Theoretical Computer Science (ECE) Algorithms and Complexity II (MPLA)

Computation and Reasoning Laboratory National Technical University of Athens

2013-2014
2st Part
Oracles - Polynomial Hierarchy - Randomization - Nonuniform Complexity - Interaction - Counting Complexity

S. Zachos, Professor
A. Pagourtzis, Ass. Professor

TA-Slides: Antonis Antonopoulos

Bibliography

Textbooks

(1) C. Papadimitriou, Computational Complexity, Addison Wesley, 1994
2 S. Arora, B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009
3 O. Goldreich, Computational Complexity: A Conceptual Perspective, Cambridge University Press, 2008

Lecture Notes

${ }^{1}$ L. Trevisan, Lecture Notes in Computational Complexity, 2002, UC Berkeley
2 E. Allender, M. Loui, and K. Regan, Three chapters for the CRC Handbook on Algorithms and Theory of Computation (M.J. Atallah, ed.), (Boca Raton: CRC Press, 1998).

Contents

- Introduction
- Turing Machine
- Undecidability
- Complexity Classes
- Oracles \& Optimization Problems
- Randomized Computation
- Non-Uniform Complexity
- Interactive Proofs
- Counting Complexity

Introduction

TSP Versions

(1) TSP (D)
2. EXACT TSP

3 TSP COST
4 TSP
$(1) \leq_{P}(2) \leq_{P}(3) \leq_{P}(4)$

DP Class Definition

Definition

A language L is in the class DP if and only if there are two languages $L_{1} \in \mathbf{N P}$ and $L_{2} \in \operatorname{coNP}$ such that $L=L_{1} \cap L_{2}$.

- DP is not NP \cap coNP!
- Also, DP is a syntactic class, and so it has complete problems.

SAT-UNSAT Definition
Given two Boolean expressions ϕ, ϕ^{\prime}, both in 3CNF. Is it true that ϕ is satisfiable and ϕ^{\prime} is not?

Complete Problems for DP

Theorem

SAT-UNSAT is DP-complete.

Proof

- Firstly, we have to show it is in DP. So, let:
$L_{1}=\left\{\left(\phi, \phi^{\prime}\right): \phi\right.$ is satisfiable $\}$.
$L_{2}=\left\{\left(\phi, \phi^{\prime}\right): \phi^{\prime}\right.$ is unsatisfiable $\}$.
It is easy to see, $L_{1} \in \mathbf{N P}$ and $L_{2} \in$ coNP, thus $L \equiv L_{1} \cap L_{2} \in \mathbf{D P}$.
- For completeness, let $L \in \mathbf{D P}$. We have to show that $L \leq_{p}$ SAT-UNSAT. $L \in \mathbf{D P} \Rightarrow L=L_{1} \cap L_{2}, L_{1} \in \mathbf{N P}$ and $L_{2} \in c o N P$.
SAT NP-complete $\Rightarrow \exists R_{1}: L_{1} \leq{ }_{p} S A T$ and $R_{2}: \overline{L_{2}} \leq{ }_{p} S A T$. Hence, $L \leq{ }_{p} S A T-U N S A T$, by $R(x)=\left(R_{1}(x), R_{2}(x)\right)$

Complete Problems for DP

Theorem

EXACT TSP is DP-complete.

Proof

- EXACT TSP $\in \mathbf{D P}$, by $L_{1} \equiv T S P \in \mathbf{N P}$ and $L_{2} \equiv T S P$ COMPLEMENT \in coNP
- Completeness: we'll show that SAT-UNSAT $\leq_{p} E X A C T$ TSP. $3 S A T \leq_{p} H P:\left(\phi, \phi^{\prime}\right) \rightarrow\left(G, G^{\prime}\right)$
Broken Hamilton Path (2 node-disjoint paths that cover all nodes)
Almost Satisfying Truth Assignement (satisfies all clauses except for one)

Complete Problems for DP

Proof

We define distances:
(1) If $(i, j) \in \mathrm{E}(\mathrm{G})$ or $\mathrm{E}\left(\mathrm{G}^{\prime}\right): d(i, j) \equiv 1$
2. If $(i, j) \notin \mathrm{E}(\mathrm{G})$, but i and $\mathrm{j} \in \mathrm{V}(\mathrm{G}): d(i, j) \equiv 2$

3 Otherwise: $d(i, j) \equiv 4$
Let n be the size of the graph.
(1) If ϕ and ϕ^{\prime} satisfiable, then opt Cost $=n$

2 If ϕ and ϕ^{\prime} unsatisfiable, then optCost $=n+3$
3 If ϕ satisfiable and ϕ^{\prime} not, then optCost $=n+2$
4. If ϕ^{\prime} satisfiable and ϕ not, then optCost $=n+1$
"yes" instance of SAT-UNSAT \Leftrightarrow optCost $=n+2$
Let $B \equiv n+2$!

Other DP-complete problems

Also:

- CRITICAL SAT: Given a Boolean expression ϕ, is it true that it's unsatisfiable, but deleting any clause makes it satisfiable?
- CRITICAL HAMILTON PATH: Given a graph, is it true that it has no Hamilton path, but addition of any edge creates a Hamilton path?
- CRITICAL 3-COLORABILITY: Given a graph, is it true that it is not 3-colorable, but deletion of any node makes it 3-colorable?
are DP-complete!

Oracle TMs and Oracle Classes

Definition

A Turing Machine M ? with oracle is a multi-string deterministic TM that has a special string, called query string, and three special states: $q_{\text {? }}$ (query state), and $q_{Y E S}, q_{N O}$ (answer states). Let $A \subseteq \Sigma^{*}$ be an arbitrary language. The computation of oracle machine M^{A} proceeds like an ordinary TM except for transitions from the query state:
From the $q_{\text {? }}$ moves to either $q_{\text {YES }}, q_{N O}$, depending on whether the current query string is in A or not.

- The answer states allow the machine to use this answer to its further computation.
- The computation of $M^{?}$ with oracle A on iput x is denoted as $M^{A}(x)$.

Oracle TMs and Oracle Classes

Definition
Let \mathcal{C} be a time complexity class (deterministic or nondeterministic).
Define \mathcal{C}^{A} to be the class of all languages decided by machines of the same sort and time bound as in \mathcal{C}, only that the machines have now oracle A.

Theorem
There exists an oracle A for which $\mathbf{P}^{A}=\mathbf{N P}^{A}$

Proof

Take A to be a PSPACE-complete language. Then: PSPACE $\subseteq \mathbf{P}^{A} \subseteq \mathbf{N P}^{A} \subseteq$ NPSPACE \subseteq PSPACE.
Theorem
There exists an oracle B for which $\mathbf{P}^{B} \neq \mathbf{N P}^{B}$

The Classes $P^{N P}$ and FPNP

Alternative DP Definition

DP is the class of languages that can be decided by an oracle machine which makes 2 queries to a SAT oracle, and accepts iff the 1st answer is yes, and the 2 nd is no.

- $\mathbf{P}^{S A T}$ is the class of languages decided in pol time with a $S A T$ oracle.
- Polynomial number of queries
- Queries computed adaptively
- SAT NP-complete $\Rightarrow \mathbf{P}^{S A T}=\mathbf{P}^{\mathbf{N P}}$
- FP ${ }^{N P}$ is the class of functions that can be computed by a pol-time TM with a SAT oracle.
- Goal: MAX OUTPUT $\leq_{p} M A X-W E I G H T S A T \leq_{p} S A T$

$F P^{N P}$-complete Problems

MAX OUTPUT Definition

Given NTM N, with input 1^{n}, which halts after $\mathcal{O}(n)$, with output a string of length n. Which is the largest output, of any computation of N on 1^{n} ?

Theorem
MAX OUTPUT is $\mathbf{F P}^{N P}$-complete.
Proof
MAX OUTPUT $\in \mathbf{F P}^{N P}$.
Let $F: \Sigma^{*} \rightarrow \Sigma^{*} \in \mathbf{F P}^{N P} \Rightarrow \exists$ pol-time TM $M^{\text {? }}$, s.t.
$M^{S A T}(x)=F(x)$. We'll show: $F \leq M A X$ OUTPUT!
Reductions R and S (log space computable) s.t.:

- $\forall x, R(x)$ is a instance of MAX OUTPUT
- $S($ max output of $R(x)) \rightarrow F(x)$

$F P^{N P}$-complete Problems

Proof (cont.)

NTM N:
Let $n=p^{2}(|x|), p(\cdot)$, is the pol bound of SAT.
$N\left(1^{n}\right)$ generates x on a string.
$M^{S A T}$ query state $\left(\phi_{1}\right)$:

- If $z_{1}=0$ (ϕ_{1} unsat), then continue from $q_{N O}$.
- If $z_{1}=1$ (ϕ_{1} sat), then guess assignment T_{1} :
- If test succeeds, continue from q YES .
- If test fails, output $=0^{n}$ and halt. (Unsuccessful computation)

Continue to all guesses $\left(z_{i}\right)$, and halt, with output $=\underbrace{z_{1} z_{2} \ldots .00}_{n}$
(Successful computation)

$F P^{N P}$-complete Problems

Proof (cont.)

We claim that the successful computation that outputs the largest integer, correspond to a correct simulation:
Let j the smallest integer,s.t.: $z_{j}=0$, while ϕ_{j} was satisfiable.
Then, \exists another successful computation of N, s.t.: $z_{j}=1$. The computations agree to the first $j-1$ digits, \Rightarrow the $2^{\text {nd }}$ represents a larger number.
The S part: $F(x)$ can be read off the end of the largest output of N.

Oracle Classes

$F P^{N P}$-complete Problems

MAX-WEIGHT SAT Definition

Given a set of clauses, each with an integer weight, find the truth assignment that satisfies a set of clauses with the most total weight.

$F P^{N P}$-complete Problems

MAX-WEIGHT SAT Definition

Given a set of clauses, each with an integer weight, find the truth assignment that satisfies a set of clauses with the most total weight.

Theorem
MAX-WEIGHT SAT is $\mathbf{F P}^{N P}$-complete.

Proof

MAX-WEIGHT SAT is in $\mathrm{FP}^{N P}$: By binary search, and a SAT oracle, we can find the largest possible total weight of satisfied clauses, and then, by setting the variables 1-1, the truth assignment that achieves it.
MAX OUTPUT $\leq M A X-W E I G H T ~ S A T: ~$

$F P^{N P}$-complete Problems

Proof (cont.)

- $\operatorname{NTMN}\left(1^{n}\right) \rightarrow \phi(N, m)$:

Any satisfying truth assignment of $\phi(N, m) \rightarrow$ legal comp. of $N\left(1^{n}\right)$

- Clauses are given a huge weight $\left(2^{n}\right)$, so that any t.a. that aspires to be optimum satisfy all clauses of $\phi(N, m)$.
- Add more clauses: $\left(y_{i}\right): i=1, . . n$ with weight 2^{n-i}.
- Now, optimum t.a. must not represent any legal computation, but this which produces the largest possible output value.
- S part: From optimum t.a. of the resulting expression (or the weight), we can recover the optimum output of $N\left(1^{n}\right)$.

$F P^{N P}$-complete Problems

And the main result:
Theorem
TSP is $\mathbf{F P}^{\mathbf{N P}}$-complete.

$F P^{N P}$-complete Problems

And the main result:
Theorem
TSP is $\mathbf{F P}^{\mathbf{N P}}$-complete.

Corollary
TSP COST is $\mathbf{F P}^{\mathrm{NP}}$-complete.

The Class $P^{N P[\log n]}$

Definition

$\mathbf{P}^{\text {NP }[\operatorname{logn]}]}$ is the class of all languages decided by a polynomial time oracle machine, which on input x asks a total of $\mathcal{O}(\log |x|)$ SAT queries.

- FP ${ }^{N P[\operatorname{logn}]}$ is the corresponding class of functions.

The Class $P^{N P[\log n]}$

Definition

$\mathbf{P}^{\text {NP }[\operatorname{logn}]}$ is the class of all languages decided by a polynomial time oracle machine, which on input x asks a total of $\mathcal{O}(\log |x|)$ SAT queries.

- FP ${ }^{N P[\operatorname{logn}]}$ is the corresponding class of functions.

CLIQUE SIZE Definition
Given a graph, determine the size of his largest clique.

The Class $P^{N P[\log n]}$

Definition

$\mathbf{P}^{\text {NP }[\operatorname{logn}]}$ is the class of all languages decided by a polynomial time oracle machine, which on input x asks a total of $\mathcal{O}(\log |x|)$ SAT queries.

- FP ${ }^{N P[\operatorname{logn}]}$ is the corresponding class of functions.

CLIQUE SIZE Definition
Given a graph, determine the size of his largest clique.

Theorem

CLIQUE SIZE is $\mathrm{FP}^{N P[\operatorname{logn}]}$-complete.

Oracle Classes

Conclusion

(1) TSP (D) is NP-complete.
2) EXACT TSP is DP-complete.

3 TSP COST is $\mathrm{FP}^{N P}$-complete.
4 $T S P$ is $\mathbf{F P}^{N P}$-complete.
And now,

- $\mathbf{P}^{\mathrm{NP}} \rightarrow \mathbf{N P}^{\mathrm{NP}}$?
- Oracles for $\mathbf{N P}^{N P}$?

The Polynomial Hierarchy

Polynomial Hierarchy Definition

- $\Delta_{0}^{p}=\Sigma_{0}^{p}=\Pi_{0}^{p}=\mathbf{P}$
- $\Delta_{i+1}^{p}=\mathbf{P}^{\Sigma_{i}^{p}}$
- $\Sigma_{i+1}^{p}=\mathbf{N P}^{\Sigma_{i}^{p}}$
- $\Pi_{i+1}^{p}=\operatorname{coNP}{ }^{\Sigma_{i}^{p}}$

$$
\mathbf{P H} \equiv \bigcup_{i \geqslant 0} \Sigma_{i}^{p}
$$

- $\Sigma_{0}^{p}=\mathbf{P}$
- $\Delta_{1}^{p}=\mathbf{P}, \Sigma_{1}^{p}=\mathbf{N P}, \Pi_{1}^{p}=\operatorname{coNP}$
- $\Delta_{2}^{p}=\mathbf{P}^{N P}, \Sigma_{2}^{p}=\mathbf{N P} \mathbf{N P}^{N}, \Pi_{2}^{p}=c o \mathbf{N P}^{\mathbf{N P}}$

Basic Theorems

Theorem

Let L be a language, and $i \geq 1 . L \in \Sigma_{i}^{p}$ iff there is a polynomially balanced relation R such that the language $\{x ; y:(x, y) \in R\}$ is in Π_{i-1}^{p} and

$$
L=\{x: \exists y, \text { s.t. }:(x, y) \in R\}
$$

Proof (by Induction)

- For $i=1$ $\{x ; y:(x, y) \in R\} \in \mathbf{P}$, so $L=\{x \mid \exists y:(x, y) \in R\} \in \mathbf{N P}$
- For $i>1$

If $\exists R \in \Pi_{i-1}^{p}$, we must show that $L \in \Sigma_{i}^{p} \Rightarrow$
\exists NTM with \sum_{i-1}^{p} oracle: $\operatorname{NTM}(x)$ guesses a y and asks Π_{i-1}^{p} oracle whether $(x, y) \notin R$.

Basic Theorems

Proof (cont.)

- If $L \in \Sigma_{i}^{p}$, we must show the existence or R.
$L \in \sum_{i}^{p} \Rightarrow \exists$ NTM $M^{K}, K \in \sum_{i-1}^{p}$, which decides L. $K \in \Sigma_{i-1}^{p} \Rightarrow \exists S \in \Pi_{i-2}^{p}:(z \in K \Leftrightarrow \exists w:(z, w) \in S)$
We must describe a relation R (we know: $x \in L \Leftrightarrow$ accepting comp of $M^{K}(x)$)
Query Steps: "yes" $\rightarrow z_{i}$ has a certificate w_{i} st $\left(z_{i}, w_{i}\right) \in S$. So, $R(x)=$ " $(x, y) \in R$ iff y records an accepting computation of $M^{\text {? }}$ on x, together with a certificate w_{i} for each yes query z_{i} in the computation."
We must show $\{x ; y:(x, y) \in R\} \in \Pi_{i-1}^{p}$.

Basic Theorems

Corollary
Let L be a language, and $i \geq 1 . L \in \Pi_{i}^{p}$ iff there is a polynomially balanced relation R such that the language $\{x ; y:(x, y) \in R\}$ is in \sum_{i-1}^{p} and

$$
L=\left\{x: \forall y,|y| \leq|x|^{k} \text {, s.t. }:(x, y) \in R\right\}
$$

Corollary
Let L be a language, and $i \geq 1 . L \in \sum_{i}^{p}$ iff there is a polynomially balanced, polynomially-time decicable ($i+1$)-ary relation R such that:

$$
L=\left\{x: \exists y_{1} \forall y_{2} \exists y_{3} \ldots Q y_{i}, \text { s.t. }:\left(x, y_{1}, \ldots, y_{i}\right) \in R\right\}
$$

where the $i^{\text {th }}$ quantifier Q is \forall, if i is even, and \exists, if i is odd.

Basic Theorems

Theorem
If for some $i \geq 1, \Sigma_{i}^{p}=\Pi_{i}^{p}$, then for all $j>i$:

$$
\Sigma_{j}^{p}=\Pi_{j}^{p}=\Delta_{j}^{p}=\Sigma_{i}^{p}
$$

Or, the polynomial hierarchy collapses to the $i^{t h}$ level.

Proof

It suffices to show that: $\sum_{i}^{p}=\Pi_{i}^{p} \Rightarrow \Sigma_{i+1}^{p}=\Sigma_{i}^{p}$
Let $L \in \Sigma_{i+1}^{p} \Rightarrow \exists R \in \Pi_{i}^{p}: L=\{x \mid \exists y:(x, y) \in R\}$
Since $\Pi_{i}^{p}=\Sigma_{i}^{p} \Rightarrow R \in \Sigma_{i}^{p}$
$(x, y) \in R \Leftrightarrow \exists z:(x, y, z) \in S, S \in \Pi_{i-1}^{p}$.
Thus, $x \in L \Leftrightarrow \exists y ; z:(x, y, z) \in S, S \in \Pi_{i-1}^{p}$, which means $L \in \Sigma_{i}^{p}$.

Basic Theorems

Corollary
If $\mathbf{P}=\mathbf{N P}$, or even $\mathbf{N P}=$ coNP, the Polynomial Hierarchy collapses to the first level.

Basic Theorems

Corollary
If $\mathbf{P}=\mathbf{N P}$, or even $\mathbf{N P}=$ coNP, the Polynomial Hierarchy collapses to the first level.

MINIMUM CIRCUIT Definition
Given a Boolean Circuit C, is it true that there is no circuit with fewer gates that computes the same Boolean function

- MINIMUM CIRCUIT is in Π_{2}^{p}, and not known to be in any class below that.
- It is open whether MINIMUM CIRCUIT is Π_{2}^{p}-complete.

Theorem
If SAT has Polynomial Circuits, then the Polynomial Hierarchy collapses to the second level.

Basic Theorems

QSAT ${ }_{i}$ Definition

Given expression ϕ, with Boolean variables partitioned into i sets X_{i}, is ϕ satisfied by the overall truth assignment of the expression:

$$
\exists X_{1} \forall X_{2} \exists X_{3} \ldots . . Q X_{i} \phi
$$

, where Q is \exists if i is odd, and \forall if i is even.
Theorem
For all $i \geq 1 Q S A T_{i}$ is \sum_{i}^{p}-complete.

Basic Theorems

Theorem
If there is a PH-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof

Let L is $\mathbf{P H}$-complete.
Since $L \in \mathbf{P H}, \exists i \geq 0: L \in \Sigma_{i}^{p}$.
But any $L^{\prime} \in \Sigma_{i+1}^{p}$ reduces to L. Since $P H$ is closed under reductions, we imply that $L^{\prime} \in \Sigma_{i}^{p}$, so $\Sigma_{i}^{p}=\Sigma_{i+1}^{p}$.

Basic Theorems

Theorem
If there is a PH-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof

Let L is $\mathbf{P H}$-complete.
Since $L \in \mathbf{P H}, \exists i \geq 0: L \in \Sigma_{i}^{p}$.
But any $L^{\prime} \in \Sigma_{i+1}^{p}$ reduces to L. Since $P H$ is closed under reductions, we imply that $L^{\prime} \in \Sigma_{i}^{p}$, so $\Sigma_{i}^{p}=\Sigma_{i+1}^{p}$.

Theorem

$\mathbf{P H} \subseteq$ PSPACE

- PH $\stackrel{?}{=}$ PSPACE (Open). If it was, then $\mathbf{P H}$ has complete problems, so it collapses to some finite level.

Contents

- Introduction
- Turing Machine
- Undecidability
- Complexity Classes
- Oracles \& Optimizatio Problems
- Randomized Computation
- Non-Uniform Complexity
- Interactive Proofs
- Counting Complexity

Warmup: Randomized Quicksort

Deterministic Quicksort

Input: A list L of integers;
If $\mathrm{n} \leq 1$ then return L .
Else \{

- let $i=1$;
- let L_{1} be the sublist of L whose elements are $<a_{i}$;
- let L_{1} be the sublist of L whose elements are $=a_{i}$;
- let L_{1} be the sublist of L whose elements are $>a_{i}$;
- Recursively Quicksort L_{1} and L_{3};
- return $\mathrm{L}=\mathrm{L}_{1} \mathrm{~L}_{2} \mathrm{~L}_{3}$;

Warmup: Randomized Quicksort

Randomized Quicksort

Input: A list L of integers;
If $\mathrm{n} \leq 1$ then return L .
Else \{

- choose a random integer i, $1 \leq i \leq n$;
- let L_{1} be the sublist of L whose elements are $<a_{i}$;
- let L_{1} be the sublist of L whose elements are $=a_{i}$;
- let L_{1} be the sublist of L whose elements are $>a_{i}$;
- Recursively Quicksort L_{1} and L_{3};
- return $\mathrm{L}=\mathrm{L}_{1} \mathrm{~L}_{2} \mathrm{~L}_{3}$;

Warmup: Randomized Quicksort

- Let T_{d} the max number of comparisons for the Deterministic Quicksort:

$$
\begin{gathered}
T_{d} \geq T_{d}(n-1)+\mathcal{O}(n) \\
\Downarrow \\
T_{d}(n)=\Omega\left(n^{2}\right)
\end{gathered}
$$

Warmup: Randomized Quicksort

- Let T_{d} the max number of comparisons for the Deterministic Quicksort:

$$
\begin{gathered}
T_{d} \geq T_{d}(n-1)+\mathcal{O}(n) \\
\Downarrow \\
T_{d}(n)=\Omega\left(n^{2}\right)
\end{gathered}
$$

- Let T_{r} the expected number of comparisons for the Randomized Quicksort:

$$
T_{r} \geq \frac{1}{n} \sum_{j=0}^{n-1}\left[T_{r}(j)-T_{r}(n-1-j)\right]+\mathcal{O}(n)
$$

\Downarrow

$$
T_{r}(n)=\mathcal{O}(n \log n)
$$

Warmup: Polynomial Identity Testing

(1) Two polynomials are equal if they have the same coefficients for corresponding powers of their variable.
2 A polynomial is identically zero if all its coefficients are equal to the additive identity element.
3 How we can test if a polynomial is identically zero?

Warmup: Polynomial Identity Testing

(1) Two polynomials are equal if they have the same coefficients for corresponding powers of their variable.
2 A polynomial is identically zero if all its coefficients are equal to the additive identity element.
3 How we can test if a polynomial is identically zero?
4 We can choose uniformly at random r_{1}, \ldots, r_{n} from a set $S \subseteq \mathbb{F}$.
5 We are wrong with a probability at most:
Theorem (Schwartz-Zippel Lemma)
Let $Q\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be a multivariate polynomial of total degree d. Fix any finite set $S \subseteq \mathbb{F}$, and let r_{1}, \ldots, r_{n} be chosen indepedently and uniformly at random from S. Then:

$$
\operatorname{Pr}\left[Q\left(r_{1}, \ldots, r_{n}\right)=0 \mid Q\left(x_{1}, \ldots, x_{n}\right) \neq 0\right] \leq \frac{d}{|S|}
$$

Warmup: Polynomial Identity Testing

Proof:

(By Induction on n)

- For $n=1: \operatorname{Pr}[Q(r)=0 \mid Q(x) \neq 0] \leq d /|S|$
- For n :

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{k} x_{1}^{i} Q_{i}\left(x_{2}, \ldots, x_{n}\right)
$$

where $k \leq d$ is the largest exponent of x_{1} in Q. $\operatorname{deg}\left(Q_{k}\right) \leq d-k \Rightarrow \operatorname{Pr}\left[Q_{k}\left(r_{2}, \ldots, r_{n}\right)=0\right] \leq(d-k) /|S|$ Suppose that $Q_{k}\left(r_{2}, \ldots, r_{n}\right) \neq 0$. Then:

$$
q\left(x_{1}\right)=Q\left(x_{1}, r_{2}, \ldots, r_{n}\right)=\sum_{i=0}^{k} x_{1}^{i} Q_{i}\left(r_{2}, \ldots, r_{n}\right)
$$

$\operatorname{deg}\left(q\left(x_{1}\right)\right)=k$, and $q\left(x_{1}\right) \neq 0!$

Warmup: Polynomial Identity Testing

Proof (cont'd):
The base case now implies that:

$$
\operatorname{Pr}\left[q\left(r_{1}\right)=Q\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq k /|S|
$$

Thus, we have shown the following two equalities:

$$
\begin{gathered}
\operatorname{Pr}\left[Q_{k}\left(r_{2}, \ldots, r_{n}\right)=0\right] \leq \frac{d-k}{|S|} \\
\operatorname{Pr}\left[Q_{k}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0 \mid Q_{k}\left(r_{2}, \ldots, r_{n}\right) \neq 0\right] \leq \frac{k}{|S|}
\end{gathered}
$$

Using the following identity: $\operatorname{Pr}\left[\mathcal{E}_{1}\right] \leq \operatorname{Pr}\left[\mathcal{E}_{1} \mid \overline{\mathcal{E}}_{2}\right]+\operatorname{Pr}\left[\mathcal{E}_{2}\right]$ we obtain that the requested probability is no more than the sum of the above, which proves our theorem! \square

Probabilistic Turing Machines

- A Probabilistic Turing Machine is a TM as we know it, but with access to a "random source", that is an extra (read-only) tape containing random-bits!
- Randomization on:
- Output (one or two-sided)
- Running Time

Definition (Probabilistic Turing Machines)
A Probabilistic Turing Machine is a TM with two transition functions δ_{0}, δ_{1}. On input x, we choose in each step with probability $1 / 2$ to apply the transition function δ_{0} or δ_{1}, indepedently of all previous choices.

- We denote by $M(x)$ the random variable corresponding to the output of M at the end of the process.
- For a function $T: \mathbb{N} \rightarrow \mathbb{N}$, we say that M runs in $T(|x|)$-time if it halts on x within $T(|x|)$ steps (regardless of the random choices it makes).

BPP Class

Definition (BPP Class)
For $T: \mathbb{N} \rightarrow \mathbb{N}$, let BPTIME[T(n)] the class of languages L such that there exists a PTM which halts in $\mathcal{O}(T(|x|))$ time on input x, and $\operatorname{Pr}[M(x)=L(x)] \geq 2 / 3$.
We define:

$$
\mathrm{BPP}=\bigcup_{c \in \mathbb{N}} \mathrm{BPTIME}\left[n^{c}\right]
$$

- The class BPP represents our notion of efficient (randomized) computation!
- We can also define BPP using certificates:

BPP Class

Definition (Alternative Definition of BPP)
A language $L \in \mathbf{B P P}$ if there exists a poly-time TM M and a polynomial $p \in \operatorname{poly}(n)$, such that for every $x \in\{0,1\}^{*}$:

$$
\mathbf{P r}_{r \in\{0,1\}^{p(n)}}[M(x, r)=L(x)] \geq \frac{2}{3}
$$

- $\mathbf{P} \subseteq B P P$
- $\mathbf{B P P} \subseteq E X P$
- The "P vs BPP" question.

Quantifier Characterizations

- Proper formalism (Zachos et al.):

Definition (Majority Quantifier)
Let $R:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ be a predicate, and ε a rational number, such that $\varepsilon \in\left(0, \frac{1}{2}\right)$. We denote by $\left(\exists^{+} y,|y|=k\right) R(x, y)$ the following predicate:
"There exist at least $\left(\frac{1}{2}+\varepsilon\right) \cdot 2^{k}$ strings y of length m for which $R(x, y)$ holds."

We call \exists^{+}the overwhelming majority quantifier.

- \exists_{r}^{+}means that the fraction r of the possible certificates of a certain length satisfy the predicate for the certain input.

Quantifier Characterizations

Definition

We denote as $\mathcal{C}=\left(Q_{1} / Q_{2}\right)$, where $Q_{1}, Q_{2} \in\left\{\exists, \forall, \exists^{+}\right\}$, the class
\mathcal{C} of languages L satisfying:

- $x \in L \Rightarrow Q_{1} y R(x, y)$
- $x \notin L \Rightarrow Q_{2} y \neg R(x, y)$
- $\mathbf{P}=(\forall / \forall)$
- NP $=(\exists / \forall)$
- coNP $=(\forall / \exists)$
- $\mathbf{B P P}=\left(\exists^{+} / \exists^{+}\right)=\operatorname{coBPP}$

RP Class

- In the same way, we can define classes that contain problems with one-sided error:

Definition
The class RTIME[$T(n)$] contains every language L for which there exists a PTM M running in $\mathcal{O}(T(|x|))$ time such that:

- $x \in L \Rightarrow \operatorname{Pr}[M(x)=1] \geq \frac{2}{3}$
- $x \notin L \Rightarrow \operatorname{Pr}[M(x)=0]=1$

We define

$$
\mathbf{R P}=\bigcup_{c \in \mathbb{N}} \mathbf{R T I M E}\left[n^{c}\right]
$$

- Similarly we define the class coRP.

Quantifier Characterizations

- $\mathbf{R P} \subseteq \mathbf{N P}$, since every accepting "branch" is a certificate!
- $\mathbf{R P} \subseteq \mathbf{B P P}, c o \mathbf{R P} \subseteq \mathbf{B P P}$
- $\mathbf{R P}=\left(\exists^{+} / \forall\right)$

Quantifier Characterizations

Quantifier Characterizations

- $\mathbf{R P} \subseteq \mathbf{N P}$, since every accepting "branch" is a certificate!
- $\mathbf{R P} \subseteq \mathbf{B P P}, c o \mathbf{R P} \subseteq \mathbf{B P P}$
- $\mathbf{R P}=\left(\exists^{+} / \forall\right) \subseteq(\exists / \forall)=\mathbf{N P}$

Quantifier Characterizations

- $\mathbf{R P} \subseteq \mathbf{N P}$, since every accepting "branch" is a certificate!
- $\mathbf{R P} \subseteq \mathbf{B P P}, c o \mathbf{R P} \subseteq \mathbf{B P P}$
- $\mathbf{R P}=\left(\exists^{+} / \forall\right) \subseteq(\exists / \forall)=\mathbf{N P}$
- coRP $=\left(\forall / \exists^{+}\right) \subseteq(\forall / \exists)=\operatorname{coNP}$

Quantifier Characterizations

- $\mathbf{R P} \subseteq \mathbf{N P}$, since every accepting "branch" is a certificate!
- $\mathbf{R P} \subseteq \mathbf{B P P}, c o \mathbf{R P} \subseteq \mathbf{B P P}$
- $\mathbf{R P}=\left(\exists^{+} / \forall\right) \subseteq(\exists / \forall)=\mathbf{N P}$
- coRP $=\left(\forall / \exists^{+}\right) \subseteq(\forall / \exists)=\operatorname{coNP}$

Theorem (Decisive Characterization of BPP)

$$
\mathbf{B P P}=\left(\exists^{+} / \exists^{+}\right)=\left(\exists^{+} \forall / \forall \exists^{+}\right)=\left(\forall \exists^{+} / \exists^{+} \forall\right)
$$

Quantifier Characterizations

Proof:

- Let $L \in \mathbf{B P P}$. Then, by definition, there exists a polynomial-time computable predicate Q and a polynomial q such that for all x 's of length n :

$$
\begin{gathered}
x \in L \Rightarrow \exists^{+} y Q(x, y) \\
x \notin L \Rightarrow \exists^{+} y \neg Q(x, y)
\end{gathered}
$$

Swapping Lemma
(i) $\forall y \exists^{+} z R(x, y, z) \Rightarrow \exists^{+} C \forall y \bigvee_{z \in C} R(x, y, z)$
(ii) $\forall z \exists^{+} y R(x, y, z) \Rightarrow \forall C \exists^{+} y \bigwedge_{z \in C} R(x, y, z)$

- By the above Lemma: $x \in L \Rightarrow \exists^{+} z Q(x, z) \Rightarrow$ $\forall y \exists^{+} z Q(x, y \oplus z) \Rightarrow \exists^{+} C \forall y[\exists(z \in C) Q(x, y \oplus z)]$, where C denotes (as in the Swapping's Lemma formulation) a set of $q(n)$ strings, each of length $q(n)$.

Quantifier Characterizations

Proof (cont'd):

- On the other hand, $x \notin L \Rightarrow \exists^{+} y \neg Q(x, z) \Rightarrow$ $\forall z \exists^{+} y \neg Q(x, y \oplus z) \Rightarrow \forall C \exists^{+} y[\forall(z \in C) \neg Q(x, y \oplus z)]$.
- Now, we only have to assure that the appeared predicates $\exists z \in C Q(x, y \oplus z)$ and $\forall z \in C \neg Q(x, y \oplus z)$ are computable in polynomial time
- Recall that in Swapping Lemma's formulation we demanded $|C| \leq p(n)$ and that for each $v \in C:|v|=p(n)$. This means that we seek if a string of polynomial length exists, or if the predicate holds for all such strings in a set with polynomial cardinality, procedure which can be surely done in polynomial time.

Quantifier Characterizations

Proof (cont'd):

- Conversely, if $L \in\left(\exists^{+} \forall / \forall \exists^{+}\right)$, for each string $w,|w|=2 p(n)$, we have $w=w_{1} w_{2},\left|w_{1}\right|=\left|w_{2}\right|=p(n)$. Then:
$x \in L \Rightarrow \exists^{+} y \forall z R(x, y, z) \Rightarrow \exists^{+} w R\left(x, w_{1}, w_{2}\right)$
$x \notin L \Rightarrow \forall y \exists^{+} z R(x, y, z) \Rightarrow \exists^{+} w \neg R\left(x, w_{1}, w_{2}\right)$
- So, $L \in$ BPP. \square
- The above characterization is decisive, in the sense that if we replace \exists^{+}with \exists, the two predicates are still complementary (i.e. $R_{1} \Rightarrow \neg R_{2}$), so they still define a complexity class.
- In the above characterization of BPP, if we replace \exists^{+}with \exists, we obtain very easily a well-known result:

Corollary (Sipser-Gács Theorem)

$$
\mathbf{B P P} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}
$$

BPP and PH

Theorem (Sipser-Gács)

$\mathbf{B P P} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$

Proof (Lautemann)

Because coBPP $=\mathbf{B P P}$, we prove only $\mathbf{B P P} \subseteq \Sigma_{2} \mathbf{P}$.
Let $L \in \mathbf{B P P}$ (L is accepted by "clear majority").
For $|x|=n$, let $A(x) \subseteq\{0,1\}^{p(n)}$ be the set of accepting computations.
We have:

- $x \in L \Rightarrow|A(x)| \geq 2^{p(n)}\left(1-\frac{1}{2^{n}}\right)$
- $x \notin L \Rightarrow|A(x)| \leq 2^{p(n)}\left(\frac{1}{2^{n}}\right)$

Let U be the set of all bit strings of length $p(n)$.
For $a, b \in U$, let $a \oplus b$ be the XOR:
$a \oplus b=c \Leftrightarrow c \oplus b=a$, so " $\oplus b$ " is 1-1.

BPP and PH

Proof (cont.)

For $t \in U, A(x) \oplus t=\{a \oplus t: a \in A(x)\}$ (translation of $A(x)$ by
t). We imply that: $|A(x) \oplus t|=|A(x)|$
If $x \in L$, consider a random (drawing $p^{2}(n)$ bits) sequence of translations: $t_{1}, t_{2}, . ., t_{p(n)} \in U$.
For $b \in U$, these translations cover b, if $b \in A(x) \oplus t_{j}, j \leq p(n)$. $b \in A(x) \oplus t_{j} \Leftrightarrow b \oplus t_{j} \in A(x) \Rightarrow \operatorname{Pr}\left[b \notin A(x) \oplus t_{j}\right]=\frac{1}{2^{n}}$
$\operatorname{Pr}\left[b\right.$ is not covered by any $\left.t_{j}\right]=2^{-n p(n)}$
$\operatorname{Pr}[\exists$ point that is not covered $] \leq 2^{-n p(n)}|U|=2^{-(n-1) p(n)}$

BPP and PH

Proof (cont.)

So, $T=\left(t_{1}, . ., t_{p(n)}\right)$ has a positive probability that it covers all of U.
If $x \notin L,|A(x)|$ is \exp small, and (for large n) there's not T that cover all U.
$(x \in L) \Leftrightarrow(\exists T$ that cover all $U)$
So,

$$
L=\left\{x \mid \exists\left(T \in\{0,1\}^{p^{2}(n)}\right) \forall(b \in U) \exists(j \leq p(n)): b \oplus t_{j} \in A(x)\right\}
$$

which is precisely the form of languages in $\Sigma_{2} \mathbf{P}$.
The last existential quantifier $(\exists(j \leq p(n)) \ldots)$ affects only polynomially many possibilities, so it doesn't "count" (can by tested in polynomial time by trying all t_{j} 's).

ZPP Class

- And now something completely different:
- What is the random variable was the running time and not the output?

ZPP Class

- And now something completely different:
- What is the random variable was the running time and not the output?
- We say that M has expected running time $T(n)$ if the expectation $\mathbf{E}\left[T_{M(x)}\right]$ is at most $T(|x|)$ for every $x \in\{0,1\}^{*}$. ($T_{M(x)}$ is the running time of M on input x, and it is a random variable!)

Definition

The class ZTIME[T(n)] contains all languages L for which there exists a machine M that runs in an expected time $\mathcal{O}(T(|x|))$ such that for every input $x \in\{0,1\}^{*}$, whenever M halts on x, the output $M(x)$ it produces is exactly $L(x)$. We define:

$$
\mathbf{Z P P}=\bigcup_{c \in \mathbb{N}} \mathbf{Z T I M E}\left[n^{c}\right]
$$

ZPP Class

- The output of a ZPP machine is always correct!
- The problem is that we aren't sure about the running time.
- We can easily see that $\mathbf{Z P P}=\mathbf{R P} \cap$ coRP.
- The next Hasse diagram summarizes the previous inclusions: (Recall that $\Delta \Sigma_{2}^{p}=\Sigma_{2}^{p} \cap \Pi_{2}^{p}=\mathbf{N P} \mathbf{N P}^{\mathbf{N P}} \operatorname{coNP}{ }^{\mathbf{N P}}$)

PSPACE

PSPACE

Error Reduction

Error Reduction for BPP

Theorem (Error Reduction for BPP)
Let $L \subseteq\{0,1\}^{*}$ be a language and suppose that there exists a poly-time PTM M such that for every $x \in\{0,1\}^{*}$:

$$
\operatorname{Pr}[M(x)=L(x)] \geq \frac{1}{2}+|x|^{-c}
$$

Then, for every constant $d>0, \exists$ poly-time PTM M^{\prime} such that for every $x \in\{0,1\}^{*}$:

$$
\operatorname{Pr}\left[M^{\prime}(x)=L(x)\right] \geq 1-2^{-|x|^{d}}
$$

Proof: The machine M^{\prime} does the following:

- Run $M(x)$ for every input x for $k=8|x|^{2 c+d}$ times, and obtain outputs $y_{1}, y_{2}, \ldots, y_{k} \in\{0,1\}$.
- If the majority of these outputs is 1 , return 1
- Otherwise, return 0 .

We define the r.v. X_{i} for every $i \in[k]$ to be 1 if $y_{i}=L(x)$ and 0 otherwise.
$X_{1}, X_{2}, \ldots, X_{k}$ are indepedent Boolean r.v.'s, with:

$$
\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right] \geq p=\frac{1}{2}+|x|^{-c}
$$

Applying a Chernoff Bound we obtain:

Error Reduction

Intermission: Chernoff Bounds

- How many samples do we need in order to estimate μ up to an error of $\pm \varepsilon$ with probability at least $1-\delta$?
- Chernoff Bound tells us that this number is $\mathcal{O}\left(\rho / \varepsilon^{2}\right)$, where $\rho=\log (1 / \delta)$.
- The probability that k is $\rho \sqrt{n}$ far from μn decays exponentially with ρ.

Error Reduction

Intermission: Chernoff Bounds

$$
\begin{aligned}
& \operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \geq(1+\delta) \mu\right] \leq\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu} \\
& \operatorname{Pr}\left[\sum_{i=1}^{n} x_{i} \leq(1-\delta) \mu\right] \leq\left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\mu}
\end{aligned}
$$

Other useful form is:

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-\mu\right| \geq c \mu\right] \leq 2 e^{-\min \left\{c^{2} / 4, c / 2\right\} \cdot \mu}
$$

- This probability is bounded by $2^{-\Omega(\mu)}$.

Error Reduction for BPP

- From the above we can obtain the following interesting corollary:

Corollary

For $c>0$, let $\mathbf{B P P}_{1 / 2+n^{-c}}$ denote the class of languages L for which there is a polynomial-time PTM M satisfying $\operatorname{Pr}[M(x)=L(x)] \geq 1 / 2+|x|^{-c}$ for every $x \in\{0,1\}^{*}$. Then:

$$
\mathbf{B P P}_{1 / 2+n^{-c}}=\mathbf{B P P}
$$

- Obviously, $\exists^{+}=\exists_{1 / 2+\varepsilon}^{+}=\exists_{2 / 3}^{+}=\exists_{3 / 4}^{+}=\exists_{0.99}^{+}=\exists_{1-2-p(|x|)}^{+}$

Complete Problems for BPP?

- The defining property of BPTIME machines is semantic!
- We cannot test whether a TM can accept every input string with probability $\geq 2 / 3$ or with $\leq 1 / 3$ (why?)
- In contrast, the defining property of NP is syntactic!
- We have:
- Syntactic Classes
- Semantic Classes
- If finally $\mathbf{P}=\mathbf{B P P}$, then BPP will have complete problems!!

Complete Problems for BPP?

- The defining property of BPTIME machines is semantic!
- We cannot test whether a TM can accept every input string with probability $\geq 2 / 3$ or with $\leq 1 / 3$ (why?)
- In contrast, the defining property of NP is syntactic!
- We have:
- Syntactic Classes
- Semantic Classes
- If finally $\mathbf{P}=\mathbf{B P P}$, then BPP will have complete problems!!
- For the same reason, in semantic classes we cannot prove Hierarchy Theorems using Diagonalization.

The Class PP

Definition

A language $L \in \mathbf{P P}$ if there exists a poly-time TM M and a polynomial $p \in \operatorname{poly}(n)$, such that for every $x \in\{0,1\}^{*}$:

$$
\mathbf{P r}_{r \in\{0,1\}^{p(n)}}[M(x, r)=L(x)] \geq \frac{1}{2}
$$

- Or, more "syntactically":

Definition
A language $L \in \mathbf{P P}$ if there exists a poly-time TM M and a polynomial $p \in \operatorname{poly}(n)$, such that for every $x \in\{0,1\}^{*}$:

$$
x \in L \Leftrightarrow\left|\left\{y \in\{0,1\}^{p(|x|)}: M(x, y)=1\right\}\right| \geq \frac{1}{2} \cdot 2^{p(|x|)}
$$

The Class PP

- Due to the lack of a gap between the two cases, we cannot amplify the probability with polynomially many repetitions, as in the case of BPP.
- PP is closed under complement.
- A breakthrough result of R. Beigel, N. Reingold and D. Spielman is that PP is closed under intersection!

The Class PP

- Due to the lack of a gap between the two cases, we cannot amplify the probability with polynomially many repetitions, as in the case of BPP.
- PP is closed under complement.
- A breakthrough result of R. Beigel, N. Reingold and D. Spielman is that PP is closed under intersection!
- The syntactic definition of PP gives the possibility for complete problems:
- Consider the problem MAJSAT: Given a Boolean Expression, is it true that the majority of the 2^{n} truth assignments to its variables (that is, at least $2^{n-1}+1$ of them) satisfy it?

The Class PP

Theorem
 MAJSAT is PP-complete!

- MAJSAT is not likely in NP, since the (obvious) certificate is not very succinct!

Error Reduction

The Class PP

Theorem
 MAJSAT is PP-complete!

- MAJSAT is not likely in NP, since the (obvious) certificate is not very succinct!

Theorem
$\mathbf{N P} \subseteq \mathbf{P P} \subseteq \mathbf{P S P A C E}$

The Class PP

Theorem
 MAJSAT is PP-complete!

- MAJSAT is not likely in NP, since the (obvious) certificate is not very succinct!

Theorem

$\mathbf{N P} \subseteq \mathbf{P P} \subseteq \mathbf{P S P A C E}$

Proof:

It is easy to see that $\mathbf{P P} \subseteq$ PSPACE:
We can simulate any PP machine by enumerating all strings y of length $p(n)$ and verify whether PP machine accepts. The PSPACE machine accepts if and only if there are more than $2^{p(n)-1}$ such y^{\prime} s (by using a counter).

The Class PP

Proof (cont'd):
Now, for $\mathbf{N P} \subseteq \mathbf{P P}$, let $A \in \mathbf{N P}$. That is, $\exists p \in p o l y(n)$ and a poly-time and balanced predicate R such that:

$$
x \in A \Leftrightarrow(\exists y,|y|=p(|x|)): R(x, y)
$$

Consider the following TM:
M accepts input (x, by), with $|b|=1$ and $|y|=p(|x|)$, if and only if $R(x, y)=1$ or $b=1$.

- If $x \in A$, then \exists at least one y s.t. $R(x, y)$.

Thus, $\operatorname{Pr}[M(x)$ accepts $] \geq 1 / 2+2^{-(p(n)+1)}$.

- If $x \notin A$, then $\operatorname{Pr}[M(x)$ accepts $]=1 / 2$.

Error Reduction

Other Results

Theorem

If $\mathbf{N P} \subseteq \mathbf{B P P}$, then $\mathbf{N P}=\mathbf{R P}$.

Other Results

Theorem
If $\mathbf{N P} \subseteq \mathbf{B P P}$, then $\mathbf{N P}=\mathbf{R P}$.

Proof:

- RP is closed under \leq_{m}^{p}-reducibility.
- It suffices to show that if $S A T \in B P P$, then $S A T \in \mathbf{R P}$.
- Recall that SAT has the self-reducibility property: $\phi\left(x_{1}, \ldots, x_{n}\right): \phi \in \operatorname{SAT} \Leftrightarrow\left(\left.\left.\phi\right|_{x_{1}=0} \in \operatorname{SAT} \vee \phi\right|_{x_{1}=1} \in \operatorname{SAT}\right)$.
- SAT \in BPP: \exists PTM M computing SAT with error probability bounded by $2^{-|\phi|}$.
- We can use the self-reducibility of SAT to produce a truth assignment for ϕ as follows:

Error Reduction

Other Results

Proof (cont'd):

Input: A Boolean formula ϕ with n variables
If $M(\phi)=0$ then reject ϕ;
For $i=1$ to n
\rightarrow If $M\left(\left.\phi\right|_{x_{1}=\alpha_{1}, \ldots, x_{i-1}=\alpha_{i-1}, x_{i}=0}\right)=1$ then let $\alpha_{i}=0$
\rightarrow Elself $M\left(\left.\phi\right|_{x_{1}=\alpha_{1}, \ldots, x_{i-1}=\alpha_{i-1}, x_{i}=1}\right)=1$ then let $\alpha_{i}=1$
\rightarrow Else reject ϕ and halt;
If $\left.\phi\right|_{x_{1}=\alpha_{1}, \ldots, \chi_{n}=\alpha_{n}}=1$ then accept F
Else reject F

Other Results

Proof (cont'd):

Input: A Boolean formula ϕ with n variables
If $M(\phi)=0$ then reject ϕ;
For $i=1$ to n
\rightarrow If $M\left(\left.\phi\right|_{x_{1}=\alpha_{1}, \ldots, x_{i-1}=\alpha_{i-1}, x_{i}=0}\right)=1$ then let $\alpha_{i}=0$
\rightarrow Elself $M\left(\left.\phi\right|_{x_{1}=\alpha_{1}, \ldots, x_{i-1}=\alpha_{i-1}, x_{i}=1}\right)=1$ then let $\alpha_{i}=1$
\rightarrow Else reject ϕ and halt;
If $\left.\phi\right|_{x_{1}=\alpha_{1}, \ldots, x_{n}=\alpha_{n}}=1$ then accept F
Else reject F

- Note that M_{1} accepts ϕ only if a t.a. $t\left(x_{i}\right)=\alpha_{i}$ is found.
- Therefore, M_{1} never makes mistakes if $\phi \notin$ SAT.
- If $\phi \in$ SAT, then M rejects ϕ on each iteration of the loop w.p. $2^{-|\phi|}$.
- So, $\operatorname{Pr}\left[M_{1}\right.$ accepting $\left.x\right]=\left(1-2^{-|\phi|}\right)^{n}$, which is greater than $1 / 2$ if $|\phi| \geq n>1$. \square

Relativized Results

Theorem

Relative to a random oracle $A, \mathbf{P}^{A}=\mathbf{B P} \mathbf{P}^{A}$. That is,

$$
\operatorname{Pr}_{A}\left[\mathbf{P}^{A}=\mathbf{B P P}^{A}\right]=1
$$

Also,

- $\mathbf{B P P}{ }^{A} \subsetneq \mathbf{N P}^{A}$, relative to a random oracle A.
- There exists an A such that: $\mathbf{P}^{A} \neq \mathbf{R P}^{A}$.
- There exists an A such that: $\mathbf{R P}^{A} \neq c o \mathbf{R P}^{A}$
- There exists an A such that: $\mathbf{R} \mathbf{P}^{A} \neq \mathbf{N} \mathbf{P}^{A}$.

Relativized Results

Theorem
Relative to a random oracle $A, \mathbf{P}^{A}=\mathbf{B P} \mathbf{P}^{A}$. That is,

$$
\mathbf{P r}_{A}\left[\mathbf{P}^{A}=\mathbf{B P} \mathbf{P}^{A}\right]=1
$$

Also,

- $\mathbf{B P P}{ }^{A} \subsetneq \mathbf{N P}^{A}$, relative to a random oracle A.
- There exists an A such that: $\mathbf{P}^{A} \neq \mathbf{R P}^{A}$.
- There exists an A such that: $\mathbf{R P}^{A} \neq c o \mathbf{R P}^{A}$
- There exists an A such that: $\mathbf{R} \mathbf{P}^{A} \neq \mathbf{N} \mathbf{P}^{A}$.

Corollary
There exists an A such that:

$$
\mathbf{P}^{A} \neq \mathbf{R P}^{A} \neq \mathbf{N P}^{A} \nsubseteq \mathbf{B P} \mathbf{P}^{A}
$$

Contents

- Introduction
- Turing Machine
- Undecidability
- Complexity Classes
- Oracles \& Optimization Problems
- Randomized Computation
- Non-Uniform Complexity
- Interactive Proofs
- Counting Complexity

Boolean Circuits

- A Boolean Circuit is a natural model of nonuniform computation, a generalization of hardware computational methods.
- A non-uniform computational model allows us to use a different "algorithm" to be used for every input size, in contrast to the standard (or uniform) Turing Machine model, where the same T.M. is used on (infinitely many) input sizes.
- Each circuit can be used for a fixed input size, which limits or model.

Definition (Boolean circuits)

For every $n \in \mathbb{N}$ an n-input, single output Boolean Circuit C is a directed acyclic graph with n sources and one sink.

- All nonsource vertices are called gates and are labeled with one of \wedge (and), \vee (or) or \neg (not).
- The vertices labeled with \wedge and \vee have fan-in (i.e. number or incoming edges) 2.
- The vertices labeled with \neg have fan-in 1 .
- The size of C, denoted by $|C|$, is the number of vertices in it.
- For every vertex v of C, we assign a value as follows: for some input $x \in\{0,1\}^{n}$, if v is the i-th input vertex then $\operatorname{val}(v)=x_{i}$, and otherwise $v a l(v)$ is defined recursively by applying v 's logical operation on the values of the vertices connected to v.
- The output $C(x)$ is the value of the output vertex.
- The depth of C is the length of the longest directed path from an input node to the output node.
- To overcome the fixed input length size, we need to allow families (or sequences) of circuits to be used:

Definition
Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a function. A $T(n)$-size circuit family is a sequence $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ of Boolean circuits, where C_{n} has n inputs and a single output, and its size $\left|C_{n}\right| \leq T(n)$ for every n.

- These infinite families of circuits are defined arbitrarily: There is no pre-defined connection between the circuits, and also we haven't any "guarantee" that we can construct them efficiently.
- Like each new computational model, we can define a complexity class on it by imposing some restriction on a complexity measure:

Definition
We say that a language L is in $\operatorname{SIZE}(T(n))$ if there is a $T(n)$-size circuit family $\left\{C_{n}\right\}_{n \in \mathbb{N}}$, such that $\forall x \in\{0,1\}^{n}$:

$$
x \in L \Leftrightarrow C_{n}(x)=1
$$

Definition
$\mathbf{P}_{\text {/poly }}$ is the class of languages that are decidable by polynomial size circuits families. That is,

$$
\mathbf{P}_{/ \text {poly }}=\bigcup_{c \in \mathbb{N}} \operatorname{SIZE}\left(n^{c}\right)
$$

Theorem (Nonuniform Hierarchy Theorem)
For every functions $T, T^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ with $\frac{2^{n}}{n}>T^{\prime}(n)>10 T(n)>n$, $\operatorname{SIZE}(T(n)) \subsetneq \operatorname{SIZE}\left(T^{\prime}(n)\right)$

Turing Machines that take advice

Definition
Let $T, a: \mathbb{N} \rightarrow \mathbb{N}$. The class of languages decidable by $T(n)$-time Turing Machines with $a(n)$ bits of advice, denoted

DTIME $(T(n) / a(n))$
containts every language L such that there exists a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ of strings, with $a_{n} \in\{0,1\}^{a(n)}$ and a Turing Machine M satisfying:

$$
x \in L \Leftrightarrow M\left(x, a_{n}\right)=1
$$

for every $x \in\{0,1\}^{n}$, where on input $\left(x, a_{n}\right)$ the machine M runs for at most $\mathcal{O}(T(n))$ steps.

Turing Machines that take advice

Theorem (Alternative Definition of $\mathbf{P}_{/ \text {poly }}$)

$$
\mathbf{P}_{/ \text {poly }}=\bigcup_{c, d \in \mathbb{N}} \operatorname{DTIME}\left(n^{c} / n^{d}\right)
$$

Turing Machines that take advice

Theorem (Alternative Definition of $\mathbf{P}_{/ \text {poly }}$)

$$
\mathbf{P}_{/ \text {poly }}=\bigcup_{c, d \in \mathbb{N}} \operatorname{DTIME}\left(n^{c} / n^{d}\right)
$$

Proof: (\subseteq) Let $L \in \mathbf{P}_{/ \text {poly }}$. Then, $\exists\left\{C_{n}\right\}_{n \in \mathbb{N}}: C_{|x|}=L(x)$. We can use C_{n} 's encoding as an advice string for each n.

Turing Machines that take advice

Theorem (Alternative Definition of $\mathbf{P}_{/ \text {poly }}$)

$$
\mathbf{P}_{/ \text {poly }}=\bigcup_{c, d \in \mathbb{N}} \operatorname{DTIME}\left(n^{c} / n^{d}\right)
$$

Proof: (\subseteq) Let $L \in \mathbf{P}_{/ \text {poly }}$. Then, $\exists\left\{C_{n}\right\}_{n \in \mathbb{N}}: C_{|x|}=L(x)$. We can use C_{n} 's encoding as an advice string for each n. (\supseteq) Let $L \in \operatorname{DTIME}\left(n^{c} / n^{d}\right)$. Then, since CVP is P-complete, we construct for every n a circuit D_{n} such that, for $x \in\{0,1\}^{n}, a_{n} \in\{0,1\}^{a(n)}$:

$$
D_{n}\left(x, a_{n}\right)=M\left(x, a_{n}\right)
$$

Then, let $C_{n}(x)=D_{n}\left(x, a_{n}\right)$ (We hard-wire the advice string!) Since $a(n)=n^{d}$, the circuits have polynomial size. \square.

Theorem

$$
\mathbf{P} \nsubseteq \mathbf{P}_{/ \text {poly }}
$$

- For " \subseteq ", recall that CVP is P-complete.
- But why proper inclusion?
- Consider the following language:
$\mathrm{U}=\left\{1^{n} \mid n\right.$'s binary expression encodes a pair $<M, x>$ s.t. $\left.M(x) \downarrow\right\}$
- It is easy to see that $U \in \mathbf{P}_{\text {/poly }}$, but....

Theorem (Karp-Lipton Theorem)
If $\mathbf{N P} \subseteq \mathbf{P}_{/ \text {poly }}$, then $\mathbf{P H}=\Sigma_{2}^{p}$.
Theorem (Meyer's Theorem)
If $\mathbf{E X P} \subseteq \mathbf{P}_{/ \text {poly }}$, then $\mathbf{E X P}=\Sigma_{2}^{p}$.

Uniform Families of Circuits

- We saw that $\mathbf{P}_{\text {/poly }}$ contains an undecidable language.
- The root of this problem lies in the "weak" definition of such families, since it suffices that \exists a circuit family for L.
- We haven't a way (or an algorithm) to construct such a family.
- So, may be useful to restric or attention to families we can construct efficiently:

Theorem (P-Uniform Families)
A circuit family $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ is \mathbf{P}-uniform if there is a polynomial-time T.M. that on input 1^{n} outputs the description of the circuit C_{n}.

- But...

Theorem
A language L is computable by a \mathbf{P}-uniform circuit family iff $L \in \mathbf{P}$.

Theorem

$B P P \subset P_{/ \text {poly }}$

Proof: Recall that if $L \in \mathbf{B P P}$, then \exists PTM M such that:

$$
\operatorname{Pr}_{r \in\{0,1\}^{\text {poly }(n)}}[M(x, r) \neq L(x)]<2^{-n}
$$

Then, taking the union bound:

$$
\begin{aligned}
\operatorname{Pr}[\exists x & \left.\in\{0,1\}^{n}: M(x, r) \neq L(x)\right]=\operatorname{Pr}\left[\bigcup_{x \in\{0,1\}^{n}} M(x, r) \neq L(x)\right] \leq \\
& \leq \sum_{x \in\{0,1\}^{n}} \operatorname{Pr}[M(x, r) \neq L(x)]<2^{-n}+\cdots+2^{-n}=1
\end{aligned}
$$

So, $\exists r_{n} \in\{0,1\}^{\text {poly(n) }}$, s.t. $\forall x\{0,1\}^{n}: M(x, r)=L(x)$.
Using $\left\{r_{n}\right\}_{n \in \mathbb{N}}$ as advice string, we have the non-uniform machine.

Theorem

The following are equivalent:
(1) $A \in \mathbf{P} /$ poly .
(2) There exists a sparse set S such that $A \leq_{T}^{P} S$.

Corollary
Every sparse set has polynomial-size circuits.

Definition (Circuit Complexity or Worst-Case Hardness)
For a finite Boolean Function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, we define the (circuit) complexity of f as the size of the smallest Boolean Circuit computing f (that is, $C(x)=f(x), \forall x \in\{0,1\}^{n}$).

Definition (Average-Case Hardness)
The minimum S such that there is a circuit C of size S such that:

$$
\operatorname{Pr}[C(x)=f(x)] \geq \frac{1}{2}+\frac{1}{S}
$$

is called the (average-case) hardness of f.

Hierarchies for Semantic Classes with advice

- We have argued why we can't obtain Hierarchies for semantic measures using classical diagonalization techniques. But using small advice we can have the following results:

Theorem ([Bar02], [GST04])
For $a, b \in \mathbb{R}$, with $1 \leq a<b$: $\operatorname{BPTIME}\left(n^{a}\right) / 1 \varsubsetneqq \operatorname{BPTIME}\left(n^{b}\right) / 1$

Theorem ([FST05])
For any $1 \leq a \in \mathbb{R}$ there is a real $b>$ a such that:
$\operatorname{RTIME}\left(n^{b}\right) / 1 \varsubsetneqq \operatorname{RTIME}\left(n^{a}\right) / \log (n)^{1 / 2 a}$

Circuit Lower Bounds

- The significance of proving lower bounds for this computational model is related to the famous " \mathbf{P} vs NP" problem, since:

$$
\mathbf{N P} \backslash \mathbf{P} / \text { poly } \neq \emptyset \Rightarrow \mathbf{P} \neq \mathbf{N P}
$$

- But...after decades of efforts, The best lower bound for an NP language is $5 n-o(n)$, proved very recently (2005).
- There are better lower bounds for some special cases, i.e. some restricted classes of circuits, such as: bounded depth circuits, monotone circuits, and bounded depth circuits with "counting" gates.

Definition

Let PAR: $\{0,1\}^{n} \rightarrow\{0,1\}$ be the parity function, which outputs the modulo 2 sum of an n-bit input. That is:

$$
\operatorname{PAR}\left(x_{1}, \ldots, x_{n}\right) \equiv \sum_{i=1}^{n} x_{i}(\bmod 2)
$$

Theorem

For all constant d, PAR has no polynomial-size circuit of depth d.

- The above result (improved by Håstad and Yao) gives a relatively tight lower bound of $\exp \left(\Omega\left(n^{1 /(d-1)}\right)\right)$, on the size of n-input PAR circuits of depth d.

Definition
For $x, y \in\{0,1\}^{n}$, we denote $x \preceq y$ if every bit that is 1 in x is also 1 in y. A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is monotone if $f(x) \leq f(y)$ for every $x \preceq y$.

Definition
A Boolean Circuit is monotone if it contains only AND and OR gates, and no NOT gates. Such a circuit can only compute monotone functions.

Theorem (Monotone Circuit Lower Bound for CLIQUE)
Denote by $C L I Q \cup E_{k, n}:\{0,1\}^{\binom{n}{2}} \rightarrow\{0,1\}$ the function that on input an adjacency matrix of an n-vertex graph G outputs 1 iff G contains an k-clique. There exists some constant $\epsilon>0$ such that for every $k \leq n^{1 / 4}$, there is no monotone circuit of size less than $2^{\epsilon \sqrt{k}}$ that computes CLIQUE k, n.

- So, we proved a significant lower bound $\left(2^{\Omega\left(n^{1 / 8}\right)}\right)$
- The significance of the above theorem lies on the fact that there was some alleged connection between monotone and non-monotone circuit complexity (e.g. that they would be polynomially related). Unfortunately, Éva Tardos proved in 1988 that the gap between the two complexities is exponential.
- Where is the problem finally?

Today, we know that a result for a lower bound using such techniques would imply the inversion of strong one-way functions:

*Natural Proofs [Razborov, Rudich 1994]

Definition

Let \mathcal{P} be the predicate:
"A Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ doesn't have n^{c}-sized circuits for some $c \geq 1$."
$\mathcal{P}(f)=0, \forall f \in \operatorname{SIZE}\left(n^{c}\right)$ for a $c \geq 1$. We call this n^{c}-usefulness.
A predicate \mathcal{P} is natural if:

- There is an algorithm $M \in \mathbf{E}$ such that for a function $g:\{0,1\}^{n} \rightarrow\{0,1\}: M(g)=\mathcal{P}(g)$.
- For a random function $g: \operatorname{Pr}[\mathcal{P}(g)=1] \geq \frac{1}{n}$

Theorem
If strong one-way functions exist, then there exists a constant $c \in \mathbb{N}$ such that there is no n^{c}-useful natural predicate \mathcal{P}.

Contents

- Introduction
- Turing Machine
- Undecidability
- Complexity Classes
- Oracles \& Optimization Problems
- Randomized Computation
- Non-Uniform Complexity
- Interactive Proofs
- Counting Complexity

Introduction

"Maybe Fermat had a proof! But an important party was certainly missing to make the proof complete: the verifier. Each time rumor gets around that a student somewhere proved $\mathbf{P}=\mathbf{N P}$, people ask "Has Karp seen the proof?" (they hardly even ask the student's name). Perhaps the verifier is most important that the prover." (from [BM88])

- The notion of a mathematical proof is related to the certificate definition of NP.
- We enrich this scenario by introducing interaction in the basic scheme:
The person (or TM) who verifies the proof asks the person who provides the proof a series of "queries", before he is convinced, and if he is, he provide the certificate.

Introduction

- The first person will be called Verifier, and the second Prover.
- In our model of computation, Prover and Verifier are interacting Turing Machines.
- We will categorize the various proof systems created by using:
- various TMs (nondeterministic, probabilistic etc)
- the information exchanged (private/public coins etc)
- the number of TMs (IPs, MIPs,...)

Warmup: Interactive Proofs with deterministic Verifier

Definition (Deterministic Proof Systems)
We say that a language L has a k-round deterministic interactive proof system if there is a deterministic Turing Machine V that on input $x, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}$ runs in time polynomial in $|x|$, and can have a k-round interaction with any TM P such that:

- $x \in L \Rightarrow \exists P:\langle V, P\rangle(x)=1$ (Completeness)
- $x \notin L \Rightarrow \forall P:\langle V, P\rangle(x)=0$ (Soundness)

The class dIP contains all languages that have a k-round deterministic interactive proof system, where p is polynomial in the input length.

- $\langle V, P\rangle(x)$ denotes the output of V at the end of the interaction with P on input x, and α_{i} the exchanged strings.
- The above definition does not place limits on the computational power of the Prover!

Warmup: Interactive Proofs with deterministic Verifier

- But...

Theorem

$$
\mathbf{d I P}=\mathbf{N P}
$$

Proof: Trivially, NP \subseteq dIP.

Let $L \in \mathbf{d I P}$:

- A certificate is a transcript $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ causing V to accept, i.e. $V\left(x, \alpha_{1}, \ldots, \alpha_{k}\right)=1$.
- We can efficiently check if $V(x)=\alpha_{1}, V\left(x, \alpha_{1}, \alpha_{2}\right)=\alpha_{3}$ etc...
- If $x \in L$ such a transcript exists!
- Conversely, if a transcript exists, we can define define a proper P to satisfy: $P\left(x, \alpha_{1}\right)=\alpha_{2}, P\left(x, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\alpha_{4}$ etc., so that $\langle V, P\rangle(x)=1$, so $x \in L$.
- So $L \in \mathbf{N P}$! \square

Probabilistic Verifier: The Class IP

- We saw that if the verifier is a simple deterministic TM, then the interactive proof system is described precisely by the class NP.
- Now, we let the verifier be probabilistic, i.e. the verifier's queries will be computed using a probabilistic TM:

Definition (Goldwasser-Micali-Rackoff)

For an integer $k \geq 1$ (that may depend on the input length), a language L is in IP $[k]$ if there is a probabilistic polynomial-time T.M. V that can have a k-round interaction with a T.M. P such that:

- $x \in L \Rightarrow \exists P: \operatorname{Pr}[\langle V, P\rangle(x)=1] \geq \frac{2}{3}$ (Completeness)
- $x \notin L \Rightarrow \forall P: \operatorname{Pr}[\langle V, P\rangle(x)=1] \leq \frac{1}{3}$ (Soundness)

Probabilistic Verifier: The Class IP

Definition
We also define:

$$
\mathbf{I P}=\bigcup_{c \in \mathbb{N}} \mathbf{I P}\left[n^{c}\right]
$$

- The "output" $\langle V, P\rangle(x)$ is a random variable.
- We'll see that IP is a very large class! $(\supseteq \mathbf{P H})$
- As usual, we can replace the completeness parameter $2 / 3$ with $1-2^{-n^{s}}$ and the soundness parameter $1 / 3$ by $2^{-n^{s}}$, without changing the class for any fixed constant $s>0$.
- We can also replace the completeness constant $2 / 3$ with 1 (perfect completeness), without changing the class, but replacing the soundness constant $1 / 3$ with 0 , is equivalent with a deterministic verifier, so class IP collapses to NP.

Interactive Proof for Graph Non-Isomorphism

Definition
Two graphs G_{1} and G_{2} are isomorphic, if there exists a permutation π of the labels of the nodes of G_{1}, such that $\pi\left(G_{1}\right)=G_{2}$. If G_{1} and G_{2} are isomorphic, we write $G_{1} \cong G_{2}$.

- GI: Given two graphs G_{1}, G_{2}, decide if they are isomorphic.
- GNI: Given two graphs G_{1}, G_{2}, decide if they are not isomorphic.
- Obviously, GI \in NP and GNI \in coNP.
- This proof system relies on the Verifier's access to a private random source which cannot be seen by the Prover, so we confirm the crucial role the private coins play.

Interactive Proof for Graph Non-Isomorphism

Verifier: Picks $i \in\{1,2\}$ uniformly at random.
Then, it permutes randomly the vertices of G_{i} to get a new graph H. Is sends H to the Prover.
Prover: Identifies which of G_{1}, G_{2} was used to produce H.
Let G_{j} be the graph. Sends j to V.
Verifier: Accept if $i=j$. Reject otherwise.

Interactive Proof for Graph Non-Isomorphism

Verifier: Picks $i \in\{1,2\}$ uniformly at random.
Then, it permutes randomly the vertices of G_{i} to get a new graph H. Is sends H to the Prover.
Prover: Identifies which of G_{1}, G_{2} was used to produce H.
Let G_{j} be the graph. Sends j to V.
Verifier: Accept if $i=j$. Reject otherwise.

- If $G_{1} \not \not G_{2}$, then the powerfull prover can (nondeterministivally) guess which one of the two graphs is isomprphic to H, and so the Verifier accepts with probability 1.
- If $G_{1} \cong G_{2}$, the prover can't distinguish the two graphs, since a random permutation of G_{1} looks exactly like a random permutation of G_{2}. So, the best he can do is guess randomly one, and the Verifier accepts with probability (at most) $1 / 2$, which can be reduced by additional repetitions.

Babai's Arthur-Merlin Games

Definition (Extended (FGMSZ89))
An Arhur-Merlin Game is a pair of interactive TMs A and M, and a predicate R such that:

- On input x, exactly $2 q(|x|)$ messages of length $m(|x|)$ are exchanged, $q, m \in p o l y(|x|)$.
- A goes first, and at iteration $1 \leq i \leq q(|x|)$ chooses u.a.r. a string r_{i} of length $m(|x|)$.
- M's reply in the $i^{t h}$ iteration is $y_{i}=M\left(x, r_{1}, \ldots, r_{i}\right)(M$'s strategy).
- For every M^{\prime}, a conversation between A and M^{\prime} on input x is $r_{1} y_{1} r_{2} y_{2} \cdots r_{q(|x|)} y_{q(|x|)}$.
- The set of all conversations is denoted by $\operatorname{CONV}_{x}^{M^{\prime}}$, $\left|\operatorname{CON} V_{x}^{M^{\prime}}\right|=2^{q(|x|) m(|x|)}$.

Babai's Arthur-Merlin Games

Definition (cont'd)

- The predicate R maps the input x and a conversation to a Boolean value.
- The set of accepting conversations is denoted by $A C C_{x}^{R, M}$, and is the set:

$$
\left\{r_{1} \cdots r_{q} \mid \exists y_{1} \cdots y_{q} \text { s.t. } r_{1} y_{1} \cdots r_{q} y_{q} \in \operatorname{CON} V_{x}^{M} \wedge R\left(r_{1} y_{1} \cdots r_{q} y_{q}\right)=1\right\}
$$

- A language L has an Arthur-Merlin proof system if:
- There exists a strategy for M, such that for all $x \in L$: $\frac{A C C_{x}^{R, M}}{C O N V_{x}^{M}} \geq \frac{2}{3}$ (Completeness)
- For every strategy for M, and for every $x \notin L: \frac{A C C^{R, M}}{\operatorname{CON}_{x}^{M}} \leq \frac{1}{3}$ (Soundness)

Definitions

- So, with respect to the previous IP definition:

Definition

For every k, the complexity class $\mathbf{A M}[k]$ is defined as a subset to IP [k] obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages.
We denote $\mathbf{A M} \equiv \mathbf{A M}[2]$.

Definitions

- So, with respect to the previous IP definition:

Definition

For every k, the complexity class $\mathbf{A M}[k]$ is defined as a subset to IP [k] obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages.
We denote $\mathbf{A M} \equiv \mathbf{A M}[2]$.

- Merlin \rightarrow Prover
- Arthur \rightarrow Verifier

Definitions

- So, with respect to the previous IP definition:

Definition
For every k, the complexity class $\mathbf{A M}[k]$ is defined as a subset to IP [k] obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages.
We denote $\mathbf{A M} \equiv \mathbf{A M}[2]$.

- Merlin \rightarrow Prover
- Arthur \rightarrow Verifier
- Also, the class MA consists of all languages L, where there's an interactive proof for L in which the prover first sending a message, and then the verifier is "tossing coins" and computing its decision by doing a deterministic polynomial-time computation involving the input, the message and the random output.

Public vs. Private Coins

Theorem

GNI $\in \mathbf{A M}[2]$

Theorem
For every $p \in \operatorname{poly}(n)$:

$$
\mathbf{I P}(p(n))=\mathbf{A M}(p(n)+2)
$$

- So,

$$
\mathbf{I P}[p o l y]=\mathbf{A} \mathbf{M}[p o l y]
$$

Properties of Arthur-Merlin Games

- $\mathbf{M A} \subseteq \mathbf{A M}$
- $\mathbf{M A}[1]=\mathbf{N P}, \mathbf{A M}[1]=\mathbf{B P P}$
- AM could be intuitively approached as the probabilistic version of NP (usually denoted as $\mathbf{A M}=\mathcal{B P}$. NP).
- $\mathbf{A M} \subseteq \Pi_{2}^{p}$ and $\mathbf{M A} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$.
- $\mathbf{N P}^{B P P} \subseteq M A, M A^{B P P}=M A, A^{B P P}=A M$ and $\mathbf{A M}^{\Delta \Sigma_{1}^{p}}=\mathbf{A} \mathbf{M}^{\mathbf{N P} \cap c o N P}=\mathbf{A M}$
- If we consider the complexity classes $\mathbf{A M}[k]$ (the languages that have Arthur-Merlin proof systems of a bounded number of rounds, they form an hierarchy:

$$
\mathbf{A M}[0] \subseteq \mathbf{A M}[1] \subseteq \cdots \subseteq \mathbf{A M}[k] \subseteq \mathbf{A} \mathbf{M}[k+1] \subseteq \cdots
$$

- Are these inclusions proper ? ? ?

Properties of Arthur-Merlin Games

Properties of Arthur-Merlin Games

- Proper formalism (Zachos et al.):

Definition (Majority Quantifier)
Let $R:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ be a predicate, and ε a rational number, such that $\varepsilon \in\left(0, \frac{1}{2}\right)$. We denote by $\left(\exists^{+} y,|y|=k\right) R(x, y)$ the following predicate:
"There exist at least $\left(\frac{1}{2}+\varepsilon\right) \cdot 2^{k}$ strings y of length m for which $R(x, y)$ holds."

We call \exists^{+}the overwhelming majority quantifier.

- \exists_{r}^{+}means that the fraction r of the possible certificates of a certain length satisfy the predicate for the certain input.
- Obviously, $\exists^{+}=\exists_{1 / 2+\varepsilon}^{+}=\exists_{2 / 3}^{+}=\exists_{3 / 4}^{+}=\exists_{0.99}^{+}=\exists_{1-2^{-p(|x|)}}^{+}$

Properties of Arthur-Merlin Games

Definition
We denote as $\mathcal{C}=\left(Q_{1} / Q_{2}\right)$, where $Q_{1}, Q_{2} \in\left\{\exists, \forall, \exists^{+}\right\}$, the class
\mathcal{C} of languages L satisfying:

- $x \in L \Rightarrow Q_{1} y R(x, y)$
- $x \notin L \Rightarrow Q_{2} y \neg R(x, y)$
- So: $\mathbf{P}=(\forall / \forall), \mathbf{N P}=(\exists / \forall)$, coNP $=(\forall / \exists)$

$$
\mathbf{B P P}=\left(\exists^{+} / \exists^{+}\right), \mathbf{R P}=\left(\exists^{+} / \forall\right), \operatorname{coRP}=\left(\forall / \exists^{+}\right)
$$

Properties of Arthur-Merlin Games

Definition
We denote as $\mathcal{C}=\left(Q_{1} / Q_{2}\right)$, where $Q_{1}, Q_{2} \in\left\{\exists, \forall, \exists^{+}\right\}$, the class
\mathcal{C} of languages L satisfying:

- $x \in L \Rightarrow Q_{1} y R(x, y)$
- $x \notin L \Rightarrow Q_{2} y \neg R(x, y)$
- So: $\mathbf{P}=(\forall / \forall), \mathbf{N P}=(\exists / \forall)$, coNP $=(\forall / \exists)$

$$
\mathbf{B P P}=\left(\exists^{+} / \exists^{+}\right), \mathbf{R P}=\left(\exists^{+} / \forall\right), \operatorname{coRP}=\left(\forall / \exists^{+}\right)
$$

Arthur-Merlin Games

$$
\begin{aligned}
& \mathbf{A M}=\mathbf{B P} \cdot \mathbf{N P}=\left(\exists^{+} \exists / \exists^{+} \forall\right) \\
& \mathbf{M A}=\mathbf{N} \cdot \mathbf{B P P}=\left(\exists \exists^{+} / \forall \exists^{+}\right)
\end{aligned}
$$

- Similarly: AMA $=\left(\exists^{+} \exists \exists^{+} / \exists^{+} \forall \exists^{+}\right)$etc.

Properties of Arthur-Merlin Games

Theorem
(i) $\mathbf{M A}=\left(\exists \forall / \forall \exists^{+}\right)$
(ii) $\mathbf{A M}=\left(\forall \exists / \exists^{+} \forall\right)$

Proof:

Lemma

- BPP $=\left(\exists^{+} / \exists^{+}\right)=\left(\exists^{+} \forall / \forall \exists^{+}\right)=\left(\forall \exists^{+} / \exists^{+} \forall\right)$
(1) (BPP-Theorem)
- $(\exists \forall / \forall \exists+) \subseteq\left(\forall \exists / \exists^{+} \forall\right)(2)$
i) $\mathbf{M A}=\mathbf{N} \cdot \mathbf{B P P}=\left(\exists \exists^{+} / \forall \exists^{+}\right) \stackrel{(1)}{=}\left(\exists \exists^{+} \forall / \forall \forall \exists^{+}\right) \subseteq\left(\exists \forall / \forall \exists^{+}\right)$
(the last inclusion holds by quantifier contraction). Also,
$\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\exists \exists^{+} / \forall \exists^{+}\right)=$MA.
ii) Similarly,
$\mathbf{A M}=\mathbf{B P} \cdot \mathbf{N P}=\left(\exists^{+} \exists / \exists^{+} \forall\right)=\left(\forall^{+} \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$.
Also, $\left(\forall \exists / \exists^{+} \forall\right) \subseteq\left(\exists^{+} \exists / \exists^{+} \forall\right)=\mathbf{A M}$.

Properties of Arthur-Merlin Games

Theorem
(i) $\mathbf{M A}=\left(\exists \forall / \forall \exists^{+}\right)$
(ii) $\mathbf{A M}=\left(\forall \exists / \exists^{+} \forall\right)$

Proof:

Lemma

- BPP $=\left(\exists^{+} / \exists^{+}\right)=\left(\exists^{+} \forall / \forall \exists^{+}\right)=\left(\forall \exists^{+} / \exists^{+} \forall\right)(1)$ (BPP-Theorem)
- $\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)(2)$
i) $\mathbf{M A}=\mathbf{N} \cdot \mathbf{B P P}=\left(\exists \exists^{+} / \forall \exists^{+}\right) \stackrel{(1)}{=}\left(\exists \exists^{+} \forall / \forall \forall \exists^{+}\right) \subseteq\left(\exists \forall / \forall \exists^{+}\right)$ (the last inclusion holds by quantifier contraction). Also, $\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\exists \exists^{+} / \forall \exists^{+}\right)=$MA.
ii) Similarly,
$\mathbf{A M}=\mathbf{B P} \cdot \mathbf{N P}=\left(\exists^{+} \exists / \exists^{+} \forall\right)=\left(\forall^{+} \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$.
Also, $\left(\forall \exists / \exists^{+} \forall\right) \subseteq\left(\exists^{+} \exists / \exists^{+} \forall\right)=\mathbf{A M}$.

Properties of Arthur-Merlin Games

Theorem
(i) $\mathbf{M A}=\left(\exists \forall / \forall \exists^{+}\right)$
(ii) $\mathbf{A M}=\left(\forall \exists / \exists^{+} \forall\right)$

Proof:

Lemma

- BPP $=\left(\exists^{+} / \exists^{+}\right)=\left(\exists^{+} \forall / \forall \exists^{+}\right)=\left(\forall \exists^{+} / \exists^{+} \forall\right)(1)$ (BPP-Theorem)
- $\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)(2)$
i) $\mathbf{M A}=\mathbf{N} \cdot \mathbf{B P P}=\left(\exists \exists^{+} / \forall \exists^{+}\right) \stackrel{(1)}{=}\left(\exists \exists^{+} \forall / \nabla \forall \exists^{+}\right) \subseteq\left(\exists \forall / \forall \exists^{+}\right)$
(the last inclusion holds by quantifier contraction). Also,
$\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\exists \exists^{+} / \forall \exists^{+}\right)=$MA.
ii) Similarly,
$\mathbf{A M}=\mathbf{B P} \cdot \mathbf{N P}=\left(\exists^{+} \exists / \exists^{+} \forall\right)=\left(\forall^{+} \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$.
Also, $\left(\forall \exists / \exists^{+} \forall\right) \subseteq\left(\exists^{+} \exists / \exists^{+} \forall\right)=\mathbf{A M}$.

Properties of Arthur-Merlin Games

Theorem
(i) $\mathbf{M A}=\left(\exists \forall / \forall \exists^{+}\right)$
(ii) $\mathbf{A M}=\left(\forall \exists / \exists^{+} \forall\right)$

Proof:

Lemma

- BPP $=\left(\exists^{+} / \exists^{+}\right)=\left(\exists^{+} \forall / \forall \exists^{+}\right)=\left(\forall \exists^{+} / \exists^{+} \forall\right)$
(1) (BPP-Theorem)
- $(\exists \forall / \forall \exists+) \subseteq\left(\forall \exists / \exists^{+} \forall\right)(2)$
i) $\mathbf{M A}=\mathbf{N} \cdot \mathbf{B P P}=\left(\exists \exists^{+} / \forall \exists^{+}\right) \stackrel{(1)}{=}\left(\exists \exists^{+} \forall / \forall \forall \exists^{+}\right) \subseteq\left(\exists \forall / \forall \exists^{+}\right)$
(the last inclusion holds by quantifier contraction). Also,
$\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\exists \exists^{+} / \forall \exists^{+}\right)=$MA.
ii) Similarly,
$\mathbf{A M}=\mathbf{B P} \cdot \mathbf{N P}=\left(\exists^{+} \exists / \exists^{+} \forall\right)=\left(\forall^{+} \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$.
Also, $\left(\forall \exists / \exists^{+} \forall\right) \subseteq\left(\exists^{+} \exists / \exists^{+} \forall\right)=\mathbf{A M}$.

Properties of Arthur-Merlin Games

Theorem

$\mathbf{M A} \subseteq \mathbf{A M}$

Proof:

Obvious from (2): $\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$. \square
Theorem
(i) $\mathrm{AM} \subseteq \Pi_{2}^{p}$
(ii) $\mathrm{MA} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$

Proof:

i) $\mathbf{A M}=\left(\forall \exists / \exists^{+} \forall\right) \subseteq(\forall \exists / \exists \forall)=\Pi_{2}^{p}$
ii) $\mathbf{M A}=(\exists \forall / \forall \exists+) \subseteq(\exists \forall / \forall \exists)=\Sigma_{2}^{p}$, and
$\mathbf{M A} \subseteq \mathbf{A M} \Rightarrow \mathbf{M A} \subseteq \Pi_{2}^{p}$. So, $\mathbf{M A} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p} . \square$

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)
For $t(n) \geq 2$:

$$
\mathbf{A M}[2 t(n)]=\mathbf{A} \mathbf{M}[t(n)]
$$

- The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)
For every $k \geq 2$:

$$
\mathbf{A M}=\mathbf{A} \mathbf{M}[k]=\mathbf{M} \mathbf{A}[k+1]
$$

Example

$$
\begin{aligned}
& \mathbf{M A M}=\left(\exists \exists^{+} \exists / \forall \exists^{+} \forall\right) \stackrel{(1)}{\subseteq}\left(\exists \exists^{+} \forall \exists / \forall \forall \exists^{+} \forall\right) \subseteq\left(\exists \forall \exists / \forall \exists^{+} \forall\right) \stackrel{(2)}{\subseteq} \\
& \subseteq\left(\forall \exists \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)=\mathbf{A M}
\end{aligned}
$$

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)
For $t(n) \geq 2$:

$$
\mathbf{A M}[2 t(n)]=\mathbf{A} \mathbf{M}[t(n)]
$$

- The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)
For every $k \geq 2$:

$$
\mathbf{A M}=\mathbf{A} \mathbf{M}[k]=\mathbf{M} \mathbf{A}[k+1]
$$

Example

$$
\begin{aligned}
& \mathbf{M A M}=\left(\exists \exists^{+} \exists / \forall \exists^{+} \forall\right) \stackrel{(1)}{\subseteq}\left(\exists \exists^{+} \forall \exists / \forall \forall \exists^{+} \forall\right) \subseteq\left(\exists \forall \exists / \forall \exists^{+} \forall\right) \stackrel{(2)}{\subseteq} \\
& \subseteq\left(\forall \exists \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)=\mathbf{A M}
\end{aligned}
$$

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)
For $t(n) \geq 2$:

$$
\mathbf{A M}[2 t(n)]=\mathbf{A} \mathbf{M}[t(n)]
$$

- The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)
For every $k \geq 2$:

$$
\mathbf{A M}=\mathbf{A} \mathbf{M}[k]=\mathbf{M} \mathbf{A}[k+1]
$$

Example

$$
\begin{aligned}
& \mathbf{M A M}=\left(\exists \exists^{+} \exists / \forall \exists^{+} \forall\right) \stackrel{(1)}{\subseteq}\left(\exists \exists^{+} \forall \exists / \forall \forall \exists^{+} \forall\right) \subseteq\left(\exists \forall \exists / \forall \exists^{+} \forall\right) \stackrel{(2)}{\subseteq} \\
& \subseteq\left(\forall \exists \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)=\mathbf{A M}
\end{aligned}
$$

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)
For $t(n) \geq 2$:

$$
\mathbf{A M}[2 t(n)]=\mathbf{A} \mathbf{M}[t(n)]
$$

- The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)
For every $k \geq 2$:

$$
\mathbf{A M}=\mathbf{A} \mathbf{M}[k]=\mathbf{M} \mathbf{A}[k+1]
$$

Example

$$
\begin{aligned}
& \text { MAM }=\left(\exists \exists^{+} \exists / \forall \exists^{+} \forall\right) \stackrel{(1)}{\subseteq}\left(\exists \exists^{+} \forall \exists / \forall \forall \exists^{+} \forall\right) \subseteq(\quad \exists / \quad \forall) \stackrel{(2)}{\subseteq} \\
& \subseteq(\quad \exists / \quad \forall) \subseteq\left(\forall \exists / \exists^{+} \forall\right)=\mathbf{A M}
\end{aligned}
$$

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)
For $t(n) \geq 2$:

$$
\mathbf{A M}[2 t(n)]=\mathbf{A} \mathbf{M}[t(n)]
$$

- The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)
For every $k \geq 2$:

$$
\mathbf{A M}=\mathbf{A} \mathbf{M}[k]=\mathbf{M} \mathbf{A}[k+1]
$$

Example

$$
\begin{aligned}
& \text { MAM }=\left(\exists \exists^{+} \exists / \forall \exists^{+} \forall\right) \stackrel{(1)}{\subseteq}\left(\exists \exists^{+} \forall \exists / \forall \forall \exists^{+} \forall\right) \subseteq(\quad \exists / \quad \forall) \stackrel{(2)}{\subseteq} \\
& \subseteq(\quad / \quad) \subseteq\left(\forall / \exists^{+}\right)=\mathbf{A M}
\end{aligned}
$$

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)
For $t(n) \geq 2$:

$$
\mathbf{A M}[2 t(n)]=\mathbf{A} \mathbf{M}[t(n)]
$$

- The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)
For every $k \geq 2$:

$$
\mathbf{A M}=\mathbf{A} \mathbf{M}[k]=\mathbf{M} \mathbf{A}[k+1]
$$

Example

$$
\begin{aligned}
& \mathbf{M A M}=\left(\exists \exists^{+} \exists / \forall \exists^{+} \forall\right) \stackrel{(1)}{\subseteq}\left(\exists \exists^{+} \forall \exists / \forall \forall \exists^{+} \forall\right) \subseteq\left(\exists \forall \exists / \forall \exists^{+} \forall\right) \stackrel{(2)}{\subseteq} \\
& \subseteq\left(\forall \exists \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)=\mathbf{A M}
\end{aligned}
$$

Properties of Arthur-Merlin Games

Proof:

- The general case is implied by the generalization of BPP-Theorem (1) \& (2):
- $\left(\mathbf{Q}_{1} \exists^{+} \mathbf{Q}_{2} / \mathbf{Q}_{3} \exists^{+} \mathbf{Q}_{4}\right)=\left(\mathbf{Q}_{1} \exists^{+} \forall \mathbf{Q}_{2} / \mathbf{Q}_{3} \forall \exists^{+} \mathbf{Q}_{4}\right)=$ $\left(\mathbf{Q}_{1} \forall \exists^{+} \mathbf{Q}_{2} / \mathbf{Q}_{3} \exists^{+} \forall \mathbf{Q}_{4}\right)\left(\mathbf{1}^{\prime}\right)$
- $\left(\mathbf{Q}_{\mathbf{1}} \exists \forall \mathbf{Q}_{\mathbf{2}} / \mathbf{Q}_{\mathbf{3}} \forall \exists^{+} \mathbf{Q}_{\mathbf{4}}\right) \subseteq\left(\mathbf{Q}_{\mathbf{1}} \forall \exists \mathbf{Q}_{\mathbf{2}} / \mathbf{Q}_{\mathbf{3}} \exists^{+} \forall \mathbf{Q}_{\mathbf{4}}\right)\left(2^{\prime}\right)$
- Using the above we can easily see that the Arthur-Merlin Hierarchy collapses at the second level. (Try it!) \square

Properties of Arthur-Merlin Games

Theorem (BHZ)
If coNP $\subseteq \mathbf{A M}$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $\mathbf{P H}=\Sigma_{2}^{p}=\mathbf{A M}$.

Proof: Our hypothesis states: $(\forall / \exists) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$
Then:
$\Sigma_{2}^{p}=(\exists \forall / \forall \exists) \stackrel{\text { Hyp. }}{\subseteq}(\exists \forall \exists / \forall \exists+\forall) \stackrel{(2)}{\subseteq}\left(\forall \exists \exists / \exists^{+} \forall \forall\right)=\left(\forall \exists / \exists^{+} \forall\right)=$
$\mathbf{A M} \subseteq(\forall \exists / \exists \forall)=\Pi_{2}^{p} . \square$

Properties of Arthur-Merlin Games

Theorem (BHZ)
If coNP $\subseteq \mathbf{A M}$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $\mathbf{P H}=\Sigma_{2}^{p}=\mathbf{A M}$.

Proof: Our hypothesis states: $(\forall / \exists) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$
Then:
$\Sigma_{2}^{p}=(\exists \forall / \forall \exists) \stackrel{\text { Hyp. }}{\subseteq}(\exists \forall \exists / \forall \exists+\forall) \stackrel{(2)}{\subseteq}\left(\forall \exists \exists / \exists^{+} \forall \forall\right)=\left(\forall \exists / \exists^{+} \forall\right)=$
$\mathbf{A M} \subseteq(\forall \exists / \exists \forall)=\Pi_{2}^{p} . \square$

Properties of Arthur-Merlin Games

Theorem (BHZ)
If coNP $\subseteq \mathbf{A M}$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $\mathbf{P H}=\Sigma_{2}^{p}=\mathbf{A M}$.

Proof: Our hypothesis states: $(\forall / \exists) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$
Then:
$\Sigma_{2}^{p}=(\exists \forall / \forall \exists) \stackrel{\text { Hyp. }}{\subseteq}(\exists \forall \exists / \forall \exists+\forall) \stackrel{(2)}{\subseteq}\left(\forall \exists \exists / \exists^{+} \forall \forall\right)=\left(\forall \exists / \exists^{+} \forall\right)=$
$\mathbf{A M} \subseteq(\forall \exists / \exists \forall)=\Pi_{2}^{p} . \square$

Properties of Arthur-Merlin Games

Theorem (BHZ)
If coNP $\subseteq \mathbf{A M}$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $\mathbf{P H}=\Sigma_{2}^{p}=\mathbf{A M}$.

Proof: Our hypothesis states: $(\forall / \exists) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$
Then:
$\Sigma_{2}^{p}=(\exists \forall / \forall \exists) \stackrel{\text { Hyp. }}{\subseteq}(\exists \forall \exists / \forall \exists+\forall) \stackrel{(2)}{\subseteq}\left(\forall \quad / \exists^{+} \quad\right)=\left(\forall / \exists^{+}\right)=$
$\mathbf{A M} \subseteq(\forall \exists / \exists \forall)=\Pi_{2}^{p} . \square$

Properties of Arthur-Merlin Games

Theorem (BHZ)
If coNP $\subseteq \mathbf{A M}$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $\mathbf{P H}=\Sigma_{2}^{p}=\mathbf{A M}$.

Proof: Our hypothesis states: $(\forall / \exists) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$
Then:
$\Sigma_{2}^{p}=(\exists \forall / \forall \exists) \stackrel{\text { Hyp. }}{\subseteq}(\exists \forall \exists / \forall \exists+\forall) \stackrel{(2)}{\subseteq}\left(\forall \exists \exists / \exists^{+} \forall \forall\right)=\left(\forall \exists / \exists^{+} \forall\right)=$
$\mathbf{A M} \subseteq(\forall \exists / \exists \forall)=\Pi_{2}^{p} . \square$

Measure One Results

- $\mathbf{P}^{A} \neq \mathbf{N P}^{A}$, for almost all oracles A.
- $\mathbf{P}^{A}=\mathbf{B P} \mathbf{P}^{A}$, for almost all oracles A.
- $\mathbf{N P}^{A}=\mathbf{A M}^{A}$, for almost all oracles A.

Definition

$$
\text { almostC }=\left\{L \mid \operatorname{Pr}_{A \in\{0,1\}^{*}}\left[L \in \mathcal{C}^{A}\right]=1\right\}
$$

Theorem
i almost $\mathbf{P}=\mathbf{B P P}$ [BG81]
(ii almost NP $=\mathbf{A M}$ [NW94]
iii) almost $\mathbf{P H}=\mathbf{P H}$

Measure One Results

Theorem (Kurtz)
For almost every pair of oracles B, C :
(1) $\mathbf{B P P}=\mathbf{P}^{B} \cap \mathbf{P}^{C}$
(i) almost $\mathbf{N P}=\mathbf{N P}^{B} \cap \mathbf{N P}^{C}$

Indicative Open Questions

- Does exist an oracle separating AM from almostNP?
- Is almostNP contained in some finite level of Polynomial-Time Hierarchy?
- Motivated by [BHZ]: If coNP \subseteq almostNP, does it follow that PH collapses?

The power of Interactive Proofs

- As we saw, Interaction alone does not gives us computational capabilities beyond NP.
- Also, Randomization alone does not give us significant power (we know that $\mathbf{B P P} \subseteq \Sigma_{2}^{p}$, and many researchers believe that $\mathbf{P}=\mathbf{B P P}$, which holds under some plausible assumptions).
- How much power could we get by their combination?
- We know that for fixed $k \in \mathbb{N}$, IP $[k]$ collapses to

$$
\mathbf{I P}[k]=\mathbf{A M}=\mathcal{B P} \cdot \mathbf{N P}
$$

a class that is "close" to NP (under similar assumptions, the non-deterministic analogue of \mathbf{P} vs. BPP is NP vs. AM.)

- If we let k be a polynomial in the size of the input, how much more power could we get?

The power of Interactive Proofs

- Surprisingly:

Theorem (L.F.K.N. \& Shamir) $I P=P S P A C E$

The power of Interactive Proofs

Lemma 1

IP \subseteq PSPACE

Warmup: Interactive Proof for UNSAT

Lemma 2

PSPACE \subseteq IP

- For simplicity, we will construct an Interactive Proof for UNSAT (a coNP-complete problem), showing that:

Theorem

$$
\operatorname{coNP} \subseteq \mathbf{I P}
$$

- Let N be a prime.
- We will translate a formula ϕ with m clauses and n variables x_{1}, \ldots, x_{n} to a polynomial p over the field $(\bmod N)$ (where $N>2^{n} \cdot 3^{m}$), in the following way:

Arithmetization

- Arithmetic generalization of a CNF Boolean Formula.

$$
\begin{aligned}
& \mathrm{T} \longrightarrow \\
& \mathrm{~F} \longrightarrow \\
& 0 \\
& \neg x \longrightarrow \\
& 1-x \\
& \wedge \longrightarrow \\
& \mathrm{~V} \longrightarrow \\
&+
\end{aligned}
$$

Example

$$
\begin{gathered}
\left(x_{3} \vee \neg x_{5} \vee x_{17}\right) \wedge\left(x_{5} \vee x_{9}\right) \wedge\left(\neg x_{3} \vee x_{4}\right) \\
\downarrow \\
\left(x_{3}+\left(1-x_{5}\right)+x_{17}\right) \cdot\left(x_{5}+x_{9}\right) \cdot\left(\left(1-x_{3}\right)+\left(1-x_{4}\right)\right)
\end{gathered}
$$

- Each literal is of degree 1 , so the polynomial p is of degree at most m.
- Also, $0<p<3^{m}$.

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

Verifier

checks proof

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

$$
q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right) \quad \longrightarrow \quad \text { checks if } q_{1}(0)+q_{1}(1)=0
$$

Verifier

\longrightarrow checks proof

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

$$
q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right) \quad \longrightarrow \quad \text { checks if } q_{1}(0)+q_{1}(1)=0
$$

Verifier

checks proof

$$
\longleftarrow \text { sends } r_{1} \in\{0, \ldots, N-1\}
$$

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

$$
q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right) \quad \longrightarrow \quad \text { checks if } q_{1}(0)+q_{1}(1)=0
$$

$q_{2}(x)=\sum p\left(r_{1}, x, x_{3}, \ldots x_{n}\right) \longrightarrow \quad$ checks if $q_{2}(0)+q_{2}(1)=q_{1}\left(r_{1}\right)$
\longleftarrow sends $r_{1} \in\{0, \ldots, N-1\}$

Verifier

checks proof

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

$$
q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right) \quad \longrightarrow \quad \text { checks if } q_{1}(0)+q_{1}(1)=0
$$

\longleftarrow sends $r_{1} \in\{0, \ldots, N-1\}$
$q_{2}(x)=\sum p\left(r_{1}, x, x_{3}, \ldots x_{n}\right) \quad \longrightarrow \quad$ checks if $q_{2}(0)+q_{2}(1)=q_{1}\left(r_{1}\right)$
\longleftarrow sends $r_{2} \in\{0, \ldots, N-1\}$

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N
\longrightarrow checks proof

$$
q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right) \quad \longrightarrow \quad \text { checks if } q_{1}(0)+q_{1}(1)=0
$$

\longleftarrow sends $r_{1} \in\{0, \ldots, N-1\}$
$q_{2}(x)=\sum p\left(r_{1}, x, x_{3}, \ldots x_{n}\right) \quad \longrightarrow \quad$ checks if $q_{2}(0)+q_{2}(1)=q_{1}\left(r_{1}\right)$
\longleftarrow sends $r_{2} \in\{0, \ldots, N-1\}$
$q_{n}(x)=p\left(r_{1}, \ldots, r_{n-1}, x\right) \quad \longrightarrow \quad$ checks if $q_{n}(0)+q_{n}(1)=q_{n-1}\left(r_{n-1}\right)$

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

$$
q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right) \quad \longrightarrow \quad \text { checks if } q_{1}(0)+q_{1}(1)=0
$$

\longleftarrow sends $r_{1} \in\{0, \ldots, N-1\}$
$q_{2}(x)=\sum p\left(r_{1}, x, x_{3}, \ldots x_{n}\right) \quad \rightarrow \quad$ checks if $q_{2}(0)+q_{2}(1)=q_{1}\left(r_{1}\right)$
\longleftarrow sends $r_{2} \in\{0, \ldots, N-1\}$
$q_{n}(x)=p\left(r_{1}, \ldots, r_{n-1}, x\right) \quad \longrightarrow$ checks if $q_{n}(0)+q_{n}(1)=q_{n-1}\left(r_{n-1}\right)$
picks $r_{n} \in\{0, \ldots, N-1\}$

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

$$
q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right) \quad \longrightarrow \quad \text { checks if } q_{1}(0)+q_{1}(1)=0
$$

\longleftarrow sends $r_{1} \in\{0, \ldots, N-1\}$
$q_{2}(x)=\sum p\left(r_{1}, x, x_{3}, \ldots x_{n}\right) \longrightarrow$ checks if $q_{2}(0)+q_{2}(1)=q_{1}\left(r_{1}\right)$
\longleftarrow sends $r_{2} \in\{0, \ldots, N-1\}$
$q_{n}(x)=p\left(r_{1}, \ldots, r_{n-1}, x\right) \quad \longrightarrow$ checks if $q_{n}(0)+q_{n}(1)=q_{n-1}\left(r_{n-1}\right)$
picks $r_{n} \in\{0, \ldots, N-1\}$ checks if $q_{n}\left(r_{n}\right)=p\left(r_{1}, \ldots, r_{n}\right)$

Warmup: Interactive Proof for UNSAT

- If ϕ is unsatisfiable,then

$$
\sum_{x_{1} \in\{0,1\}} \sum_{x_{2} \in\{0,1\}} \cdots \sum_{x_{n} \in\{0,1\}} p\left(x_{1}, \ldots, x_{n}\right) \equiv 0(\bmod N)
$$

and the protocol will succeed.

- Also, the arithmetization can be done in polynomial time, and if we take $N=2^{\mathcal{O}(n+m)}$, then the elements in the field can be represented by $\mathcal{O}(n+m)$ bits, and thus an evaluation of p in any point of $\{0, \ldots, N-1\}$ can be computed in polynomial time.
- We have to show that if ϕ is satisfiable, then the verifier will reject with high probability.
- If ϕ is satisfiable, then
$\sum_{x_{1} \in\{0,1\}} \sum_{x_{2} \in\{0,1\}} \cdots \sum_{x_{n} \in\{0,1\}} p\left(x_{1}, \ldots, x_{n}\right) \neq 0(\bmod N)$
- So, $p_{1}(01)+p_{1}(1) \neq 0$, so if the prover send p_{1} we 're done.
- If the prover send $q_{1} \neq p_{1}$, then the polynomials will agree on at most m places. So, $\operatorname{Pr}\left[p_{1}\left(r_{1}\right) \neq q_{1}\left(r_{1}\right)\right] \geq 1-\frac{m}{N}$.
- If indeed $p_{1}\left(r_{1}\right) \neq q_{1}\left(r_{1}\right)$ and the prover sends $p_{2}=q_{2}$, then the verifier will reject since $q_{2}(0)+q_{2}(1)=p_{1}\left(r_{1}\right) \neq q_{1}\left(r_{1}\right)$.
- Thus, the prover must send $q_{2} \neq p_{2}$.
- We continue in a similar way: If $q_{i} \neq p_{i}$, then with probability at least $1-\frac{m}{N}, r_{i}$ is such that $q_{i}\left(r_{i}\right) \neq p_{i}\left(r_{i}\right)$.
- Then, the prover must send $q_{i+1} \neq p_{i+1}$ in order for the verifier not to reject.
- At the end, if the verifier has not rejected before the last check, $\operatorname{Pr}\left[p_{n} \neq q_{n}\right] \geq 1-(n-1) \frac{m}{N}$.
- If so, with probability at least $1-\frac{m}{N}$ the verifier will reject since, $q_{n}(x)$ and $p\left(r_{1}, \ldots, r_{n-1}, x\right)$ differ on at least that fraction of points.
- The total probability that the verifier will accept if at most $\frac{n m}{N}$.

Arithmetization of QBF

$$
\begin{array}{lll}
\exists & \longrightarrow & \sum \\
\forall & \longrightarrow
\end{array}
$$

Example

$$
\begin{gathered}
\forall x_{1} \exists x_{2}\left[\left(x_{1} \wedge x_{2}\right) \vee \exists x_{3}\left(\bar{x}_{2} \wedge x_{3}\right)\right] \\
\downarrow \\
\prod_{\left.x_{1} \in\{0,1\}\right\}} \sum_{x_{2} \in\{0,1\}}\left[\left(x_{1} \cdot x_{2}\right)+\sum_{x_{3} \in\{0,1\}}\left(1-x_{2}\right) \cdot x_{3}\right]
\end{gathered}
$$

Theorem
A closed QBF is true if and only if tha value of its arithmetic form is non-zero.

Arithmetization of QBF

- If a QBF is true, its value could be quite large:

Theorem
Let A be a closed QBF of size n. Then, the value of its arithmetic form cannot exceed $\mathcal{O}\left(2^{2^{n}}\right)$.

- Since such numbers cannot be handled by the protocol, we reduce them modulo some-smaller- prime p :

Theorem
Let A be a closed QBF of size n. Then, there exists a prime p of length polynomial in n, such that its arithmetization

$$
A^{\prime} \neq 0(\bmod p) \Leftrightarrow A \text { is true. }
$$

Arithmetization of QBF

- A QBF with all the variables quantified is called closed, and can be evaluated to either True or False.
- An open QBF with $k>0$ free variables can be interpreted as a boolean function $\{0,1\}^{k} \rightarrow\{0,1\}$.
- Now, consider the language of all true quantified boolean formulas:

TQBF $=\{\Phi \mid \Phi$ is a true quantified Boolean formula $\}$

- It is known that TQBF is a PSPACE-complete language!
- So, if we have a interactive proof protocol recognizing TQBF, then we have a protocol for every PSPACE language.

Protocol for TQBF

- Given a quantified formula

$$
\psi=\forall x_{1} \exists x_{2} \forall x_{3} \cdots \exists x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)
$$

we use arithmetization to construct the polynomial P_{ϕ}. Then, $\Psi \in$ TQBF if and only if

$$
\prod_{b_{1} \in\{0,1\}^{*}} \sum_{b_{2} \in\{0,1\}^{*}} \prod_{b_{3} \in\{0,1\}^{*}} \ldots \sum_{b_{n} \in\{0,1\}^{*}} P_{\phi}\left(b_{1}, \ldots, b_{n}\right) \neq 0
$$

Epilogue: Probabilistically Checkable Proofs

- But if we put a proof instead of a Prover?

Epilogue: Probabilistically Checkable Proofs

- But if we put a proof instead of a Prover?
- The alleged proof is a string, and the (probabilistic) verification procedure is given direct (oracle) access to the proof.
- The verification procedure can access only few locations in the proof!
- We parameterize these Interactive Proof Systems by two complexity measures:
- Query Complexity
- Randomness Complexity
- The effective proof length of a PCP system is upper-bounded by $q(n) \cdot 2^{r(n)}$ (in the non-adaptive case).
(How long can be in the adaptive case?)

PCP Definitions

Definition
PCP Verifiers Let L be a language and $q, r: \mathbb{N} \rightarrow \mathbb{N}$. We say that L has an $(r(n), q(n))-\mathbf{P C P}$ verifier if there is a probabilistic polynomial-time algorithm V (the verifier) satisfying:

- Efficiency: On input $x \in\{0,1\}^{*}$ and given random oracle access to a string $\pi \in\{0,1\}^{*}$ of length at most $q(n) \cdot 2^{r(n)}$ (which we call the proof), V uses at most $r(n)$ random coins and makes at most $q(n)$ non-adaptive queries to locations of π. Then, it accepts or rejects. Let $V^{\pi}(x)$ denote the random variable representing V 's output on input x and with random access to π.
- Completeness: If $x \in L$, then $\exists \pi \in\{0,1\}^{*}: \operatorname{Pr}\left[V^{\pi}(x)=1\right]=1$
- Soundness: If $x \notin L$, then $\forall \pi \in\{0,1\}^{*}: \operatorname{Pr}\left[V^{\pi}(x)=1\right] \leq \frac{1}{2}$

We say that a language L is in $\operatorname{PCP}(r(n), q(n))$ if L has a $(\mathcal{O}(r(n)), \mathcal{O}(q(n)))$-PCP verifier.

Main Results

- Obviously:
$\operatorname{PCP}(0,0)=?$
$\mathbf{P C P}(0$, poly $)=$?
$\operatorname{PCP}($ poly, 0$)=$?

Main Results

- Obviously:
$\mathbf{P C P}(0,0)=\mathbf{P}$
$\mathbf{P C P}(0$, poly $)=$?
$\operatorname{PCP}(p o l y, 0)=$?

Main Results

- Obviously:
$\mathbf{P C P}(0,0)=\mathbf{P}$
$\mathbf{P C P}(0$, poly $)=\mathbf{N P}$
$\operatorname{PCP}(p o l y, 0)=$?

Main Results

- Obviously:
$\mathbf{P C P}(0,0)=\mathbf{P}$
$\mathbf{P C P}(0$, poly $)=\mathbf{N P}$
$\mathbf{P C P}($ poly, 0$)=c o \mathbf{R P}$

Main Results

- Obviously:
$\mathbf{P C P}(0,0)=\mathbf{P}$
$\mathbf{P C P}(0$, poly $)=\mathbf{N P}$
$\mathbf{P C P}($ poly, 0$)=c o \mathbf{R P}$
- A suprising result from Arora, Lund, Motwani, Safra, Sudan, Szegedy states that:

The PCP Theorem

$$
\mathbf{N P}=\mathbf{P C P}(\log n, 1)
$$

Main Results

- The restriction that the proof length is at most $q 2^{r}$ is inconsequential, since such a verifier can look on at most this number of locations.
- We have that $\operatorname{PCP}[r(n), q(n)] \subseteq \operatorname{NTIME}\left[2^{\mathcal{O}(r(n))} q(n)\right]$, since a NTM could guess the proof in $2^{\mathcal{O}(r(n))} q(n)$ time, and verify it deterministically by running the verifier for all $2^{\mathcal{O}(r(n))}$ possible choices of its random coin tosses. If the verifier accepts for all these possible tosses, then the NTM accepts.

Contents

- Introduction
- Turing Machine
- Undecidability
- Complexity Classes
- Oracles \& Optimization Problems
- Randomized Computation
- Non-Uniform Complexity
- Interactive Proofs
- Counting Complexity

Why counting?

- So far, we have seen two versions of problems:
- Decision Problems (if a solution exists)
- Function Problems (if a solution can be produced)
- A very important type of problems in Complexity Theory is also:
- Counting Problems (how many solution exist)

Example (\#SAT)

Given a Boolean Expression, compute the number of different truth assignments that satisfy it.

- Note that if we can solve \#SAT in polynomial time, we can solve SAT also.
- Similarly, we can define \#HAMILTON PATH, \#CLIQUE, etc.

Basic Definitions

Definition（\＃P）
A function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ is in $\# \mathbf{P}$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial－time Turing Machine M such that for every $x \in\{0,1\}^{*}$ ：

$$
f(x)=\left|\left\{y \in\{0,1\}^{p(|x|)}: M(x, y)=1\right\}\right|
$$

－The definition implies that $f(x)$ can be expressed in poly $(|x|)$ bits．
－Each function f in $\# \mathbf{P}$ is equal to the number of paths from an initial configuration to an accepting configuration，or accepting paths in the configuration graph of a poly－time NDTM．
－ $\mathbf{F P} \subseteq \# \mathbf{P} \subseteq \mathbf{P S P A C E}$
－If $\# \mathbf{P}=\mathbf{F P}$ ，then $\mathbf{P}=\mathbf{N P}$ ．
－If $\mathbf{P}=\mathbf{P S P A C E}$ ，then $\# \mathbf{P}=\mathbf{F P}$ ．

- In order to formalize a notion of completeness for \#P , we must define proper reductions:

Definition (Cook Reduction)
A function f is $\# \mathbf{P}$-complete if it is in $\# \mathbf{P}$ and every $g \in \# \mathbf{P}$ is in F^{g}.

- As we saw, for each problem in NP we can define the associated counting problem: If $A \in \mathbf{N P}$, then

$$
\# A(x)=\left|\left\{y \in\{0,1\}^{p(|x|)}: R_{A}(x, y)=1\right\}\right| \in \# \mathbf{P}
$$

- In order to formalize a notion of completeness for \#P , we must define proper reductions:

Definition (Cook Reduction)
A function f is $\# \mathbf{P}$-complete if it is in $\# \mathbf{P}$ and every $g \in \# \mathbf{P}$ is in F^{g}.

- As we saw, for each problem in NP we can define the associated counting problem: If $A \in \mathbf{N P}$, then

$$
\# A(x)=\left|\left\{y \in\{0,1\}^{p(|x|)}: R_{A}(x, y)=1\right\}\right| \in \# \mathbf{P}
$$

- We now define a more strict form of reduction:

Definition (Parsimonious Reduction)
We say that there is a parsimonious reduction from \#A to \#B if there is a polynomial time transformation f such that for all x :

$$
\left|\left\{y: R_{A}(x, y)=1\right\}\right|=\left|\left\{z: R_{B}(f(x), z)=1\right\}\right|
$$

Completeness Results

Theorem

\#CIRCUIT SAT is \#P-complete.

Proof:

- Let $f \in \# \mathbf{P}$. Then, $\exists M, p$:

$$
f=\left|\left\{y \in\{0,1\}^{p(|x|)}: M(x, y)=1\right\}\right| .
$$

- Given x, we want to construct a circuit C such that:

$$
|\{z: C(z)\}|=\left|\left\{y: y \in\{0,1\}^{p(|x|}, M(x, y)=1\right\}\right|
$$

- We can construct a circuit \hat{C} such that on input x, y simulates $M(x, y)$.
- We know that this can be done with a circuit with size about the square of M 's running time.
- Let $C(y)=\hat{C}(x, y)$.

Completeness Results

Theorem \#SAT is \# \mathbf{P}-complete.

Proof:

- We reduce \#CIRCUIT SAT to \#SAT:
- Let a circuit C, with x_{1}, \ldots, x_{n} input gates and $1, \ldots, m$ gates.
- We construct a Boolean formula ϕ with variables $x_{1}, \ldots, x_{n}, g_{1}, \ldots, g_{m}$, where g_{i} represents the output of gate i.
- A gate can be complete described by simulating the output for each of the 4 possible inputs.
- In this way, we have reduced C to a formula ϕ with $n+m$ variables and $4 m$ clauses.

The Permanent

Definition (PERMANENT)

For a $n \times n$ matrix A, the permanent of A is:

$$
\operatorname{perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

- Permanent is similar to the determinant, but it seems more difficult to compute.
- Combinatorial interpretation: If A has entries $\in\{0,1\}$, it can be viewed as the adjacency matrix of a bipartite graph $G(X, Y, E)$ with $X=\left\{x_{1}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, \ldots, y_{n}\right\}$ and $\left\{x_{i}, y_{i}\right\} \in E$ iff $A_{i, j}=1$.

The Permanent

Definition (PERMANENT)

For a $n \times n$ matrix A, the permanent of A is:

$$
\operatorname{perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

- Permanent is similar to the determinant, but it seems more difficult to compute.
- Combinatorial interpretation: If A has entries $\in\{0,1\}$, it can be viewed as the adjacency matrix of a bipartite graph $G(X, Y, E)$ with $X=\left\{x_{1}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, \ldots, y_{n}\right\}$ and $\left\{x_{i}, y_{i}\right\} \in E$ iff $A_{i, j}=1$.
- The term $\prod_{i=1}^{n} A_{i, \sigma(i)}$ is 1 iff σ has a perfect matching.

The Permanent

Definition (PERMANENT)

For a $n \times n$ matrix A, the permanent of A is:

$$
\operatorname{perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

- Permanent is similar to the determinant, but it seems more difficult to compute.
- Combinatorial interpretation: If A has entries $\in\{0,1\}$, it can be viewed as the adjacency matrix of a bipartite graph $G(X, Y, E)$ with $X=\left\{x_{1}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, \ldots, y_{n}\right\}$ and $\left\{x_{i}, y_{i}\right\} \in E$ iff $A_{i, j}=1$.
- The term $\prod_{i=1}^{n} A_{i, \sigma(i)}$ is 1 iff σ has a perfect matching.
- So, in this case perm (A) is the number of perfect matchings in the corresponding graph!

Valiant's Theorem

Valiant's Theorem

Theorem (Valiant's Theorem)
PERMANENT is \# \mathbf{P}-complete.

- Notice that the decision version of PERMANENT is in \mathbf{P} !!

Quantifiers vs Counting

- An imporant open question in the 80 s concerned the relative power of Polynomial Hierarchy and \#P.
- Both are natural generalizations of NP, but it seemed that their features were not directly comparable to each other.
- But, in 1989, S. Toda showed the following theorem:

Quantifiers vs Counting

- An imporant open question in the 80 s concerned the relative power of Polynomial Hierarchy and \#P.
- Both are natural generalizations of NP, but it seemed that their features were not directly comparable to each other.
- But, in 1989, S. Toda showed the following theorem:

Theorem (Toda's Theorem)

$$
\mathbf{P H} \subseteq \mathbf{P}^{\# \mathbf{P}[1]}
$$

The Class $\oplus \mathbf{P}$

Definition
A language L is in the class $\oplus \mathbf{P}$ if there is a NDTM M such that for all strings $x, x \in L$ iff the number of accepting paths on input x is odd.

- The problems \oplus SAT and \oplus HAMILTON PATH are \oplus P-complete.
- $\oplus \mathbf{P}$ is closed under complement.

Theorem
$\mathbf{N P} \subseteq \mathbf{R P}^{\oplus}{ }^{\mathbf{P}}$

