Q_k(r_2, ..., r_n) = 0] \leq (d - k)/|S|$ Suppose that $Q_k(r_2, ..., r_n) \neq 0$. Then:

$$q(x_1) = Q(x_1, r_2, ..., r_n) = \sum_{i=0}^k x_1^i Q_i(r_2, ..., r_n)$$

 $deg(q(x_1)) = k$, and $q(x_1) \neq 0!$

◆□ ▶ ▲□ ▶ ▲三 ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶

Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

Proof (cont'd): The base case now implies that:

$$\mathbf{Pr}[q(r_1) = Q(r_1, \ldots, r_n) = 0] \le k/|S|$$

Thus, we have shown the following two equalities:

$$\mathbf{Pr}[Q_k(r_2,\ldots,r_n)=0] \leq \frac{d-k}{|S|}$$

$$\Pr[Q_k(r_1, r_2, \ldots, r_n) = 0 | Q_k(r_2, \ldots, r_n) \neq 0] \leq \frac{k}{|S|}$$

Using the following identity: $\Pr[\mathcal{E}_1] \leq \Pr[\mathcal{E}_1|\overline{\mathcal{E}}_2] + \Pr[\mathcal{E}_2]$ we obtain that the requested probability is no more than the sum of the above, which proves our theorem! \Box

Computational Model

Probabilistic Turing Machines

- A Probabilistic Turing Machine is a TM as we know it, but with access to a "random source", that is an extra (read-only) tape containing *random-bits*!
- Randomization on:
 - Output (one or two-sided)
 - Running Time

Definition (Probabilistic Turing Machines)

A Probabilistic Turing Machine is a TM with two transition functions δ_0, δ_1 . On input x, we choose in each step with probability 1/2 to apply the transition function δ_0 or δ_1 , independently of all previous choices.

- We denote by M(x) the *random variable* corresponding to the output of M at the end of the process.
- For a function $T : \mathbb{N} \to \mathbb{N}$, we say that M runs in T(|x|)-time if it halts on x within T(|x|) steps (regardless of the random choices it makes).

Complexity Classes

Definition (BPP Class)

For $T : \mathbb{N} \to \mathbb{N}$, let **BPTIME**[T(n)] the class of languages L such that there exists a PTM which halts in $\mathcal{O}(T(|x|))$ time on input x, and $\Pr[M(x) = L(x)] \ge 2/3$. We define:

$$\mathsf{BPP} = \bigcup_{c \in \mathbb{N}} \mathsf{BPTIME}[n^c]$$

- The class BPP represents our notion of <u>efficient</u> (randomized) computation!
- We can also define **BPP** using certificates:

Complexity Classes

Definition (Alternative Definition of BPP)

A language $L \in \mathbf{BPP}$ if there exists a poly-time TM M and a polynomial $p \in poly(n)$, such that for every $x \in \{0, 1\}^*$:

$$\mathsf{Pr}_{r\in\{0,1\}^{p(n)}}[M(x,r)=L(x)]\geq \frac{2}{3}$$

- $\mathbf{P} \subseteq \mathbf{BPP}$
- \circ BPP \subseteq EXP
- The "P vs BPP" question.

Quantifier Characterizations

• Proper formalism (*Zachos et al.*):

Definition (Majority Quantifier)

Let $R : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ be a predicate, and ε a rational number, such that $\varepsilon \in (0,\frac{1}{2})$. We denote by $(\exists^+ y, |y| = k)R(x, y)$ the following predicate:

"There exist at least $(\frac{1}{2} + \varepsilon) \cdot 2^k$ strings y of length m for which R(x, y) holds."

We call \exists^+ the *overwhelming majority* quantifier.

• \exists_r^+ means that the fraction r of the possible certificates of a certain length satisfy the predicate for the certain input.

Quantifier Characterizations

Quantifier Characterizations

Definition

We denote as $C = (Q_1/Q_2)$, where $Q_1, Q_2 \in \{\exists, \forall, \exists^+\}$, the class C of languages L satisfying:

- $x \in L \Rightarrow Q_1 y R(x, y)$
- $x \notin L \Rightarrow Q_2 y \neg R(x, y)$
- $\mathbf{P} = (\forall / \forall)$
- $NP = (\exists / \forall)$
- $coNP = (\forall / \exists)$
- $\mathsf{BPP} = (\exists^+/\exists^+) = co\mathsf{BPP}$

 In the same way, we can define classes that contain problems with one-sided error:

Definition

The class **RTIME**[T(n)] contains every language *L* for which there exists a PTM *M* running in O(T(|x|)) time such that:

•
$$x \in L \Rightarrow \Pr[M(x) = 1] \ge \frac{2}{3}$$

•
$$x \notin L \Rightarrow \Pr[M(x) = 0] = 1$$

We define

$$\mathsf{RP} = \bigcup_{c \in \mathbb{N}} \mathsf{RTIME}[n^c]$$

• Similarly we define the class *co***RP**.

Quantifier Characterizations

Non-Uniform Complexity

Quantifier Characterizations

- $\mathbf{RP} \subseteq \mathbf{NP}$, since every accepting "branch" is a certificate!
- $\mathsf{RP} \subseteq \mathsf{BPP}$, $\mathit{co}\mathsf{RP} \subseteq \mathsf{BPP}$

•
$$\mathbf{RP} = (\exists^+/\forall)$$

Quantifier Characterizations

Non-Uniform Complexity

Quantifier Characterizations

- $\mathbf{RP} \subseteq \mathbf{NP}$, since every accepting "branch" is a certificate!
- $\mathsf{RP} \subseteq \mathsf{BPP}$, $\mathit{co}\mathsf{RP} \subseteq \mathsf{BPP}$

•
$$\mathsf{RP} = (\exists^+/\forall) \subseteq (\exists/\forall) = \mathsf{NP}$$

Quantifier Characterizations

Non-Uniform Complexity

Quantifier Characterizations

- $\mathbf{RP} \subseteq \mathbf{NP}$, since every accepting "branch" is a certificate!
- $\mathsf{RP} \subseteq \mathsf{BPP}$, $\mathit{co}\mathsf{RP} \subseteq \mathsf{BPP}$

•
$$\mathsf{RP} = (\exists^+/\forall) \subseteq (\exists/\forall) = \mathsf{NP}$$

•
$$co\mathsf{RP} = (\forall/\exists^+) \subseteq (\forall/\exists) = co\mathsf{NP}$$

Quantifier Characterizations

Non-Uniform Complexity

Quantifier Characterizations

- $\mathbf{RP} \subseteq \mathbf{NP}$, since every accepting "branch" is a certificate!
- $\mathsf{RP} \subseteq \mathsf{BPP}$, $\mathit{co}\mathsf{RP} \subseteq \mathsf{BPP}$

•
$$\mathsf{RP} = (\exists^+/\forall) \subseteq (\exists/\forall) = \mathsf{NP}$$

•
$$co\mathsf{RP} = (\forall/\exists^+) \subseteq (\forall/\exists) = co\mathsf{NP}$$

Theorem (Decisive Characterization of BPP)

$$\mathbf{BPP} = (\exists^+/\exists^+) = (\exists^+\forall/\forall\exists^+) = (\forall\exists^+/\exists^+\forall)$$

Quantifier Characterizations

Proof:

Let $L \in \mathbf{BPP}$. Then, by definition, there exists a polynomial-time computable predicate Q and a polynomial q such that for all x's of length n:

$$x \in L \Rightarrow \exists^+ y \ Q(x, y)$$

 $x \notin L \Rightarrow \exists^+ y \ \neg Q(x, y)$

Swapping Lemma

- - By the above Lemma: $x \in L \Rightarrow \exists^+ z \ Q(x, z) \Rightarrow \forall y \exists^+ z \ Q(x, y \oplus z) \Rightarrow \exists^+ C \forall y [\exists (z \in C) \ Q(x, y \oplus z)]$, where *C* denotes (as in the Swapping's Lemma formulation) a set of q(n) strings, each of length q(n).

Quantifier Characterizations

Quantifier Characterizations

Proof (cont'd):

- On the other hand, $x \notin L \Rightarrow \exists^+ y \neg Q(x, z) \Rightarrow \forall z \exists^+ y \neg Q(x, y \oplus z) \Rightarrow \forall C \exists^+ y [\forall (z \in C) \neg Q(x, y \oplus z)].$
- Now, we only have to assure that the appeared predicates $\exists z \in C \ Q(x, y \oplus z)$ and $\forall z \in C \neg Q(x, y \oplus z)$ are computable in polynomial time
- Recall that in Swapping Lemma's formulation we demanded $|C| \le p(n)$ and that for each $v \in C$: |v| = p(n). This means that we seek if a string of polynomial length *exists*, or if the predicate holds *for all* such strings in a set with polynomial cardinality, procedure which can be surely done in polynomial time.

Quantifier Characterizations

Quantifier Characterizations

Proof (cont'd):

- Conversely, if $L \in (\exists^+ \forall / \forall \exists^+)$, for each string w, |w| = 2p(n), we have $w = w_1 w_2$, $|w_1| = |w_2| = p(n)$. Then: $x \in L \Rightarrow \exists^+ y \forall z \ R(x, y, z) \Rightarrow \exists^+ w \ R(x, w_1, w_2)$ $x \notin L \Rightarrow \forall y \exists^+ z \ R(x, y, z) \Rightarrow \exists^+ w \ \neg R(x, w_1, w_2)$
- So, $L \in \mathbf{BPP}$. \Box
- The above characterization is *decisive*, in the sense that if we replace \exists^+ with \exists , the two predicates are still complementary (i.e. $R_1 \Rightarrow \neg R_2$), so they still define a complexity class.
- In the above characterization of BPP, if we replace ∃⁺ with ∃, we obtain very easily a well-known result:

Corollary (Sipser-Gács Theorem)

 $\textbf{BPP}\subseteq \Sigma_2^p\cap \Pi_2^p$

BPP and **PH**

Theorem (Sipser-Gács)

 $\mathbf{BPP}\subseteq \Sigma_2^p\cap \Pi_2^p$

Proof (*Lautemann*) Because coBPP = BPP, we prove only $BPP \subseteq \Sigma_2 P$. Let $L \in BPP$ (*L* is accepted by "clear majority"). For |x| = n, let $A(x) \subseteq \{0, 1\}^{p(n)}$ be the set of *accepting* computations.

We have:

$$x \in L \Rightarrow |A(x)| \ge 2^{p(n)} \left(1 - \frac{1}{2^n}\right)$$
$$x \notin L \Rightarrow |A(x)| \le 2^{p(n)} \left(\frac{1}{2^n}\right)$$

Let U be the set of all bit strings of length p(n). For $a, b \in U$, let $a \oplus b$ be the XOR: $a \oplus b = c \Leftrightarrow c \oplus b = a$, so " $\oplus b$ " is 1-1.

BPP and **PH**

Proof (cont.)

For $t \in U$, $A(x) \oplus t = \{a \oplus t : a \in A(x)\}$ (translation of A(x) by t). We imply that: $|A(x) \oplus t| = |A(x)|$ If $x \in L$, consider a random (drawing $p^2(n)$ bits) sequence of translations: $t_1, t_2, ..., t_{p(n)} \in U$. For $b \in U$, these translations cover b, if $b \in A(x) \oplus t_j$, $j \le p(n)$. $b \in A(x) \oplus t_j \Leftrightarrow b \oplus t_j \in A(x) \Rightarrow \Pr[b \notin A(x) \oplus t_j] = \frac{1}{2^n}$ $\Pr[b \text{ is not covered by any } t_j] = 2^{-np(n)}$ $\Pr[\exists \text{ point that is not covered}] \le 2^{-np(n)} |U| = 2^{-(n-1)p(n)}$

BPP and PH

Proof (cont.) So, $T = (t_1, ..., t_{p(n)})$ has a positive probability that it covers all of U. If $x \notin L, |A(x)|$ is exp small, and (for large n) there's not T that cover all U. $(x \in L) \Leftrightarrow (\exists T \text{ that cover all } U)$ So,

 $L = \{x | \exists (T \in \{0,1\}^{p^2(n)}) \forall (b \in U) \exists (j \le p(n)) : b \oplus t_j \in A(x)\}$

which is precisely the form of languages in $\Sigma_2 \mathbf{P}$. The last existential quantifier $(\exists (j \leq p(n))...)$ affects only polynomially many possibilities, so it doesn't "count" (can by tested in polynomial time by trying all t_j 's). Non-Uniform Complexity

ZPP Class

- And now something completely different:
- What is the random variable was the running time and not the output?

ZPP Class

- And now something completely different:
- What is the random variable was the running time and not the output?
- We say that *M* has expected running time T(n) if the expectation $\mathbf{E}[T_{M(x)}]$ is at most T(|x|) for every $x \in \{0,1\}^*$. $(T_{M(x)}$ is the running time of *M* on input *x*, and it is a random variable!)

Definition

The class **ZTIME**[T(n)] contains all languages L for which there exists a machine M that runs in an expected time $\mathcal{O}(T(|x|))$ such that for every input $x \in \{0,1\}^*$, whenever M halts on x, the output M(x) it produces is exactly L(x). We define:

$$\mathsf{ZPP} = \bigcup_{c \in \mathbb{N}} \mathsf{ZTIME}[n^c]$$

ZPP Class

- The output of a **ZPP** machine is always correct!
- The problem is that we aren't sure about the running time.
- We can easily see that $ZPP = RP \cap coRP$.
- The next Hasse diagram summarizes the previous inclusions: (Recall that $\Delta \Sigma_2^p = \Sigma_2^p \cap \Pi_2^p = \mathbf{NP^{NP}} \cap co\mathbf{NP^{NP}}$)

(日) 《母) 《三) 《三) 《日)

Error Reduction

Error Reduction for BPP

Theorem (Error Reduction for BPP)

Let $L \subseteq \{0,1\}^*$ be a language and suppose that there exists a poly-time PTM M such that for every $x \in \{0,1\}^*$:

$$\Pr[M(x) = L(x)] \ge \frac{1}{2} + |x|^{-c}$$

Then, for every constant d > 0, \exists poly-time PTM M' such that for every $x \in \{0,1\}^*$:

$$\Pr[M'(x) = L(x)] \ge 1 - 2^{-|x|^d}$$

Error Reduction

Proof: The machine M' does the following:

- Run M(x) for every input x for $k = 8|x|^{2c+d}$ times, and obtain outputs $y_1, y_2, \ldots, y_k \in \{0, 1\}$.
- If the majority of these outputs is 1, return 1
- Otherwise, return 0.

We define the r.v. X_i for every $i \in [k]$ to be 1 if $y_i = L(x)$ and 0 otherwise.

 X_1, X_2, \ldots, X_k are indepedent Boolean r.v.'s, with:

$$\mathbf{E}[X_i] = \mathbf{Pr}[X_i = 1] \ge p = \frac{1}{2} + |x|^{-c}$$

Applying a Chernoff Bound we obtain:

$$\Pr\left[\left|\sum_{i=1}^{k} X_{i} - pk\right| > \delta pk\right] < e^{-\frac{\delta^{2}}{4}pk} = e^{-\frac{1}{4|x|^{2c}}\frac{1}{2}8|x|^{2c+d}} \le 2^{-|x|^{d}}$$

三 つへの

Error Reduction

Intermission: Chernoff Bounds

- How many samples do we need in order to estimate μ up to an error of $\pm \varepsilon$ with probability at least $1 - \delta$?
- Chernoff Bound tells us that this number is $\mathcal{O}(\rho/\varepsilon^2)$, where $\rho = \log(1/\delta)$.
- The probability that k is $\rho \sqrt{n}$ far from μn decays exponentially with ρ .

Non-Uniform Complexity

Randomized Computation

Error Reduction

Intermission: Chernoff Bounds

$$\Pr\left[\sum_{i=1}^{n} X_i \ge (1+\delta)\mu\right] \le \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}$$
$$\Pr\left[\sum_{i=1}^{n} X_i \le (1-\delta)\mu\right] \le \left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\mu}$$

Other useful form is:

$$\Pr\left[\left|\sum_{i=1}^{n} X_{i} - \mu\right| \ge c\mu\right] \le 2e^{-\min\{c^{2}/4, c/2\} \cdot \mu}$$

• This probability is bounded by $2^{-\Omega(\mu)}$.

Error Reduction for BPP

• From the above we can obtain the following interesting corollary:

Corollary

Error Reduction

For c > 0, let $\mathbf{BPP}_{1/2+n^{-c}}$ denote the class of languages L for which there is a polynomial-time PTM M satisfying $\mathbf{Pr}[M(x) = L(x)] \ge 1/2 + |x|^{-c}$ for every $x \in \{0, 1\}^*$. Then:

$$\mathsf{BPP}_{1/2+n^{-c}} = \mathsf{BPP}$$

• Obviously,
$$\exists^+ = \exists^+_{1/2+\varepsilon} = \exists^+_{2/3} = \exists^+_{3/4} = \exists^+_{0.99} = \exists^+_{1-2^{-p(|x|)}}$$

Error Reduction

Complete Problems for BPP?

- The defining property of **BPTIME** machines is semantic!
- We cannot test whether a TM can accept every input string with probability $\geq 2/3$ or with $\leq 1/3$ (why?)
- In contrast, the defining property of NP is syntactic!
- We have:
 - Syntactic Classes
 - Semantic Classes
- If finally $\mathbf{P} = \mathbf{BPP}$, then \mathbf{BPP} will have complete problems!!

Error Reduction

Complete Problems for BPP?

- The defining property of **BPTIME** machines is **semantic**!
- We cannot test whether a TM can accept every input string with probability $\geq 2/3$ or with $\leq 1/3$ (why?)
- In contrast, the defining property of NP is syntactic!
- We have:
 - Syntactic Classes
 - Semantic Classes
- If finally $\mathbf{P} = \mathbf{BPP}$, then \mathbf{BPP} will have complete problems!!
- For the same reason, in semantic classes we cannot prove Hierarchy Theorems using Diagonalization.

Error Reduction

The Class PP

Non-Uniform Complexity

Definition

A language $L \in \mathbf{PP}$ if there exists a poly-time TM M and a polynomial $p \in poly(n)$, such that for every $x \in \{0, 1\}^*$:

$$\mathsf{Pr}_{r\in\{0,1\}^{p(n)}}[M(x,r)=L(x)]\geq rac{1}{2}$$

• Or, more "syntactically":

Definition

A language $L \in \mathbf{PP}$ if there exists a poly-time TM M and a polynomial $p \in poly(n)$, such that for every $x \in \{0, 1\}^*$:

$$x \in L \Leftrightarrow \left|\left\{y \in \{0,1\}^{p(|x|)} : M(x,y) = 1\right\}\right| \geq \frac{1}{2} \cdot 2^{p(|x|)}$$
Error Reduction

The Class PP

- Due to the lack of a gap between the two cases, we cannot amplify the probability with polynomially many repetitions, as in the case of **BPP**.
- **PP** is closed under complement.
- A breakthrough result of R. Beigel, N. Reingold and D. Spielman is that **PP** is closed under *intersection*!

Error Reduction

The Class PP

- Due to the lack of a gap between the two cases, we cannot amplify the probability with polynomially many repetitions, as in the case of **BPP**.
- **PP** is closed under complement.
- A breakthrough result of R. Beigel, N. Reingold and D. Spielman is that **PP** is closed under *intersection*!
- The syntactic definition of **PP** gives the possibility for *complete problems*:
- Consider the problem MAJSAT: Given a Boolean Expression, is it true that the majority of the 2^n truth assignments to its variables (that is, at least $2^{n-1} + 1$ of them) satisfy it?

Error Reduction

Non-Uniform Complexity

Theorem

MAJSAT is **PP**-complete!

• MAJSAT is not likely in **NP**, since the (*obvious*) certificate is not very succinct!

Error Reduction

Non-Uniform Complexity

Theorem

MAJSAT is **PP**-complete!

• MAJSAT is not likely in **NP**, since the (*obvious*) certificate is not very succinct!

Theorem

$\mathsf{NP} \subseteq \mathsf{PP} \subseteq \mathsf{PSPACE}$

Error Reduction

Non-Uniform Complexity

Theorem

MAJSAT is **PP**-complete!

• MAJSAT is not likely in **NP**, since the (*obvious*) certificate is not very succinct!

Theorem

$\mathsf{NP} \subseteq \mathsf{PP} \subseteq \mathsf{PSPACE}$

Proof:

It is easy to see that $PP \subseteq PSPACE$:

We can simulate any **PP** machine by enumerating all strings y of length p(n) and verify whether **PP** machine accepts. The **PSPACE** machine accepts if and only if there are more than $2^{p(n)-1}$ such y's (by using a counter).

Error Reduction

The Class PP

Proof (cont'd): Now, for $NP \subseteq PP$, let $A \in NP$. That is, $\exists p \in poly(n)$ and a poly-time and balanced predicate R such that:

$$x \in A \Leftrightarrow (\exists y, |y| = p(|x|)) : R(x, y)$$

Consider the following TM:

M accepts input (x, by), with |b| = 1 and |y| = p(|x|), if and only if R(x, y) = 1 or b = 1.

If $x \in A$, then \exists at least one y s.t. R(x, y). Thus, $\Pr[M(x) \text{ accepts}] \ge 1/2 + 2^{-(p(n)+1)}$.

• If $x \notin A$, then $\Pr[M(x) \text{ accepts}] = 1/2$.

Non-Uniform Complexity 000000000000000000

Error Reduction

Non-Uniform Complexity

Theorem If $NP \subseteq BPP$, then NP = RP.

Error Reduction

Non-Uniform Complexity

Theorem If $NP \subseteq BPP$, then NP = RP.

Proof:

- **RP** is closed under \leq_m^p -reducibility.
- It suffices to show that if $SAT \in BPP$, then $SAT \in RP$.
- Recall that SAT has the self-reducibility property: $\phi(x_1, \ldots, x_n): \phi \in SAT \Leftrightarrow (\phi|_{x_1=0} \in SAT \lor \phi|_{x_1=1} \in SAT).$
- SAT \in **BPP**: \exists PTM *M* computing SAT with error probability bounded by $2^{-|\phi|}$.
- We can use the *self-reducibility* of SAT to produce a truth assignment for ϕ as follows:

Other Results

Proof (cont'd):

Input: A Boolean formula ϕ with *n* variables If $M(\phi) = 0$ then reject ϕ ; For i = 1 to n \rightarrow If $M(\phi|_{x_1=\alpha_1,...,x_{i-1}=\alpha_{i-1},x_i=0}) = 1$ then let $\alpha_i = 0$ \rightarrow Elself $M(\phi|_{x_1=\alpha_1,...,x_{i-1}=\alpha_{i-1},x_i=1}) = 1$ then let $\alpha_i = 1$ \rightarrow Else reject ϕ and halt; If $\phi|_{x_1=\alpha_1,...,x_n=\alpha_n} = 1$ then accept FElse reject F

「日を国際をすばやすばや」 聞い 今今の

Other Results

Proof (cont'd):

Input: A Boolean formula ϕ with *n* variables If $M(\phi) = 0$ then reject ϕ ; For i = 1 to n \rightarrow If $M(\phi|_{x_1=\alpha_1,...,x_{i-1}=\alpha_{i-1},x_i=0}) = 1$ then let $\alpha_i = 0$ \rightarrow Elself $M(\phi|_{x_1=\alpha_1,...,x_{i-1}=\alpha_{i-1},x_i=1}) = 1$ then let $\alpha_i = 1$ \rightarrow Else reject ϕ and halt; If $\phi|_{x_1=\alpha_1,...,x_n=\alpha_n} = 1$ then accept FElse reject F

- Note that M_1 accepts ϕ only if a t.a. $t(x_i) = \alpha_i$ is found.
- Therefore, M_1 never makes mistakes if $\phi \notin$ SAT.
- If $\phi \in SAT$, then M rejects ϕ on each iteration of the loop w.p. $2^{-|\phi|}$.
- So, $\Pr[M_1 \text{ accepting } x] = (1 2^{-|\phi|})^n$, which is greater than 1/2 if $|\phi| \ge n > 1$. \Box

Error Reduction

Relativized Results

Theorem

Relative to a random oracle A, $\mathbf{P}^{A} = \mathbf{B}\mathbf{P}\mathbf{P}^{A}$. That is,

$$\Pr_{\mathcal{A}}[\mathbf{P}^{\mathcal{A}} = \mathbf{B}\mathbf{P}\mathbf{P}^{\mathcal{A}}] = 1$$

Also,

- **BPP**^A \subseteq **NP**^A, relative to a *random* oracle A.
- There exists an A such that: $\mathbf{P}^A \neq \mathbf{RP}^A$.
- There exists an A such that: $\mathbf{RP}^A \neq co\mathbf{RP}^A$
- There exists an A such that: $\mathbf{RP}^A \neq \mathbf{NP}^A$.

Error Reduction

Relativized Results

Theorem

Relative to a random oracle A, $\mathbf{P}^{A} = \mathbf{B}\mathbf{P}\mathbf{P}^{A}$. That is,

$$\Pr_{A}[\mathbf{P}^{A} = \mathbf{B}\mathbf{P}\mathbf{P}^{A}] = 1$$

Also,

- **BPP**^A \subseteq **NP**^A, relative to a *random* oracle A.
- There exists an A such that: $\mathbf{P}^A \neq \mathbf{RP}^A$.
- There exists an A such that: $\mathbf{RP}^A \neq co\mathbf{RP}^A$
- There exists an A such that: $\mathbf{RP}^A \neq \mathbf{NP}^A$.

Corollary

There exists an A such that:

$$\mathbf{P}^{\mathcal{A}}
eq \mathbf{RP}^{\mathcal{A}}
eq \mathbf{NP}^{\mathcal{A}}
ot \subseteq \mathbf{BPP}^{\mathcal{A}}$$

Contents

- Introduction
- Turing Machines
- Undecidability
- Complexity Classes
- Oracles & Optimization Problems
- Randomized Computation
- Non-Uniform Complexity
- Interactive Proofs
- Counting Complexity

Boolean Circuits

- A Boolean Circuit is a natural model of *nonuniform* computation, a generalization of hardware computational methods.
- A <u>non-uniform</u> computational model allows us to use a different "algorithm" to be used for every input size, in contrast to the standard (or *uniform*) Turing Machine model, where the same T.M. is used on (infinitely many) input sizes.
- Each circuit can be used for a <u>fixed</u> input size, which limits or model.

Boolean Circuits

Definition (Boolean circuits)

For every $n \in \mathbb{N}$ an *n*-input, single output Boolean Circuit *C* is a directed acyclic graph with *n* sources and *one* sink.

- All nonsource vertices are called *gates* and are labeled with one of \land (and), \lor (or) or \neg (not).
- The vertices labeled with ∧ and ∨ have *fan-in* (i.e. number or incoming edges) 2.
- The vertices labeled with \neg have *fan-in* 1.
- The size of C, denoted by |C|, is the number of vertices in it.
- For every vertex v of C, we assign a value as follows: for some input $x \in \{0,1\}^n$, if v is the *i*-th input vertex then $val(v) = x_i$, and otherwise val(v) is defined recursively by applying v's logical operation on the values of the vertices connected to v.
- The output C(x) is the value of the output vertex.
- The *depth* of *C* is the length of the longest directed path from an input node to the output node.

• To overcome the fixed input length size, we need to allow families (or sequences) of circuits to be used:

Definition

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A T(n)-size circuit family is a sequence $\{C_n\}_{n \in \mathbb{N}}$ of Boolean circuits, where C_n has n inputs and a single output, and its size $|C_n| \leq T(n)$ for every n.

- These infinite families of circuits are defined arbitrarily: There is **no** pre-defined connection between the circuits, and also we haven't any "guarantee" that we can construct them efficiently.
- Like each new computational model, we can define a complexity class on it by imposing some restriction on a *complexity measure*:

Definition

We say that a language L is in SIZE(T(n)) if there is a T(n)-size circuit family $\{C_n\}_{n\in\mathbb{N}}$, such that $\forall x \in \{0,1\}^n$:

 $x \in L \Leftrightarrow C_n(x) = 1$

Definition

 $\mathbf{P}_{/\text{poly}}$ is the class of languages that are decidable by polynomial size circuits families. That is,

$$\mathsf{P}_{/\mathsf{poly}} = \bigcup_{c \in \mathbb{N}} \mathsf{SIZE}(n^c)$$

Theorem (Nonuniform Hierarchy Theorem)

For every functions $T, T' : \mathbb{N} \to \mathbb{N}$ with $\frac{2^n}{n} > T'(n) > 10 T(n) > n$,

 $SIZE(T(n)) \subsetneq SIZE(T'(n))$

TMs taking advice

Turing Machines that take advice

Definition

Let $T, a : \mathbb{N} \to \mathbb{N}$. The class of languages decidable by T(n)-time Turing Machines with a(n) bits of advice, denoted

DTIME (T(n)/a(n))

containts every language *L* such that there exists a sequence $\{a_n\}_{n\in\mathbb{N}}$ of strings, with $a_n \in \{0,1\}^{a(n)}$ and a Turing Machine *M* satisfying:

$$x \in L \Leftrightarrow M(x, a_n) = 1$$

for every $x \in \{0,1\}^n$, where on input (x, a_n) the machine M runs for at most $\mathcal{O}(\mathcal{T}(n))$ steps.

Non-Uniform Complexity

TMs taking advice

Turing Machines that take advice

Theorem (Alternative Definition of **P**_{/poly})

$$\mathsf{P}_{/\mathsf{poly}} = \bigcup_{c,d \in \mathbb{N}} \mathsf{DTIME}(n^c/n^d)$$

TMs taking advice

Turing Machines that take advice

Theorem (Alternative Definition of $P_{/poly}$)

$$\mathsf{P}_{/\mathsf{poly}} = \bigcup_{c,d \in \mathbb{N}} \mathsf{DTIME}(n^c/n^d)$$

Proof: (\subseteq) Let $L \in \mathbf{P}_{/\text{poly}}$. Then, $\exists \{C_n\}_{n \in \mathbb{N}} : C_{|x|} = L(x)$. We can use C_n 's encoding as an advice string for each n.

TMs taking advice

Turing Machines that take advice

Theorem (Alternative Definition of $P_{/poly}$)

$$\mathsf{P}_{/\mathsf{poly}} = igcup_{c,d\in\mathbb{N}}\mathsf{DTIME}(n^c/n^d)$$

Proof: (\subseteq) Let $L \in \mathbf{P}_{/\text{poly}}$. Then, $\exists \{C_n\}_{n \in \mathbb{N}} : C_{|x|} = L(x)$. We can use C_n 's encoding as an advice string for each n. (\supseteq) Let $L \in \mathbf{DTIME}(n^c/n^d)$. Then, since CVP is **P**-complete, we construct for every n a circuit D_n such that, for $x \in \{0,1\}^n$, $a_n \in \{0,1\}^{a(n)}$:

$$D_n(x,a_n)=M(x,a_n)$$

Then, let $C_n(x) = D_n(x, a_n)$ (We hard-wire the advice string!) Since $a(n) = n^d$, the circuits have polynomial size. \Box . Relationship among Complexity Classes

$$\textbf{P} \varsubsetneq \textbf{P}_{/\text{poly}}$$

- For " \subseteq ", recall that CVP is **P**-complete.
- But why proper inclusion?
- Consider the following language:

 $U = \{1^n | n \text{ 's binary expression encodes a pair } < M, x > s.t. M(x) \downarrow\}$

• It is easy to see that $U \in \mathbf{P}_{/poly}$, but....

Theorem (Karp-Lipton Theorem)

If $NP \subseteq P_{/poly}$, then $PH = \Sigma_2^p$.

Theorem (Meyer's Theorem) If $\mathsf{EXP} \subseteq \mathsf{P}_{/\mathsf{poly}}$, then $\mathsf{EXP} = \Sigma_2^p$.

Uniform Families of Circuits

- $\,\circ\,$ We saw that $P_{/poly}$ contains an undecidable language.
- The root of this problem lies in the "weak" definition of such families, since it suffices that \exists a circuit family for *L*.
- We haven't a way (or an algorithm) to construct such a family.
- So, may be useful to restric or attention to families we can construct efficiently:

Theorem (P-Uniform Families)

A circuit family $\{C_n\}_{n\in\mathbb{N}}$ is **P**-uniform if there is a polynomial-time T.M. that on input 1^n outputs the description of the circuit C_n .

• But...

Theorem

A language L is computable by a **P**-uniform circuit family iff $L \in \mathbf{P}$.

Theorem

$$\mathsf{BPP} \subset \mathsf{P}_{/\mathsf{poly}}$$

Proof: Recall that if $L \in \mathbf{BPP}$, then \exists PTM *M* such that:

$$\Pr_{r \in \{0,1\}^{poly(n)}} \left[M(x,r) \neq L(x)
ight] < 2^{-n}$$

Then, taking the union bound:

$$\Pr\left[\exists x \in \{0,1\}^n : M(x,r) \neq L(x)\right] = \Pr\left[\bigcup_{x \in \{0,1\}^n} M(x,r) \neq L(x)\right] \leq$$

$$\leq \sum_{x \in \{0,1\}^n} \Pr[M(x,r) \neq L(x)] < 2^{-n} + \dots + 2^{-n} = 1$$

So, $\exists r_n \in \{0,1\}^{poly(n)}$, s.t. $\forall x \{0,1\}^n$: M(x,r) = L(x). Using $\{r_n\}_{n \in \mathbb{N}}$ as advice string, we have the non-uniform machine.

 $\mathcal{O} \land \mathcal{O}$

Theorem

The following are equivalent:

- $A \in \mathbf{P}_{/\text{poly}}$.
- 2 There exists a sparse set S such that $A \leq_T^P S$.

Corollary

Every sparse set has polynomial-size circuits.

Definition (Circuit Complexity or Worst-Case Hardness)

For a finite Boolean Function $f : \{0,1\}^n \to \{0,1\}$, we define the (circuit) *complexity* of f as the size of the smallest Boolean Circuit computing f (that is, $C(x) = f(x), \forall x \in \{0,1\}^n$).

Definition (Average-Case Hardness)

The minimum S such that there is a circuit C of size S such that:

$$\Pr[C(x) = f(x)] \ge \frac{1}{2} + \frac{1}{5}$$

is called the (average-case) hardness of f.

Relationship among Complexity Classes

Hierarchies for Semantic Classes with advice

• We have argued why we can't obtain Hierarchies for semantic measures using classical diagonalization techniques. But using <u>small</u> advice we can have the following results:

```
Theorem ([Bar02], [GST04])
```

```
For a, b \in \mathbb{R}, with 1 \leq a < b:
```

```
\mathsf{BPTIME}(n^a)/1 \subsetneq \mathsf{BPTIME}(n^b)/1
```

Theorem ([FST05]) For any $1 \leq a \in \mathbb{R}$ there is a real b > a such that:

 $\mathsf{RTIME}(n^b)/1 \subsetneq \mathsf{RTIME}(n^a)/\log(n)^{1/2a}$

The Quest for Lower Bounds

Circuit Lower Bounds

 The significance of proving lower bounds for this computational model is related to the famous "P vs NP" problem, since:

$$\mathsf{NP} \smallsetminus \mathsf{P}_{/\mathsf{poly}} \neq \emptyset \Rightarrow \mathsf{P} \neq \mathsf{NP}$$

- But...after decades of efforts, The best lower bound for an **NP** language is 5n o(n), proved very recently (2005).
- There are better lower bounds for some special cases, i.e. some restricted classes of circuits, such as: bounded depth circuits, monotone circuits, and bounded depth circuits with "counting" gates.

Definition

Let $PAR : \{0,1\}^n \to \{0,1\}$ be the *parity* function, which outputs the modulo 2 sum of an *n*-bit input. That is:

$$PAR(x_1,...,x_n) \equiv \sum_{i=1}^n x_i \pmod{2}$$

Theorem

For all constant d, PAR has no polynomial-size circuit of depth d.

The above result (improved by Håstad and Yao) gives a relatively tight lower bound of exp $(\Omega(n^{1/(d-1)}))$, on the size of *n*-input *PAR* circuits of depth *d*.

Definition

For $x, y \in \{0, 1\}^n$, we denote $x \leq y$ if every bit that is 1 in x is also 1 in y. A function $f : \{0, 1\}^n \to \{0, 1\}$ is monotone if $f(x) \leq f(y)$ for every $x \leq y$.

Definition

A Boolean Circuit is *monotone* if it contains only AND and OR gates, and no NOT gates. Such a circuit can only compute monotone functions.

Theorem (Monotone Circuit Lower Bound for CLIQUE)

Denote by $CLIQUE_{k,n} : \{0,1\}^{\binom{n}{2}} \to \{0,1\}$ the function that on input an adjacency matrix of an n-vertex graph G outputs 1 iff G contains an k-clique. There exists some constant $\epsilon > 0$ such that for every $k \leq n^{1/4}$, there is no monotone circuit of size less than $2^{\epsilon\sqrt{k}}$ that computes $CLIQUE_{k,n}$.

The Quest for Lower Bounds

- So, we proved a significant lower bound $(2^{\Omega(n^{1/8})})$
- The significance of the above theorem lies on the fact that there was some alleged connection between monotone and non-monotone circuit complexity (e.g. that they would be polynomially related). Unfortunately, Éva Tardos proved in 1988 that the gap between the two complexities is exponential.
- Where is the problem finally? Today, we know that a result for a lower bound using such techniques would imply the inversion of strong one-way functions:

Epilogue: What's Wrong?

*Natural Proofs [Razborov, Rudich 1994]

Definition

Let \mathcal{P} be the predicate:

"A Boolean function $f:\{0,1\}^n\to \{0,1\}$ doesn't have n^c-sized circuits for some $c\geq 1.$ "

 $\mathcal{P}(f) = 0, \forall f \in SIZE(n^c)$ for a $c \ge 1$. We call this n^c -usefulness.

A predicate \mathcal{P} is natural if:

- There is an algorithm $M \in \mathbf{E}$ such that for a function $g : \{0,1\}^n \to \{0,1\}$: $M(g) = \mathcal{P}(g)$.
- For a random function g: $\Pr[\mathcal{P}(g) = 1] \geq \frac{1}{n}$

Theorem

If strong one-way functions exist, then there exists a constant $c \in \mathbb{N}$ such that there is no n^c-useful natural predicate \mathcal{P} .

Contents

- Introduction
- Turing Machines
- Undecidability
- Complexity Classes
- Oracles & Optimization Problems
- Randomized Computation
- Non-Uniform Complexity
- Interactive Proofs
- Counting Complexity

Counting Complexity

Introduction

"Maybe Fermat had a proof! But an important party was certainly missing to make the proof complete: the verifier. Each time rumor gets around that a student somewhere proved $\mathbf{P} = \mathbf{NP}$, people ask "Has Karp seen the proof?" (they hardly even ask the student's name). Perhaps the verifier is most important that the prover." (from [BM88])

- The notion of a mathematical proof is related to the certificate definition of **NP**.
- We enrich this scenario by introducing **interaction** in the basic scheme:

The person (or TM) who verifies the proof asks the person who provides the proof a series of "queries", before he is convinced, and if he is, he provide the certificate.

Introduction

- The first person will be called **Verifier**, and the second **Prover**.
- In our model of computation, Prover and Verifier are interacting Turing Machines.
- We will categorize the various proof systems created by using:
 - various TMs (nondeterministic, probabilistic etc)
 - the information exchanged (private/public coins etc)
 - the number of TMs (IPs, MIPs,...)

Warmup: Interactive Proofs with deterministic Verifier

Definition (Deterministic Proof Systems)

We say that a language *L* has a *k*-round deterministic interactive proof system if there is a deterministic Turing Machine *V* that on input $x, \alpha_1, \alpha_2, \ldots, \alpha_i$ runs in time polynomial in |x|, and can have a *k*-round interaction with any TM *P* such that:

•
$$x \in L \Rightarrow \exists P : \langle V, P \rangle(x) = 1$$
 (Completeness)

•
$$x \notin L \Rightarrow \forall P : \langle V, P \rangle(x) = 0$$
 (Soundness)

The class **dIP** contains all languages that have a k-round deterministic interactive proof system, where p is polynomial in the input length.

- $\langle V, P \rangle(x)$ denotes the output of V at the end of the interaction with P on input x, and α_i the exchanged strings.
- The above definition does not place limits on the computational power of the Prover!
Warmup: Interactive Proofs with deterministic Verifier

• But...

Theorem

dIP = NP

Proof: Trivially, $NP \subseteq dIP$. \checkmark Let $L \in dIP$:

- A certificate is a transcript $(\alpha_1, \ldots, \alpha_k)$ causing V to accept, i.e. $V(x, \alpha_1, \ldots, \alpha_k) = 1$.
- We can efficiently check if $V(x) = \alpha_1$, $V(x, \alpha_1, \alpha_2) = \alpha_3$ etc...
 - If $x \in L$ such a transcript exists!
 - Conversely, if a transcript exists, we can define define a proper P to satisfy: $P(x, \alpha_1) = \alpha_2$, $P(x, \alpha_1, \alpha_2, \alpha_3) = \alpha_4$ etc., so that $\langle V, P \rangle(x) = 1$, so $x \in L$.
- So $L \in \mathbf{NP}!$

Probabilistic Verifier: The Class IP

- We saw that if the verifier is a simple deterministic TM, then the interactive proof system is described precisely by the class **NP**.
- Now, we let the *verifier* be probabilistic, i.e. the verifier's queries will be computed using a probabilistic TM:

Definition (Goldwasser-Micali-Rackoff)

For an integer $k \ge 1$ (that may depend on the input length), a language *L* is in **IP**[*k*] if there is a probabilistic polynomial-time T.M. *V* that can have a *k*-round interaction with a T.M. *P* such that:

- $x \in L \Rightarrow \exists P : Pr[\langle V, P \rangle(x) = 1] \geq \frac{2}{3}$ (Completeness)
- $x \notin L \Rightarrow \forall P : Pr[\langle V, P \rangle(x) = 1] \le \frac{1}{3}$ (Soundness)

Interactive Proofs

The class IP

Probabilistic Verifier: The Class IP

Definition We also define:

$$\mathsf{IP} = \bigcup_{c \in \mathbb{N}} \mathsf{IP}[n^c]$$

- The "output" $\langle V, P \rangle(x)$ is a random variable.
- We'll see that IP is a very large class! $(\supseteq PH)$
- As usual, we can replace the completeness parameter 2/3 with $1 2^{-n^s}$ and the soundness parameter 1/3 by 2^{-n^s} , without changing the class for any fixed constant s > 0.
- We can also replace the completeness constant 2/3 with 1 (perfect completeness), without changing the class, but replacing the soundness constant 1/3 with 0, is equivalent with a *deterministic verifier*, so class **IP** collapses to **NP**.

Interactive Proof for Graph Non-Isomorphism

Definition

The class IP

Two graphs G_1 and G_2 are *isomorphic*, if there exists a permutation π of the labels of the nodes of G_1 , such that $\pi(G_1) = G_2$. If G_1 and G_2 are isomorphic, we write $G_1 \cong G_2$.

- GI: Given two graphs G_1 , G_2 , decide if they are isomorphic.
- GNI: Given two graphs G_1 , G_2 , decide if they are *not* isomorphic.
- Obviously, $GI \in NP$ and $GNI \in coNP$.
- This proof system relies on the Verifier's access to a *private* random source which cannot be seen by the Prover, so we confirm the crucial role the private coins play.

Interactive Proofs

The class IP

Interactive Proof for Graph Non-Isomorphism

<u>Verifier</u>: Picks $i \in \{1, 2\}$ uniformly at random. Then, it permutes randomly the vertices of G_i to get a new graph H. Is sends H to the Prover. <u>Prover</u>: Identifies which of G_1 , G_2 was used to produce H. Let G_j be the graph. Sends j to V. <u>Verifier</u>: Accept if i = j. Reject otherwise. The class IP

Interactive Proof for Graph Non-Isomorphism

<u>Verifier</u>: Picks $i \in \{1, 2\}$ uniformly at random. Then, it permutes randomly the vertices of G_i to get a new graph H. Is sends H to the Prover. <u>Prover</u>: Identifies which of G_1 , G_2 was used to produce H. Let G_j be the graph. Sends j to V. <u>Verifier</u>: Accept if i = j. Reject otherwise.

- If $G_1 \ncong G_2$, then the powerfull prover can (nondeterministivally) guess which one of the two graphs is isomprphic to H, and so the Verifier accepts with probability 1.
- If $G_1 \cong G_2$, the prover can't distinguish the two graphs, since a random permutation of G_1 looks exactly like a random permutation of G_2 . So, the best he can do is guess randomly one, and the Verifier accepts with probability (at most) 1/2, which can be reduced by additional repetitions.

Babai's Arthur-Merlin Games

Definition (Extended (FGMSZ89))

An Arhur-Merlin Game is a pair of interactive TMs A and M, and a predicate R such that:

- On input x, exactly 2q(|x|) messages of length m(|x|) are exchanged, $q, m \in poly(|x|)$.
- A goes first, and at iteration $1 \le i \le q(|x|)$ chooses u.a.r. a string r_i of length m(|x|).
- *M*'s reply in the *i*th iteration is $y_i = M(x, r_1, ..., r_i)$ (*M*'s strategy).
- For every M', a **conversation** between A and M' on input x is $r_1y_1r_2y_2\cdots r_{q(|x|)}y_{q(|x|)}$.
- The set of all conversations is denoted by $CONV_x^{M'}$, $|CONV_x^{M'}| = 2^{q(|x|)m(|x|)}$.

Interactive Proofs

Babai's Arthur-Merlin Games

Definition (cont'd)

- The predicate *R* maps the input *x* and a conversation to a Boolean value.
- The set of accepting conversations is denoted by $ACC_x^{R,M}$, and is the set:

$$\{r_1 \cdots r_q | \exists y_1 \cdots y_q \ s.t. \ r_1 y_1 \cdots r_q y_q \in CONV_x^M \land R(r_1 y_1 \cdots r_q y_q) = 1\}$$

- A language *L* has an Arthur-Merlin proof system if:
 - **There exists** a strategy for M, such that for all $x \in L$: $\frac{ACC_x^{R,M}}{CONV_x^M} \ge \frac{2}{3} \text{ (Completeness)}$
 - **For every** strategy for *M*, and for every $x \notin L$: $\frac{ACC_x^{R,M}}{CONV_x^M} \leq \frac{1}{3}$ (*Soundness*)

Interactive Proofs OCCONDENSION Arthur-Merlin Games

Definitions

• So, with respect to the previous IP definition:

Definition

For every k, the complexity class AM[k] is defined as a subset to IP[k] obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages. We denote $AM \equiv AM[2]$. Interactive Proofs Arthur-Merlin Games

Definitions

• So, with respect to the previous IP definition:

Definition

For every k, the complexity class AM[k] is defined as a subset to IP[k] obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages. We denote $AM \equiv AM[2]$.

- Merlin \rightarrow Prover
- Arthur \rightarrow Verifier

Definitions

• So, with respect to the previous IP definition:

Definition

For every k, the complexity class AM[k] is defined as a subset to IP[k] obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages.

We denote $\mathbf{AM} \equiv \mathbf{AM}[2]$.

• Merlin \rightarrow Prover

- Arthur \rightarrow Verifier
- Also, the class **MA** consists of all languages *L*, where there's an interactive proof for *L* in which the prover first sending a message, and then the verifier is "tossing coins" and computing its decision by doing a deterministic polynomial-time computation involving the input, the message and the random output.

Interactive Proofs

Arthur-Merlin Games

Counting Complexity

Public vs. Private Coins

Theorem

$\mathtt{GNI} \in \boldsymbol{\mathsf{AM}}[2]$

Theorem

For every $p \in poly(n)$:

$$\mathsf{IP}(p(n)) = \mathsf{AM}(p(n) + 2)$$

• So,

$$IP[poly] = AM[poly]$$

Properties of Arthur-Merlin Games

- $MA \subseteq AM$
- MA[1] = NP, AM[1] = BPP
- **AM** could be intuitively approached as the probabilistic version of **NP** (usually denoted as $\mathbf{AM} = \mathcal{BP} \cdot \mathbf{NP}$).
- $\mathbf{AM} \subseteq \Pi_2^p$ and $\mathbf{MA} \subseteq \Sigma_2^p \cap \Pi_2^p$.
- $NP^{BPP} \subseteq MA$, $MA^{BPP} = MA$, $AM^{BPP} = AM$ and $AM^{\Delta \Sigma_1^{p}} = AM^{NP \cap coNP} = AM$
- If we consider the complexity classes AM[k] (the languages that have Arthur-Merlin proof systems of a bounded number of rounds, they form an hierarchy:

 $\mathsf{AM}[0] \subseteq \mathsf{AM}[1] \subseteq \cdots \subseteq \mathsf{AM}[k] \subseteq \mathsf{AM}[k+1] \subseteq \cdots$

• Are these inclusions proper ? ? ?

Interactive Proofs OCCORRECTION OF A CONTRACT OF A CONTRA

Counting Complexity

Properties of Arthur-Merlin Games

Properties of Arthur-Merlin Games

• Proper formalism (*Zachos et al.*):

Definition (Majority Quantifier)

Let $R : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ be a predicate, and ε a rational number, such that $\varepsilon \in (0,\frac{1}{2})$. We denote by $(\exists^+ y, |y| = k)R(x, y)$ the following predicate:

"There exist at least $(\frac{1}{2} + \varepsilon) \cdot 2^k$ strings y of length m for which R(x, y) holds."

We call \exists^+ the *overwhelming majority* quantifier.

• \exists_r^+ means that the fraction r of the possible certificates of a certain length satisfy the predicate for the certain input.

Obviously,
$$\exists^+ = \exists^+_{1/2+\varepsilon} = \exists^+_{2/3} = \exists^+_{3/4} = \exists^+_{0.99} = \exists^+_{1-2^{-p(|x|)}}$$

Properties of Arthur-Merlin Games

Definition

We denote as $C = (Q_1/Q_2)$, where $Q_1, Q_2 \in \{\exists, \forall, \exists^+\}$, the class C of languages L satisfying:

$$x \in L \Rightarrow Q_1 y \ R(x,y)$$

•
$$x \notin L \Rightarrow Q_2 y \neg R(x, y)$$

So:
$$\mathbf{P} = (\forall/\forall)$$
, $\mathbf{NP} = (\exists/\forall)$, $co\mathbf{NP} = (\forall/\exists)$
 $\mathbf{BPP} = (\exists^+/\exists^+)$, $\mathbf{RP} = (\exists^+/\forall)$, $co\mathbf{RP} = (\forall/\exists^+)$

Interactive Proofs OCCONSCIENCE OF CONSCIENCE OF CONSCIEN

Properties of Arthur-Merlin Games

Definition

We denote as $C = (Q_1/Q_2)$, where $Q_1, Q_2 \in \{\exists, \forall, \exists^+\}$, the class C of languages L satisfying:

$$x \in L \Rightarrow Q_1 y \ R(x,y)$$

•
$$x \notin L \Rightarrow Q_2 y \neg R(x, y)$$

So:
$$\mathbf{P} = (\forall/\forall)$$
, $\mathbf{NP} = (\exists/\forall)$, $co\mathbf{NP} = (\forall/\exists)$
 $\mathbf{BPP} = (\exists^+/\exists^+)$, $\mathbf{RP} = (\exists^+/\forall)$, $co\mathbf{RP} = (\forall/\exists^+)$

Arthur-Merlin Games

$$\mathbf{AM} = \mathbf{BP} \cdot \mathbf{NP} = (\exists^+ \exists/\exists^+ \forall)$$

 \vee

• Similarly: **AMA** = $(\exists^+\exists\exists^+/\exists^+\forall\exists^+)$ etc.

Properties of Arthur-Merlin Games

Theorem

- (i) $MA = (\exists \forall / \forall \exists^+)$
- $\textbf{ii} \mathbf{AM} = (\forall \exists / \exists^+ \forall)$

Proof:

Lemma

• **BPP** =
$$(\exists^+/\exists^+) = (\exists^+\forall/\forall\exists^+) = (\forall\exists^+/\exists^+\forall)$$
 (1) (BPP-Theorem)
• $(\exists\forall/\forall\exists^+) \subseteq (\forall\exists/\exists^+\forall)$ (2)

i) $MA = N \cdot BPP = (\exists \exists^+ / \forall \exists^+) \stackrel{(1)}{=} (\exists \exists^+ \forall / \forall \forall \exists^+) \subseteq (\exists \forall / \forall \exists^+)$

(the last inclusion holds by quantifier contraction). Also,

$$(\exists \forall \forall \forall \exists +) \subseteq (\exists \exists \forall \forall \forall \exists +) = \mathsf{MA}$$

ii) Similarly,

Properties of Arthur-Merlin Games

Theorem

- (i) $MA = (\exists \forall / \forall \exists^+)$
- $\textbf{ii} \mathbf{AM} = (\forall \exists / \exists^+ \forall)$

Proof:

Lemma

• **BPP** =
$$(\exists^+/\exists^+) = (\exists^+\forall/\forall\exists^+) = (\forall\exists^+/\exists^+\forall)$$
 (1) (BPP-Theorem)
• $(\exists\forall/\forall\exists^+) \subseteq (\forall\exists/\exists^+\forall)$ (2)

i) $MA = N \cdot BPP = (\exists \exists^+ / \forall \exists^+) \stackrel{(1)}{=} (\exists \exists^+ \forall / \forall \forall \exists^+) \subseteq (\exists \forall / \forall \exists^+)$

(the last inclusion holds by quantifier contraction). Also,

$$(\exists \forall \forall \exists +) \subseteq (\exists \exists + \forall \forall \exists +) = \mathsf{MA}$$

ii) Similarly,

Properties of Arthur-Merlin Games

Theorem

- (i) $MA = (\exists \forall / \forall \exists^+)$
- $\textbf{ii} \mathbf{AM} = (\forall \exists / \exists^+ \forall)$

Proof:

Lemma

• **BPP** =
$$(\exists^+/\exists^+) = (\exists^+\forall/\forall\exists^+) = (\forall\exists^+/\exists^+\forall)$$
 (1) (BPP-Theorem)
• $(\exists\forall/\forall\exists^+) \subseteq (\forall\exists/\exists^+\forall)$ (2)

i) $\mathsf{MA} = \mathsf{N} \cdot \mathsf{BPP} = (\exists \exists^+ / \forall \exists^+) \stackrel{(1)}{=} (\exists \exists^+ \forall / \forall \forall \exists^+) \subseteq (\exists \forall / \forall \exists^+)$

(the last inclusion holds by quantifier contraction). Also,

$$(\exists \forall \forall \exists d = (d = d = d) \ge (d = d) = d$$

ii) Similarly,

Properties of Arthur-Merlin Games

Theorem

- (i) $MA = (\exists \forall / \forall \exists^+)$
- $\textbf{ii} \mathbf{AM} = (\forall \exists / \exists^+ \forall)$

Proof:

Lemma

• **BPP** =
$$(\exists^+/\exists^+) = (\exists^+\forall/\forall\exists^+) = (\forall\exists^+/\exists^+\forall)$$
 (1) (BPP-Theorem)
• $(\exists\forall/\forall\exists^+) \subseteq (\forall\exists/\exists^+\forall)$ (2)

i) $MA = N \cdot BPP = (\exists \exists^+ / \forall \exists^+) \stackrel{(1)}{=} (\exists \exists^+ \forall / \forall \forall \exists^+) \subseteq (\exists \forall / \forall \exists^+)$

(the last inclusion holds by quantifier contraction). Also,

$$(\exists \forall \forall \forall \exists +) \subseteq (\exists \exists \forall \forall \forall \exists +) = \mathsf{MA}$$

ii) Similarly,

Properties of Arthur-Merlin Games

Theorem

$\mathbf{M}\mathbf{A}\subseteq\mathbf{A}\mathbf{M}$

Proof:

Obvious from (2): $(\exists \forall / \forall \exists^+) \subseteq (\forall \exists / \exists^+ \forall)$. \Box

Theorem

• AM
$$\subseteq \Pi_2^p$$

$$\bullet \mathbf{MA} \subseteq \Sigma_2^p \cap \Pi_2^p$$

Proof:

i)
$$\mathbf{AM} = (\forall \exists / \exists^+ \forall) \subseteq (\forall \exists / \exists \forall) = \Pi_2^p$$

ii) $\mathbf{MA} = (\exists \forall / \forall \exists^+) \subseteq (\exists \forall / \forall \exists) = \Sigma_2^p$, and
 $\mathbf{MA} \subseteq \mathbf{AM} \Rightarrow \mathbf{MA} \subseteq \Pi_2^p$. So, $\mathbf{MA} \subseteq \Sigma_2^p \cap \Pi_2^p$.

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem) For t(n) > 2:

 $\mathsf{AM}[2t(n)] = \mathsf{AM}[t(n)]$

• The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem) For every k > 2:

 $\mathsf{AM} = \mathsf{AM}[k] = \mathsf{MA}[k+1]$

Example

 $\mathbf{MAM} = (\exists \exists + \exists / \forall \exists + \forall) \stackrel{(1)}{\subseteq} (\exists \exists + \forall \exists / \forall \forall \exists + \forall) \subseteq (\exists \forall \exists + \forall \exists / \forall \forall) \subseteq (\exists \forall \exists + \forall) \stackrel{(2)}{\subseteq} (\exists \exists + \forall \exists / \forall \forall) = \mathbf{AM}$

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem) For t(n) > 2:

 $\mathsf{AM}[2t(n)] = \mathsf{AM}[t(n)]$

• The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem) For every k > 2:

 $\mathsf{AM} = \mathsf{AM}[k] = \mathsf{MA}[k+1]$

Example

 $\mathbf{MAM} = (\exists \exists + \exists / \forall \exists + \forall) \stackrel{(1)}{\subseteq} (\exists \exists + \forall \exists / \forall \forall \exists + \forall) \subseteq (\exists \forall \exists + \forall \exists / \forall \forall) \subseteq (\exists \forall \exists + \forall) \stackrel{(2)}{\subseteq} \subseteq (\forall \exists \exists + \forall \forall) \subseteq (\forall \exists / \exists + \forall) = \mathbf{AM}$

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem) For t(n) > 2:

 $\mathsf{AM}[2t(n)] = \mathsf{AM}[t(n)]$

• The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem) For every k > 2:

 $\mathsf{AM} = \mathsf{AM}[k] = \mathsf{MA}[k+1]$

Example

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem) For t(n) > 2:

 $\mathsf{AM}[2t(n)] = \mathsf{AM}[t(n)]$

• The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem) For every k > 2:

 $\mathsf{AM} = \mathsf{AM}[k] = \mathsf{MA}[k+1]$

Example

 $\mathbf{MAM} = (\exists \exists^{+} \exists / \forall \exists^{+} \forall) \stackrel{(1)}{\subseteq} (\exists \exists^{+} \forall \exists / \forall \forall \exists^{+} \forall) \subseteq (\exists \forall \exists / \forall \exists^{+} \forall) \stackrel{(2)}{\subseteq} \\ \subseteq (\forall \exists \exists / \exists^{+} \forall \forall) \subseteq (\forall \exists / \exists^{+} \forall) = \mathbf{AM}$

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem) For t(n) > 2:

$\mathsf{AM}[2t(n)] = \mathsf{AM}[t(n)]$

• The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem) For every k > 2:

 $\mathsf{AM} = \mathsf{AM}[k] = \mathsf{MA}[k+1]$

Example

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem) For t(n) > 2:

 $\mathsf{AM}[2t(n)] = \mathsf{AM}[t(n)]$

• The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem) For every k > 2:

 $\mathsf{AM} = \mathsf{AM}[k] = \mathsf{MA}[k+1]$

Example

 $\mathbf{MAM} = (\exists \exists + \exists / \forall \exists + \forall) \stackrel{(1)}{\subseteq} (\exists \exists + \forall \exists / \forall \forall \exists + \forall) \subseteq (\exists \forall \exists + \forall \exists / \forall \forall) \subseteq (\exists \forall \exists + \forall) \stackrel{(2)}{\subseteq} (\exists \exists + \forall \exists / \forall \forall) = \mathbf{AM}$

Properties of Arthur-Merlin Games

Proof:

- The general case is implied by the generalization of BPP-Theorem (1) & (2):
- $\begin{array}{l} \circ \ \left(\mathsf{Q}_1 \exists^+ \mathsf{Q}_2 / \mathsf{Q}_3 \exists^+ \mathsf{Q}_4 \right) = \left(\mathsf{Q}_1 \exists^+ \forall \mathsf{Q}_2 / \mathsf{Q}_3 \forall \exists^+ \mathsf{Q}_4 \right) = \\ \left(\mathsf{Q}_1 \forall \exists^+ \mathsf{Q}_2 / \mathsf{Q}_3 \exists^+ \forall \mathsf{Q}_4 \right) \left(\mathbf{1}' \right) \end{array}$
- $(\mathbf{Q}_1 \exists \forall \mathbf{Q}_2 / \mathbf{Q}_3 \forall \exists^+ \mathbf{Q}_4) \subseteq (\mathbf{Q}_1 \forall \exists \mathbf{Q}_2 / \mathbf{Q}_3 \exists^+ \forall \mathbf{Q}_4) \ (\mathbf{2'})$
- Using the above we can easily see that the Arthur-Merlin Hierarchy collapses at the second level. (*Try it!*) \Box

Properties of Arthur-Merlin Games

Theorem (BHZ)

If $coNP \subseteq AM$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $PH = \Sigma_2^p = AM$.

Proof: Our hypothesis states: $(\forall / \exists) \subseteq (\forall \exists / \exists^+ \forall)$ Then:

 $\Sigma_{2}^{p} = (\exists \forall / \forall \exists) \subseteq^{Hyp} (\exists \forall \exists / \forall \exists^{+} \forall) \subseteq^{(2)} (\forall \exists \exists / \exists^{+} \forall \forall) = (\forall \exists / \exists^{+} \forall) = \mathsf{AM} \subseteq (\forall \exists / \exists \forall) = \mathsf{\Pi}_{2}^{p}. \Box$

Properties of Arthur-Merlin Games

Theorem (BHZ)

If $coNP \subseteq AM$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $PH = \Sigma_2^p = AM$.

Proof: Our hypothesis states: $(\forall/\exists) \subseteq (\forall\exists/\exists^+\forall)$ Then:

 $\Sigma_{2}^{p} = (\exists \forall / \forall \exists) \stackrel{Hyp.}{\subseteq} (\exists \forall \exists / \forall \exists^{+} \forall) \stackrel{(2)}{\subseteq} (\forall \exists \exists / \exists^{+} \forall \forall) = (\forall \exists / \exists^{+} \forall) = \mathsf{AM} \subseteq (\forall \exists / \exists \forall) = \mathsf{\Pi}_{2}^{p}. \Box$

Properties of Arthur-Merlin Games

Theorem (BHZ)

If $coNP \subseteq AM$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $PH = \Sigma_2^p = AM$.

Proof: Our hypothesis states: $(\forall/\exists) \subseteq (\forall \exists/\exists^+\forall)$ Then:

 $\Sigma_{2}^{p} = (\exists \forall / \forall \exists) \stackrel{Hyp.}{\subseteq} (\exists \forall \exists / \forall \exists^{+} \forall) \stackrel{(2)}{\subseteq} (\forall \exists \exists / \exists^{+} \forall \forall) = (\forall \exists / \exists^{+} \forall) = \mathsf{AM} \subseteq (\forall \exists / \exists \forall) = \mathsf{\Pi}_{2}^{p}. \Box$

Properties of Arthur-Merlin Games

Theorem (BHZ)

If $coNP \subseteq AM$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $PH = \Sigma_2^p = AM$.

Proof: Our hypothesis states: $(\forall / \exists) \subseteq (\forall \exists / \exists^+ \forall)$ Then:

 $\Sigma_{2}^{p} = (\exists \forall / \forall \exists) \stackrel{Hyp.}{\subseteq} (\exists \forall \exists / \forall \exists^{+} \forall) \stackrel{(2)}{\subseteq} (\forall \exists \exists / \exists^{+} \forall \forall) = (\forall \exists / \exists^{+} \forall) = \mathsf{AM} \subseteq (\forall \exists / \exists \forall) = \mathsf{\Pi}_{2}^{p}. \Box$

Properties of Arthur-Merlin Games

Theorem (BHZ)

If $coNP \subseteq AM$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $PH = \Sigma_2^p = AM$.

Proof: Our hypothesis states: $(\forall / \exists) \subseteq (\forall \exists / \exists^+ \forall)$ Then:

 $\Sigma_{2}^{p} = (\exists \forall / \forall \exists) \subseteq^{Hyp} (\exists \forall \exists / \forall \exists^{+} \forall) \subseteq^{(2)} (\forall \exists \exists / \exists^{+} \forall \forall) = (\forall \exists / \exists^{+} \forall) = \mathsf{AM} \subseteq (\forall \exists / \exists \forall) = \mathsf{\Pi}_{2}^{p}. \Box$

Interactive Proofs OCCORRECTOR OF CONSTRUCTION OF CONSTRUCTICONSTRUCTIONO OF CONSTRUCTION OF CONSTRUCTION OF

Measure One Results

- $\mathbf{P}^A \neq \mathbf{NP}^A$, for almost all oracles A.
- $\mathbf{P}^A = \mathbf{B}\mathbf{P}\mathbf{P}^A$, for almost all oracles A.
- $\mathbf{NP}^{A} = \mathbf{AM}^{A}$, for almost all oracles A.

Definition

$$\mathsf{almost}\mathcal{C} = \left\{ \mathsf{L} | \mathsf{Pr}_{\mathsf{A} \in \{0,1\}^*} \left[\mathsf{L} \in \mathcal{C}^{\mathsf{A}}
ight] = 1
ight\}$$

Theorem

- Image: Image:
- almostNP = AM [NW94]
- almostPH = PH

Interactive Proofs

Measure One Results

Theorem (Kurtz)

For almost every pair of oracles B, C:

- **BPP** = $\mathbf{P}^B \cap \mathbf{P}^C$
- (i) $almost NP = NP^B \cap NP^C$

Indicative Open Questions

- Does exist an oracle separating AM from almostNP?
- Is *almost***NP** contained in some finite level of Polynomial-Time Hierarchy?
- Motivated by [BHZ]: If coNP ⊆ almostNP, does it follow that PH collapses?
Arithmetization

The power of Interactive Proofs

- As we saw, **Interaction** alone does not gives us computational capabilities beyond **NP**.
- Also, **Randomization** alone does not give us significant power (we know that $\mathbf{BPP} \subseteq \Sigma_2^p$, and many researchers believe that $\mathbf{P} = \mathbf{BPP}$, which holds under some plausible assumptions).
- How much power could we get by their *combination*?
- We know that for fixed $k \in \mathbb{N}$, $\mathbf{IP}[k]$ collapses to

$$\mathsf{IP}[k] = \mathsf{AM} = \mathcal{BP} \cdot \mathsf{NP}$$

a class that is "close" to NP (under similar assumptions, the non-deterministic analogue of P vs. BPP is NP vs. AM.)

• If we let k be a polynomial in the size of the input, how much more power could we get?

Arithmetization

Counting Complexity

The power of Interactive Proofs

• Surprisingly:

Theorem (L.F.K.N. & Shamir)

$\mathsf{IP}=\mathsf{PSPACE}$

◆□ > ◆□ > ◆豆 > ◆豆 > ◆□ > ◆□ >

Arithmetization

Counting Complexity

The power of Interactive Proofs

Lemma 1

$\mathsf{IP} \subseteq \mathsf{PSPACE}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Lemma 2

$\textbf{PSPACE} \subseteq \textbf{IP}$

• For simplicity, we will construct an Interactive Proof for UNSAT (a *co***NP**-complete problem), showing that:

Theorem

$\mathit{co}\mathsf{NP}\subseteq\mathsf{IP}$

- Let *N* be a prime.
- We will translate a **formula** ϕ with *m* clauses and *n* variables x_1, \ldots, x_n to a **polynomial** *p* over the field (modN) (where $N > 2^n \cdot 3^m$), in the following way:

Interactive Proofs OCCORRECTION Shamir's Theorem

Counting Complexity

Arithmetization

• Arithmetic generalization of a CNF Boolean Formula.

$$\begin{array}{cccc} T & \longrightarrow & 1 \\ F & \longrightarrow & 0 \\ \neg x & \longrightarrow & 1-x \\ \land & \longrightarrow & \times \\ \lor & \longrightarrow & + \end{array}$$

Example

$$egin{aligned} &(x_3 \lor
egin{aligned} &(x_3 \lor x_1) \land (x_5 \lor x_9) \land (
egin{aligned} &(
egin{aligned} &(
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land (
ext{transmits} x_1) \land (x_5 \lor x_9) \land$$

• Each literal is of degree 1, so the polynomial *p* is of degree at most *m*.

• Also,
$$0 .$$

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

Verifier

 \longrightarrow

checks proof

000

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N –

Verifier

 \longrightarrow checks proof

 $q_1(x) = \sum p(x, x_2, \dots x_n) \longrightarrow \text{ checks if } q_1(0) + q_1(1) = 0$

Counting Complexity

Warmup: Interactive Proof for UNSAT

Prover

Shamir's Theorem

Sends primality proof for N

Verifier

 \longrightarrow checks proof

$$q_1(x) = \sum p(x, x_2, \dots x_n)$$

$$ightarrow$$
 checks if $q_1(0)+q_1(1)=0$

$$\longleftarrow \quad \text{sends } r_1 \in \{0, \dots, N-1\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Counting Complexity

Warmup: Interactive Proof for UNSAT

Prover

Shamir's Theorem

Sends primality proof for N

Verifier

 \longrightarrow checks proof

$$q_1(x) = \sum p(x, x_2, \dots x_n) \longrightarrow \text{ checks if } q_1(0) + q_1(1) = 0$$

— sends
$$r_1 \in \{0, \ldots, N-1\}$$

 $q_2(x) = \sum p(r_1, x, x_3, \dots x_n) \quad \longrightarrow \quad \text{checks if } q_2(0) + q_2(1) = q_1(r_1)$

Counting Complexity

Warmup: Interactive Proof for UNSAT

Prover

Shamir's Theorem

Sends primality proof for N

Verifier

 \longrightarrow checks proof

$$q_1(x) = \sum p(x, x_2, \dots x_n) \longrightarrow \text{ checks if } q_1(0) + q_1(1) = 0$$

— sends
$$r_1 \in \{0, \ldots, N-1\}$$

$$q_2(x) = \sum p(r_1, x, x_3, \dots x_n) \quad \longrightarrow \quad ext{checks if } q_2(0) + q_2(1) = q_1(r_1)$$

 \leftarrow

$$\longleftarrow \quad \text{sends } r_2 \in \{0, \dots, N-1\}$$

Shamir's Theorem

Counting Complexity

Warmup: Interactive Proof for UNSAT

Prover Verifier Sends primality proof for N \longrightarrow checks proof $q_1(x) = \sum p(x, x_2, \dots, x_n) \longrightarrow \text{ checks if } q_1(0) + q_1(1) = 0$ \leftarrow sends $r_1 \in \{0, \ldots, N-1\}$ $q_2(x) = \sum p(r_1, x, x_3, \dots, x_n) \longrightarrow \text{checks if } q_2(0) + q_2(1) = q_1(r_1)$ \leftarrow sends $r_2 \in \{0, \ldots, N-1\}$ $q_n(x) = p(r_1, ..., r_{n-1}, x) \longrightarrow \text{ checks if } q_n(0) + q_n(1) = q_{n-1}(r_{n-1})$

Counting Complexit

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

 $q_1(x) = \sum p(x, x_2, \dots, x_n)$

Verifier

checks proof

\longrightarrow checks if $q_1(0)+q_1(1)=0$

- sends
$$r_1 \in \{0, \ldots, N-1\}$$

$$q_2(x) = \sum p(r_1, x, x_3, \dots x_n) \quad \longrightarrow \quad ext{checks if } q_2(0) + q_2(1) = q_1(r_1)$$

 \leftarrow

sends
$$r_2 \in \{0, \ldots, N-1\}$$

 $q_n(x) = p(r_1, \ldots, r_{n-1}, x) \qquad -$

checks if $q_n(0) + q_n(1) = q_{n-1}(r_{n-1})$ picks $r_n \in \{0, ..., N-1\}$

Counting Complexit

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

$q_1(x) = \sum p(x, x_2, \dots, x_n)$

Verifier

- checks proof
- \longrightarrow checks if $q_1(0) + q_1(1) = 0$

- sends
$$r_1 \in \{0, \ldots, N-1\}$$

$$q_2(x) = \sum p(r_1, x, x_3, \dots x_n) \quad \longrightarrow \quad ext{checks if } q_2(0) + q_2(1) = q_1(r_1)$$

 \leftarrow

sends
$$r_2 \in \{0, \ldots, N-1\}$$

 $q_n(x) = p(r_1, \ldots, r_{n-1}, x)$

checks if $q_n(0) + q_n(1) = q_{n-1}(r_{n-1})$ picks $r_n \in \{0, ..., N-1\}$ checks if $q_n(r_n) = p(r_1, ..., r_n)$

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

• If ϕ is **unsatisfiable**, then

$$\sum_{x_1 \in \{0,1\}} \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} p(x_1, \dots, x_n) \equiv 0 \pmod{N}$$

and the protocol will succeed.

- Also, the arithmetization can be done in polynomial time, and if we take $N = 2^{\mathcal{O}(n+m)}$, then the elements in the field can be represented by $\mathcal{O}(n+m)$ bits, and thus an evaluation of p in any point of $\{0, \ldots, N-1\}$ can be computed in polynomial time.
- We have to show that if ϕ is satisfiable, then the verifier will **reject** with high probability.
- If ϕ is satisfiable, then $\sum_{x_1 \in \{0,1\}} \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} p(x_1, \dots, x_n) \neq 0 \pmod{N}$

- So, $p_1(01) + p_1(1) \neq 0$, so if the prover send p_1 we 're done.
- If the prover send $q_1 \neq p_1$, then the polynomials will agree on at most *m* places. So, $\Pr[p_1(r_1) \neq q_1(r_1)] \ge 1 - \frac{m}{N}$.
- If indeed $p_1(r_1) \neq q_1(r_1)$ and the prover sends $p_2 = q_2$, then the verifier will reject since $q_2(0) + q_2(1) = p_1(r_1) \neq q_1(r_1)$.
- Thus, the prover must send $q_2 \neq p_2$.
- We continue in a similar way: If $q_i \neq p_i$, then with probability at least $1 \frac{m}{N}$, r_i is such that $q_i(r_i) \neq p_i(r_i)$.
- Then, the prover must send $q_{i+1} \neq p_{i+1}$ in order for the verifier not to reject.
- At the end, if the verifier has not rejected before the last check, $\Pr[p_n \neq q_n] \ge 1 (n-1)\frac{m}{N}$.
- If so, with probability at least $1 \frac{m}{N}$ the verifier will reject since, $q_n(x)$ and $p(r_1, \ldots, r_{n-1}, x)$ differ on at least that fraction of points.
- The total probability that the verifier will accept if at most $\frac{nm}{N}$.

Shamir's Theorem

Arithmetization of QBF

$$\begin{array}{cccc} \exists & \longrightarrow & \sum \\ \forall & \longrightarrow & \prod \end{array}$$

Example

$$orall x_1 \exists x_2 [(x_1 \wedge x_2) \lor \exists x_3 (ar x_2 \wedge x_3)] \ \downarrow \ \prod_{x_1 \in \{0,1\}} \sum_{x_2 \in \{0,1\}} \left[(x_1 \cdot x_2) + \sum_{x_3 \in \{0,1\}} (1-x_2) \cdot x_3
ight]$$

Theorem

A closed QBF is true if and only if the value of its arithmetic form is non-zero.

Arithmetization of QBF

• If a QBF is true, its value could be quite large:

Theorem

Let A be a closed QBF of size n. Then, the value of its arithmetic form cannot exceed $O(2^{2^n})$.

• Since such numbers cannot be handled by the protocol, we reduce them modulo some -smaller- prime *p*:

Theorem

Let A be a closed QBF of size n. Then, there exists a prime p of length polynomial in n, such that its arithmetization

 $A' \neq 0 (modp) \Leftrightarrow A$ is true.

Arithmetization of QBF

- A QBF with all the variables quantified is called **closed**, and can be evaluated to either True or False.
- An **open** QBF with k > 0 free variables can be interpreted as a boolean function $\{0, 1\}^k \rightarrow \{0, 1\}$.
- Now, consider the language of all true quantified boolean formulas:

 $TQBF = \{\Phi | \Phi \text{ is a true quantified Boolean formula} \}$

- It is known that TQBF is a **PSPACE**-complete language!
- So, if we have a interactive proof protocol recognizing TQBF, then we have a protocol for every **PSPACE** language.

Shamir's Theorem

Counting Complexity

Protocol for TQBF

Given a quantified formula

$$\Psi = \forall x_1 \exists x_2 \forall x_3 \cdots \exists x_n \ \phi(x_1, \ldots, x_n)$$

we use arithmetization to construct the polynomial P_{ϕ} . Then, $\Psi \in \mathrm{TQBF}$ if and only if

$$\prod_{b_1 \in \{0,1\}^*} \sum_{b_2 \in \{0,1\}^*} \prod_{b_3 \in \{0,1\}^*} \cdots \sum_{b_n \in \{0,1\}^*} P_{\phi}(b_1,\ldots,b_n) \neq 0$$

Counting Complexity

Epilogue: Probabilistically Checkable Proofs

• But if we put a **proof** instead of a Prover?

Epilogue: Probabilistically Checkable Proofs

- But if we put a **proof** instead of a Prover?
- The alleged proof is a string, and the (probabilistic) verification procedure is given direct (oracle) access to the proof.
- The verification procedure can access only *few* locations in the proof!
- We parameterize these Interactive Proof Systems by two complexity measures:
 - **Query** Complexity
 - Randomness Complexity
- The effective proof length of a PCP system is upper-bounded by q(n) · 2^{r(n)} (in the non-adaptive case).
 (How long can be in the adaptive case?)

PCP Definitions

Definition

PCP Verifiers Let *L* be a language and $q, r : \mathbb{N} \to \mathbb{N}$. We say that *L* has an (r(n), q(n))-**PCP** verifier if there is a probabilistic polynomial-time algorithm *V* (the verifier) satisfying:

- *Efficiency*: On input $x \in \{0, 1\}^*$ and given random oracle access to a string $\pi \in \{0, 1\}^*$ of length at most $q(n) \cdot 2^{r(n)}$ (which we call the proof), V uses at most r(n) random coins and makes at most q(n) non-adaptive queries to locations of π . Then, it accepts or rejects. Let $V^{\pi}(x)$ denote the random variable representing V's output on input x and with random access to π .
- Completeness: If $x \in L$, then $\exists \pi \in \{0,1\}^*$: $\Pr[V^{\pi}(x) = 1] = 1$
- Soundness: If $x \notin L$, then $\forall \pi \in \{0,1\}^*$: $\Pr[V^{\pi}(x) = 1] \leq \frac{1}{2}$

We say that a language L is in PCP(r(n), q(n)) if L has a $(\mathcal{O}(r(n)), \mathcal{O}(q(n)))$ -PCP verifier.

Main Results

Counting Complexity

• Obviously:

PCP(0,0) = ?PCP(0, poly) = ?PCP(poly, 0) = ?

Main Results

Counting Complexity

• Obviously:

PCP(0,0) = PPCP(0, poly) = ?PCP(poly, 0) = ?

Main Results

Counting Complexity

• Obviously:

 $\begin{aligned} \mathbf{PCP}(0,0) &= \mathbf{P} \\ \mathbf{PCP}(0, \textit{poly}) &= \mathbf{NP} \\ \mathbf{PCP}(\textit{poly},0) &= ? \end{aligned}$

Main Results

Counting Complexity

• Obviously:

 $\begin{aligned} \mathbf{PCP}(0,0) &= \mathbf{P} \\ \mathbf{PCP}(0, \textit{poly}) &= \mathbf{NP} \\ \mathbf{PCP}(\textit{poly},0) &= \textit{coRP} \end{aligned}$

Main Results

Counting Complexit

• Obviously:

 $\begin{aligned} \mathbf{PCP}(0,0) &= \mathbf{P} \\ \mathbf{PCP}(0, \textit{poly}) &= \mathbf{NP} \\ \mathbf{PCP}(\textit{poly},0) &= \textit{coRP} \end{aligned}$

• A suprising result from Arora, Lund, Motwani, Safra, Sudan, Szegedy states that:

The PCP Theorem

 $\mathsf{NP} = \mathsf{PCP}(\log n, 1)$

Main Results

- The restriction that the proof length is at most $q2^r$ is inconsequential, since such a verifier can look on at most this number of locations.
- We have that $PCP[r(n), q(n)] \subseteq NTIME[2^{\mathcal{O}(r(n))}q(n)]$, since a NTM could guess the proof in $2^{\mathcal{O}(r(n))}q(n)$ time, and verify it deterministically by running the verifier for all $2^{\mathcal{O}(r(n))}$ possible choices of its random coin tosses. If the verifier accepts for all these possible tosses, then the NTM accepts.

Contents

- Introduction
- Turing Machines
- Undecidability
- Complexity Classes
- Oracles & Optimization Problems
- Randomized Computation
- Non-Uniform Complexity
- Interactive Proofs
- Counting Complexity

Introduction

Counting Complexity

Why counting?

- So far, we have seen two versions of problems:
 - Decision Problems (if a solution exists)
 - Function Problems (if a solution can be *produced*)
- A very important type of problems in Complexity Theory is also:
 - Counting Problems (how many solution exist)

Example (#SAT)

Given a Boolean Expression, compute the number of different truth assignments that satisfy it.

- Note that if we can solve #SAT in polynomial time, we can solve SAT also.
- Similarly, we can define #HAMILTON PATH, #CLIQUE, etc.

Introduction

Basic Definitions

Definition (#P)

A function $f : \{0,1\}^* \to \mathbb{N}$ is in $\#\mathbf{P}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing Machine M such that for every $x \in \{0,1\}^*$:

$$f(x) = |\{y \in \{0,1\}^{p(|x|)} : M(x,y) = 1\}|$$

- The definition implies that f(x) can be expressed in poly(|x|) bits.
- Each function f in $\#\mathbf{P}$ is equal to the number of paths from an initial configuration to an accepting configuration, or **accepting paths** in the configuration graph of a poly-time NDTM.
- $\mathbf{FP} \subseteq \#\mathbf{P} \subseteq \mathbf{PSPACE}$
- If $\#\mathbf{P} = \mathbf{FP}$, then $\mathbf{P} = \mathbf{NP}$.
- If $\mathbf{P} = \mathbf{PSPACE}$, then $\#\mathbf{P} = \mathbf{FP}$.

 In order to formalize a notion of completeness for #P, we must define proper reductions:

Definition (Cook Reduction)

A function f is #P-complete if it is in #P and every $g \in \#P$ is in FP^{g} .

As we saw, for each problem in **NP** we can define the associated counting problem: If $A \in$ **NP**, then $\#A(x) = |\{y \in \{0,1\}^{p(|x|)} : R_A(x,y) = 1\}| \in \#\mathbf{P}$ In order to formalize a notion of completeness for #P, we must define proper reductions:

Definition (Cook Reduction)

A function f is #P-complete if it is in #P and every $g \in \#P$ is in FP^{g} .

- As we saw, for each problem in **NP** we can define the associated counting problem: If $A \in$ **NP**, then $\#A(x) = |\{y \in \{0,1\}^{p(|x|)} : R_A(x,y) = 1\}| \in \#\mathbf{P}$
- We now define a more strict form of reduction:

Definition (Parsimonious Reduction)

We say that there is a parsimonious reduction from #A to #B if there is a polynomial time transformation f such that for all x:

$$|\{y: R_A(x,y) = 1\}| = |\{z: R_B(f(x),z) = 1\}|$$

Counting Complexity

Introduction

Completeness Results

Theorem

#CIRCUIT SAT is #**P**-complete.

Proof:

Let
$$f \in \#\mathbf{P}$$
. Then, $\exists M, p$:
 $f = |\{y \in \{0, 1\}^{p(|x|)} : M(x, y) = 1\}|.$

• Given x, we want to construct a circuit C such that:

$$|\{z: C(z)\}| = |\{y: y \in \{0,1\}^{p(|x|)}, M(x,y) = 1\}|$$

- We can construct a circuit \hat{C} such that on input x, y simulates M(x, y).
- We know that this can be done with a circuit with size about the square of *M*'s running time.

• Let
$$C(y) = \hat{C}(x, y)$$
.

Introduction

Completeness Results

Theorem

#SAT is #**P**-complete.

Proof:

- We reduce #CIRCUIT SAT to #SAT:
- Let a circuit C, with x_1, \ldots, x_n input gates and $1, \ldots, m$ gates.
- We construct a Boolean formula ϕ with variables $x_1, \ldots, x_n, g_1, \ldots, g_m$, where g_i represents the output of gate *i*.
- A gate can be complete described by simulating the output for each of the 4 possible inputs.
- In this way, we have reduced C to a formula ϕ with n + m variables and 4m clauses.

Valiant's Theorem

Counting Complexity

Definition (PERMANENT)

For a $n \times n$ matrix A, the permanent of A is:

$$perm(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A_{i,\sigma(i)}$$

- Permanent is similar to the determinant, but it seems more difficult to compute.
- Combinatorial interpretation: If A has entries $\in \{0, 1\}$, it can be viewed as the adjacency matrix of a bipartite graph G(X, Y, E) with $X = \{x_1, \dots, x_n\}$, $Y = \{y_1, \dots, y_n\}$ and $\{x_i, y_i\} \in E$ iff $A_{i,j} = 1$.
Valiant's Theorem

Counting Complexity

Definition (PERMANENT)

For a $n \times n$ matrix A, the permanent of A is:

$$perm(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A_{i,\sigma(i)}$$

- Permanent is similar to the determinant, but it seems more difficult to compute.
- Combinatorial interpretation: If A has entries $\in \{0, 1\}$, it can be viewed as the adjacency matrix of a bipartite graph G(X, Y, E) with $X = \{x_1, \dots, x_n\}$, $Y = \{y_1, \dots, y_n\}$ and $\{x_i, y_i\} \in E$ iff $A_{i,j} = 1$.
- The term $\prod_{i=1}^{n} A_{i,\sigma(i)}$ is 1 iff σ has a perfect matching.

Valiant's Theorem

Counting Complexity

Definition (PERMANENT)

For a $n \times n$ matrix A, the permanent of A is:

$$perm(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A_{i,\sigma(i)}$$

- Permanent is similar to the determinant, but it seems more difficult to compute.
- Combinatorial interpretation: If A has entries $\in \{0, 1\}$, it can be viewed as the adjacency matrix of a bipartite graph G(X, Y, E) with $X = \{x_1, \dots, x_n\}$, $Y = \{y_1, \dots, y_n\}$ and $\{x_i, y_i\} \in E$ iff $A_{i,j} = 1$.
- The term $\prod_{i=1}^{n} A_{i,\sigma(i)}$ is 1 iff σ has a perfect matching.
- So, in this case *perm*(*A*) is the number of perfect matchings in the corresponding graph!

Interactive Proofs

Valiant's Theorem

Counting Complexity

Theorem (Valiant's Theorem) *PERMANENT is #P-complete.*

• Notice that the decision version of PERMANENT is in P ! !

Counting Complexity

Quantifiers vs Counting

Toda's Theorem

- An imporant open question in the 80s concerned the relative power of Polynomial Hierarchy and $\#\mathbf{P}$.
- Both are natural generalizations of **NP**, but it seemed that their features were not directly comparable to each other.
- But, in 1989, S. Toda showed the following theorem:

Counting Complexity

Toda's Theorem

Quantifiers vs Counting

- An imporant open question in the 80s concerned the relative power of Polynomial Hierarchy and $\#\mathbf{P}$.
- Both are natural generalizations of **NP**, but it seemed that their features were not directly comparable to each other.
- But, in 1989, S. Toda showed the following theorem:

Theorem (Toda's Theorem)

$$\mathsf{PH} \subseteq \mathsf{P}^{\#\mathsf{P}[1]}$$

Toda's Theorem

Definition

A language *L* is in the class $\oplus \mathbf{P}$ if there is a NDTM *M* such that for all strings $x, x \in L$ iff the *number of accepting paths* on input *x* is odd.

- The problems \oplus SAT and \oplus HAMILTON PATH are \oplus P-complete.
- $\oplus \mathbf{P}$ is closed under complement.

Theorem

$\mathsf{NP}\subseteq\mathsf{RP}^{\oplus\mathsf{P}}$