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Introduction

Introduction

TSP Versions

1 TSP (D)

2 EXACT TSP

3 TSP COST

4 TSP

(1)≤P(2)≤P(3)≤P(4)



Oracles & Optimization Problems

The Class DP

DP Class Definition

Definition

A language L is in the class DP if and only if there are two
languages L1 ∈ NP and L2 ∈ coNP such that L = L1 ∩ L2.

DP is not NP ∩ coNP!

Also, DP is a syntactic class, and so it has complete problems.

SAT-UNSAT Definition

Given two Boolean expressions φ, φ′, both in 3CNF. Is it true that
φ is satisfiable and φ′ is not?
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The Class DP

Complete Problems for DP

Theorem

SAT-UNSAT is DP-complete.

Proof

Firstly, we have to show it is in DP.
So, let:
L1={(φ, φ′): φ is satisfiable}.
L2={(φ, φ′): φ′ is unsatisfiable}.
It is easy to see, L1 ∈ NP and L2 ∈ coNP, thus
L ≡ L1 ∩ L2 ∈ DP.

For completeness, let L ∈ DP. We have to show that
L ≤PSAT-UNSAT. L ∈ DP⇒ L = L1 ∩ L2, L1 ∈ NP and
L2 ∈ coNP.
SAT NP-complete⇒ ∃R1:L1 ≤PSAT and R2:L2 ≤PSAT.
Hence, L ≤PSAT-UNSAT,by R(x) = (R1(x),R2(x))
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The Class DP

Complete Problems for DP

Theorem

EXACT TSP is DP-complete.

Proof

EXACT TSP ∈ DP, by L1 ≡TSP ∈ NP and L2 ≡TSP
COMPLEMENT ∈ coNP

Completeness: we’ll show that SAT-UNSAT≤PEXACT TSP.
3SAT≤PHP: (φ, φ′)→ (G ,G ′)
Broken Hamilton Path (2 node-disjoint paths that cover all
nodes)
Almost Satisfying Truth Assignement (satisfies all clauses
except for one)
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The Class DP

Complete Problems for DP

Proof
We define distances:

1 If (i , j) ∈ E(G) or E(G’): d(i , j) ≡ 1

2 If (i , j) /∈ E(G), but i and j ∈ V(G): d(i , j) ≡ 2

3 Otherwise: d(i , j) ≡ 4

Let n be the size of the graph.

1 If φ and φ′ satisfiable, then optCost = n

2 If φ and φ′ unsatisfiable, then optCost = n + 3

3 If φ satisfiable and φ′ not, then optCost = n + 2

4 If φ′ satisfiable and φ not, then optCost = n + 1

“yes” instance of SAT-UNSAT ⇔ optCost = n + 2
Let B ≡ n + 2!
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The Class DP

Other DP-complete problems

Also:

CRITICAL SAT: Given a Boolean expression φ, is it true that
it’s unsatisfiable, but deleting any clause makes it satisfiable?

CRITICAL HAMILTON PATH: Given a graph, is it true that
it has no Hamilton path, but addition of any edge creates a
Hamilton path?

CRITICAL 3-COLORABILITY: Given a graph, is it true that it
is not 3-colorable, but deletion of any node makes it
3-colorable?

are DP-complete!
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Oracle Classes

Oracle TMs and Oracle Classes

Definition

A Turing Machine M? with oracle is a multi-string deterministic
TM that has a special string, called query string, and three
special states: q? (query state), and qYES , qNO (answer states).
Let A ⊆ Σ∗ be an arbitrary language. The computation of oracle
machine MA proceeds like an ordinary TM except for transitions
from the query state:
From the q? moves to either qYES , qNO , depending on
whether the current query string is in A or not.

The answer states allow the machine to use this answer to its
further computation.

The computation of M? with oracle A on iput x is denoted as
MA(x).
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Oracle Classes

Oracle TMs and Oracle Classes

Definition

Let C be a time complexity class (deterministic or
nondeterministic).
Define CA to be the class of all languages decided by machines of
the same sort and time bound as in C, only that the machines have
now oracle A.

Theorem

There exists an oracle A for which PA = NPA

Proof
Take A to be a PSPACE-complete language.Then:
PSPACE ⊆ PA ⊆ NPA ⊆ NPSPACE ⊆ PSPACE.

Theorem

There exists an oracle B for which PB 6= NPB
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Oracle Classes

The Classes PNP and FPNP

Alternative DP Definition

DP is the class of languages that can be decided by an oracle
machine which makes 2 queries to a SAT oracle, and accepts iff
the 1st answer is yes, and the 2nd is no.

PSAT is the class of languages decided in pol time with a SAT
oracle.

Polynomial number of queries
Queries computed adaptively

SAT NP-complete ⇒ PSAT=PNP

FPNP is the class of functions that can be computed by a
pol-time TM with a SAT oracle.

Goal: MAX OUTPUT≤PMAX-WEIGHT SAT≤PSAT
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Oracle Classes

FPNP-complete Problems

MAX OUTPUT Definition

Given NTM N, with input 1n, which halts after O(n),with output a
string of length n. Which is the largest output,of any computation
of N on 1n?

Theorem

MAX OUTPUT is FPNP-complete.

Proof
MAX OUTPUT ∈ FPNP.
Let F : Σ∗ → Σ∗ ∈ FPNP ⇒ ∃ pol-time TM M?, s.t.
MSAT (x) = F (x). We’ll show: F ≤MAX OUTPUT!
Reductions R and S (log space computable) s.t.:

∀x ,R(x) is a instance of MAX OUTPUT

S(max output of R(x)) → F (x)
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Oracle Classes

FPNP-complete Problems

Proof (cont.)
NTM N:
Let n = p2(|x |), p(· ), is the pol bound of SAT.
N(1n) generates x on a string.
MSAT query state (φ1):

If z1 = 0 (φ1 unsat), then continue from qNO .

If z1 = 1 (φ1 sat), then guess assignment T1:

If test succeeds, continue from qYES .
If test fails, output=0n and halt. (Unsuccessful computation)

Continue to all guesses (zi ), and halt, with output= z1z2....00︸ ︷︷ ︸
n

(Successful computation)
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Oracle Classes

FPNP-complete Problems

Proof (cont.)
We claim that the successful computation that outputs the largest
integer, correspond to a correct simulation:
Let j the smallest integer,s.t.: zj = 0, while φj was satisfiable.
Then, ∃ another successful computation of N, s.t.: zj = 1.
The computations agree to the first j − 1 digits,⇒ the 2nd

represents a larger number.
The S part: F (x) can be read off the end of the largest output of
N.
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Oracle Classes

FPNP-complete Problems

MAX-WEIGHT SAT Definition

Given a set of clauses, each with an integer weight, find the truth
assignment that satisfies a set of clauses with the most total
weight.

Theorem

MAX-WEIGHT SAT is FPNP-complete.

Proof
MAX-WEIGHT SAT is in FPNP: By binary search, and a SAT
oracle, we can find the largest possible total weight of satisfied
clauses, and then, by setting the variables 1-1, the truth
assignment that achieves it.
MAX OUTPUT≤MAX-WEIGHT SAT:



Oracles & Optimization Problems

Oracle Classes

FPNP-complete Problems

MAX-WEIGHT SAT Definition

Given a set of clauses, each with an integer weight, find the truth
assignment that satisfies a set of clauses with the most total
weight.

Theorem

MAX-WEIGHT SAT is FPNP-complete.

Proof
MAX-WEIGHT SAT is in FPNP: By binary search, and a SAT
oracle, we can find the largest possible total weight of satisfied
clauses, and then, by setting the variables 1-1, the truth
assignment that achieves it.
MAX OUTPUT≤MAX-WEIGHT SAT:
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Oracle Classes

FPNP-complete Problems

Proof (cont.)

NTMN(1n)→ φ(N,m):
Any satisfying truth assignment of φ(N,m)→ legal comp. of
N(1n)

Clauses are given a huge weight (2n), so that any t.a. that
aspires to be optimum satisfy all clauses of φ(N,m).

Add more clauses: (yi ): i = 1, ..n with weight 2n−i .

Now, optimum t.a. must not represent any legal computation,
but this which produces the largest possible output value.

S part: From optimum t.a. of the resulting expression (or the
weight), we can recover the optimum output of N(1n).
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Oracle Classes

FPNP-complete Problems

And the main result:

Theorem

TSP is FPNP-complete.

Corollary

TSP COST is FPNP-complete.
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Oracle Classes

FPNP-complete Problems

And the main result:

Theorem

TSP is FPNP-complete.

Corollary

TSP COST is FPNP-complete.
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Oracle Classes

The Class PNP[log n]

Definition

PNP[logn] is the class of all languages decided by a polynomial time
oracle machine, which on input x asks a total of O(log |x |) SAT
queries.

FPNP[logn] is the corresponding class of functions.

CLIQUE SIZE Definition

Given a graph, determine the size of his largest clique.

Theorem

CLIQUE SIZE is FPNP[logn]-complete.
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Oracle Classes

The Class PNP[log n]

Definition

PNP[logn] is the class of all languages decided by a polynomial time
oracle machine, which on input x asks a total of O(log |x |) SAT
queries.

FPNP[logn] is the corresponding class of functions.

CLIQUE SIZE Definition

Given a graph, determine the size of his largest clique.

Theorem

CLIQUE SIZE is FPNP[logn]-complete.
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Oracle Classes

The Class PNP[log n]

Definition

PNP[logn] is the class of all languages decided by a polynomial time
oracle machine, which on input x asks a total of O(log |x |) SAT
queries.

FPNP[logn] is the corresponding class of functions.

CLIQUE SIZE Definition

Given a graph, determine the size of his largest clique.

Theorem

CLIQUE SIZE is FPNP[logn]-complete.



Oracles & Optimization Problems

Oracle Classes

Conclusion

1 TSP (D) is NP-complete.

2 EXACT TSP is DP-complete.

3 TSP COST is FPNP-complete.

4 TSP is FPNP-complete.

And now,

PNP → NPNP ?

Oracles for NPNP ?
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The Polynomial Hierarchy

The Polynomial Hierarchy

Polynomial Hierarchy Definition

∆p
0 = Σp

0 = Πp
0 = P

∆p
i+1 = PΣp

i

Σp
i+1 = NPΣp

i

Πp
i+1 = coNPΣp

i

PH ≡
⋃
i>0

Σp
i

Σp
0 = P

∆p
1 = P, Σp

1 = NP, Πp
1 = coNP

∆p
2 = PNP, Σp

2 = NPNP, Πp
2 = coNPNP
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Basic Theorems

Basic Theorems

Theorem

Let L be a language , and i ≥ 1. L ∈ Σp
i iff there is a polynomially

balanced relation R such that the language {x ; y : (x , y) ∈ R} is in
Πp
i−1 and

L = {x : ∃y , s.t. : (x , y) ∈ R}

Proof (by Induction)

For i = 1
{x ; y : (x , y) ∈ R} ∈ P,so L = {x |∃y : (x , y) ∈ R} ∈ NP

For i > 1
If ∃R ∈ Πp

i−1, we must show that L ∈ Σp
i ⇒

∃ NTM with Σp
i−1 oracle: NTM(x) guesses a y and asks Πp

i−1

oracle whether (x , y) /∈ R.
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Basic Theorems

Basic Theorems

Proof (cont.)

If L ∈ Σp
i , we must show the existence or R.

L ∈ Σp
i ⇒ ∃ NTM MK , K ∈ Σp

i−1, which decides L.
K ∈ Σp

i−1 ⇒ ∃S ∈ Πp
i−2 : (z ∈ K ⇔ ∃w : (z ,w) ∈ S)

We must describe a relation R (we know: x ∈ L⇔ accepting
comp of MK (x))
Query Steps: “yes”→ zi has a certificate wi st (zi ,wi ) ∈ S .
So, R(x) =“(x , y) ∈ R iff yrecords an accepting computation
of M?on x , together with a certificate wi for each yes query
zi in the computation.”
We must show {x ; y : (x , y) ∈ R} ∈ Πp

i−1.
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Basic Theorems

Basic Theorems

Corollary

Let L be a language , and i ≥ 1. L ∈ Πp
i iff there is a polynomially

balanced relation R such that the language {x ; y : (x , y) ∈ R} is in
Σp
i−1 and

L = {x : ∀y , |y | ≤ |x |k , s.t. : (x , y) ∈ R}

Corollary

Let L be a language , and i ≥ 1. L ∈ Σp
i iff there is a polynomially

balanced, polynomially-time decicable (i + 1)-ary relation R such
that:

L = {x : ∃y1∀y2∃y3...Qyi , s.t. : (x , y1, ..., yi ) ∈ R}

where the i th quantifier Q is ∀, if i is even, and ∃, if i is odd.
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Basic Theorems

Basic Theorems

Theorem

If for some i ≥ 1, Σp
i = Πp

i , then for all j > i :

Σp
j = Πp

j = ∆p
j = Σp

i

Or, the polynomial hierarchy collapses to the i th level.

Proof
It suffices to show that: Σp

i = Πp
i ⇒ Σp

i+1 = Σp
i

Let L ∈ Σp
i+1 ⇒ ∃R ∈ Πp

i : L = {x |∃y : (x , y) ∈ R}
Since Πp

i = Σp
i ⇒ R ∈ Σp

i

(x , y) ∈ R ⇔ ∃z : (x , y , z) ∈ S , S ∈ Πp
i−1.

Thus, x ∈ L⇔ ∃y ; z : (x , y , z) ∈ S , S ∈ Πp
i−1, which means

L ∈ Σp
i .
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Basic Theorems

Basic Theorems

Corollary

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses
to the first level.

MINIMUM CIRCUIT Definition

Given a Boolean Circuit C, is it true that there is no circuit with
fewer gates that computes the same Boolean function

MINIMUM CIRCUIT is in Πp
2 , and not known to be in any

class below that.

It is open whether MINIMUM CIRCUIT is Πp
2-complete.

Theorem

If SAT has Polynomial Circuits, then the Polynomial Hierarchy
collapses to the second level.
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Basic Theorems

Basic Theorems

Corollary

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses
to the first level.

MINIMUM CIRCUIT Definition

Given a Boolean Circuit C, is it true that there is no circuit with
fewer gates that computes the same Boolean function

MINIMUM CIRCUIT is in Πp
2 , and not known to be in any

class below that.

It is open whether MINIMUM CIRCUIT is Πp
2-complete.

Theorem

If SAT has Polynomial Circuits, then the Polynomial Hierarchy
collapses to the second level.
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Basic Theorems

Basic Theorems

QSATi Definition

Given expression φ, with Boolean variables partitioned into i sets
Xi ,is φ satisfied by the overall truth assignment of the expression:

∃X1∀X2∃X3.....QXiφ

, where Q is ∃ if i is odd, and ∀ if i is even.

Theorem

For all i ≥ 1 QSATi is Σp
i -complete.
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Basic Theorems

Basic Theorems

Theorem

If there is a PH-complete problem, then the polynomial hierarchy
collapses to some finite level.

Proof
Let L is PH-complete.
Since L ∈ PH, ∃i ≥ 0 : L ∈ Σp

i .
But any L′ ∈ Σp

i+1 reduces to L. Since PH is closed under
reductions, we imply that L′ ∈ Σp

i , so Σp
i = Σp

i+1.

Theorem

PH ⊆ PSPACE

PH
?
= PSPACE (Open). If it was, then PH has complete

problems, so it collapses to some finite level.
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Basic Theorems

Basic Theorems

Theorem

If there is a PH-complete problem, then the polynomial hierarchy
collapses to some finite level.

Proof
Let L is PH-complete.
Since L ∈ PH, ∃i ≥ 0 : L ∈ Σp

i .
But any L′ ∈ Σp

i+1 reduces to L. Since PH is closed under
reductions, we imply that L′ ∈ Σp

i , so Σp
i = Σp

i+1.

Theorem

PH ⊆ PSPACE

PH
?
= PSPACE (Open). If it was, then PH has complete

problems, so it collapses to some finite level.
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Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Deterministic Quicksort
Input: A list L of integers;

If n ≤ 1 then return L.
Else {

let i = 1;

let L1 be the sublist of L whose elements are < ai;

let L1 be the sublist of L whose elements are = ai;

let L1 be the sublist of L whose elements are > ai;

Recursively Quicksort L1 and L3;

return L = L1L2L3;
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Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Randomized Quicksort
Input: A list L of integers;

If n ≤ 1 then return L.
Else {

choose a random integer i, 1 ≤ i ≤ n;

let L1 be the sublist of L whose elements are < ai;

let L1 be the sublist of L whose elements are = ai;

let L1 be the sublist of L whose elements are > ai;

Recursively Quicksort L1 and L3;

return L = L1L2L3;
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Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Let Td the max number of comparisons for the Deterministic
Quicksort:

Td ≥ Td(n − 1) +O (n)

⇓

Td(n) = Ω(n2)

Let Tr the expected number of comparisons for the
Randomized Quicksort:

Tr ≥
1

n

n−1∑
j=0

[Tr (j)− Tr (n − 1− j)] +O (n)

⇓

Tr (n) = O (n log n)
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Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Let Td the max number of comparisons for the Deterministic
Quicksort:

Td ≥ Td(n − 1) +O (n)

⇓

Td(n) = Ω(n2)

Let Tr the expected number of comparisons for the
Randomized Quicksort:

Tr ≥
1

n

n−1∑
j=0

[Tr (j)− Tr (n − 1− j)] +O (n)

⇓

Tr (n) = O (n log n)
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Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

1 Two polynomials are equal if they have the same coefficients
for corresponding powers of their variable.

2 A polynomial is identically zero if all its coefficients are equal
to the additive identity element.

3 How we can test if a polynomial is identically zero?

4 We can choose uniformly at random r1, . . . , rn from a set
S ⊆ F.

5 We are wrong with a probability at most:

Theorem (Schwartz-Zippel Lemma)

Let Q(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multivariate polynomial of
total degree d. Fix any finite set S ⊆ F, and let r1, . . . , rn be
chosen indepedently and uniformly at random from S. Then:

Pr[Q(r1, . . . , rn) = 0|Q(x1, . . . , xn) 6= 0] ≤ d

|S |
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Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

1 Two polynomials are equal if they have the same coefficients
for corresponding powers of their variable.

2 A polynomial is identically zero if all its coefficients are equal
to the additive identity element.

3 How we can test if a polynomial is identically zero?
4 We can choose uniformly at random r1, . . . , rn from a set

S ⊆ F.
5 We are wrong with a probability at most:

Theorem (Schwartz-Zippel Lemma)

Let Q(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multivariate polynomial of
total degree d. Fix any finite set S ⊆ F, and let r1, . . . , rn be
chosen indepedently and uniformly at random from S. Then:

Pr[Q(r1, . . . , rn) = 0|Q(x1, . . . , xn) 6= 0] ≤ d

|S |
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Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

Proof:
(By Induction on n)

For n = 1: Pr[Q(r) = 0|Q(x) 6= 0] ≤ d/|S |
For n:

Q(x1, . . . , xn) =
k∑

i=0

x i
1Qi (x2, . . . , xn)

where k ≤ d is the largest exponent of x1 in Q.
deg(Qk) ≤ d − k ⇒ Pr[Qk(r2, . . . , rn) = 0] ≤ (d − k)/|S |
Suppose that Qk(r2, . . . , rn) 6= 0. Then:

q(x1) = Q(x1, r2, . . . , rn) =
k∑

i=0

x i
1Qi (r2, . . . , rn)

deg(q(x1)) = k , and q(x1) 6= 0!
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Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

Proof (cont’d):
The base case now implies that:

Pr[q(r1) = Q(r1, . . . , rn) = 0] ≤ k/|S |

Thus, we have shown the following two equalities:

Pr[Qk(r2, . . . , rn) = 0] ≤ d − k

|S |

Pr[Qk(r1, r2, . . . , rn) = 0|Qk(r2, . . . , rn) 6= 0] ≤ k

|S |

Using the following identity: Pr[E1] ≤ Pr[E1|E2] + Pr[E2] we
obtain that the requested probability is no more than the sum of
the above, which proves our theorem! �
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Computational Model

Probabilistic Turing Machines

A Probabilistic Turing Machine is a TM as we know it, but
with access to a “random source”, that is an extra (read-only)
tape containing random-bits!
Randomization on:

Output (one or two-sided)
Running Time

Definition (Probabilistic Turing Machines)

A Probabilistic Turing Machine is a TM with two transition functions
δ0, δ1. On input x , we choose in each step with probability 1/2 to apply
the transition function δ0 or δ1, indepedently of all previous choices.

We denote by M(x) the random variable corresponding to the
output of M at the end of the process.

For a function T : N→ N, we say that M runs in T (|x |)-time if it
halts on x within T (|x |) steps (regardless of the random choices it
makes).
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Complexity Classes

BPP Class

Definition (BPP Class)

For T : N→ N, let BPTIME[T (n)] the class of languages L such
that there exists a PTM which halts in O (T (|x |)) time on input x ,
and Pr[M(x) = L(x)] ≥ 2/3.
We define:

BPP =
⋃
c∈N

BPTIME[nc ]

The class BPP represents our notion of efficient (randomized)
computation!

We can also define BPP using certificates:
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Complexity Classes

BPP Class

Definition (Alternative Definition of BPP)

A language L ∈ BPP if there exists a poly-time TM M and a
polynomial p ∈ poly(n), such that for every x ∈ {0, 1}∗:

Prr∈{0,1}p(n) [M(x , r) = L(x)] ≥ 2

3

P ⊆ BPP

BPP ⊆ EXP

The “P vs BPP” question.
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Quantifier Characterizations

Quantifier Characterizations

Proper formalism (Zachos et al.):

Definition (Majority Quantifier)

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a predicate, and ε a rational
number, such that ε ∈

(
0, 1

2

)
. We denote by (∃+y , |y | = k)R(x , y)

the following predicate:

“There exist at least
(

1
2 + ε

)
· 2k strings y of length m

for which R(x , y) holds.”

We call ∃+ the overwhelming majority quantifier.

∃+
r means that the fraction r of the possible certificates of a

certain length satisfy the predicate for the certain input.
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Quantifier Characterizations

Quantifier Characterizations

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃,∀,∃+}, the class
C of languages L satisfying:

x ∈ L⇒ Q1y R(x , y)

x /∈ L⇒ Q2y ¬R(x , y)

P = (∀/∀)

NP = (∃/∀)

coNP = (∀/∃)

BPP = (∃+/∃+) = coBPP
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Quantifier Characterizations

RP Class

In the same way, we can define classes that contain problems
with one-sided error:

Definition

The class RTIME[T (n)] contains every language L for which there
exists a PTM M running in O (T (|x |)) time such that:

x ∈ L⇒ Pr[M(x) = 1] ≥ 2
3

x /∈ L⇒ Pr[M(x) = 0] = 1

We define
RP =

⋃
c∈N

RTIME[nc ]

Similarly we define the class coRP.
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Quantifier Characterizations

RP ⊆ NP, since every accepting “branch” is a certificate!

RP ⊆ BPP, coRP ⊆ BPP

RP = (∃+/∀)

⊆ (∃/∀) = NP

coRP = (∀/∃+) ⊆ (∀/∃) = coNP

Theorem (Decisive Characterization of BPP)

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀)
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Quantifier Characterizations

Proof:

Let L ∈ BPP. Then, by definition, there exists a
polynomial-time computable predicate Q and a polynomial q
such that for all x ’s of length n:

x ∈ L⇒ ∃+y Q(x , y)

x /∈ L⇒ ∃+y ¬Q(x , y)

Swapping Lemma

i ∀y∃+z R(x , y , z)⇒ ∃+C∀y
∨

z∈C R(x , y , z)

ii ∀z∃+y R(x , y , z)⇒ ∀C∃+y
∧

z∈C R(x , y , z)

By the above Lemma: x ∈ L⇒ ∃+z Q(x , z)⇒
∀y∃+z Q(x , y ⊕ z)⇒ ∃+C∀y [∃(z ∈ C ) Q(x , y ⊕ z)], where
C denotes (as in the Swapping’s Lemma formulation) a set of
q(n) strings, each of length q(n).
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Quantifier Characterizations

Proof (cont’d):

On the other hand, x /∈ L⇒ ∃+y ¬Q(x , z)⇒
∀z∃+y ¬Q(x , y ⊕ z)⇒ ∀C∃+y [∀(z ∈ C ) ¬Q(x , y ⊕ z)].

Now, we only have to assure that the appeared predicates
∃z ∈ C Q(x , y ⊕ z) and ∀z ∈ C ¬Q(x , y ⊕ z) are computable
in polynomial time

Recall that in Swapping Lemma’s formulation we demanded
|C | ≤ p(n) and that for each v ∈ C : |v | = p(n). This means
that we seek if a string of polynomial length exists, or if the
predicate holds for all such strings in a set with polynomial
cardinality, procedure which can be surely done in polynomial
time.
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Quantifier Characterizations

Proof (cont’d):

Conversely, if L ∈ (∃+∀/∀∃+), for each string w , |w | = 2p(n),
we have w = w1w2, |w1| = |w2| = p(n). Then:
x ∈ L⇒ ∃+y∀z R(x , y , z)⇒ ∃+w R(x ,w1,w2)
x /∈ L⇒ ∀y∃+z R(x , y , z)⇒ ∃+w ¬R(x ,w1,w2)

So, L ∈ BPP. �

The above characterization is decisive, in the sense that if we
replace ∃+ with ∃, the two predicates are still complementary
(i.e. R1 ⇒ ¬R2), so they still define a complexity class.

In the above characterization of BPP, if we replace ∃+ with
∃, we obtain very easily a well-known result:

Corollary (Sipser-Gács Theorem)

BPP ⊆ Σp
2 ∩ Πp

2
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BPP and PH

Theorem (Sipser-Gács)

BPP ⊆ Σp
2 ∩ Πp

2

Proof (Lautemann)
Because coBPP = BPP,we prove only BPP ⊆ Σ2P.
Let L ∈ BPP (L is accepted by “clear majority”).
For |x | = n, let A(x) ⊆ {0, 1}p(n) be the set of accepting
computations.
We have:

x ∈ L⇒ |A(x)| ≥ 2p(n)
(
1− 1

2n

)
x /∈ L⇒ |A(x)| ≤ 2p(n)

(
1
2n

)
Let U be the set of all bit strings of length p(n).
For a, b ∈ U, let a⊕ b be the XOR:
a⊕ b = c ⇔ c ⊕ b = a, so “⊕b” is 1-1.
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Proof (cont.)
For t ∈ U, A(x)⊕ t = {a⊕ t : a ∈ A(x)} (translation of A(x) by
t). We imply that: |A(x)⊕ t| = |A(x)|
If x ∈ L, consider a random (drawing p2(n) bits) sequence of
translations: t1, t2, .., tp(n) ∈ U.
For b ∈ U, these translations cover b, if b ∈ A(x)⊕ tj , j ≤ p(n).
b ∈ A(x)⊕ tj ⇔ b ⊕ tj ∈ A(x)⇒ Pr[b /∈ A(x)⊕ tj ]=

1
2n

Pr[b is not covered by any tj ]=2−np(n)

Pr[∃ point that is not covered]≤ 2−np(n)|U| = 2−(n−1)p(n)
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BPP and PH

Proof (cont.)
So,T = (t1, .., tp(n)) has a positive probability that it covers all of
U.
If x /∈ L,|A(x)| is exp small,and (for large n) there’s not T that
cover all U.
(x ∈ L)⇔ (∃T that cover all U)
So,

L = {x |∃(T ∈ {0, 1}p2(n))∀(b ∈ U)∃(j ≤ p(n)) : b ⊕ tj ∈ A(x)}

which is precisely the form of languages in Σ2P.
The last existential quantifier (∃(j ≤ p(n))...) affects only
polynomially many possibilities,so it doesn’t “count” (can by
tested in polynomial time by trying all tj ’s).

�
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ZPP Class

And now something completely different:
What is the random variable was the running time and not
the output?

We say that M has expected running time T (n) if the
expectation E[TM(x)] is at most T (|x |) for every x ∈ {0, 1}∗.
(TM(x) is the running time of M on input x , and it is a random

variable!)

Definition

The class ZTIME[T (n)] contains all languages L for which there
exists a machine M that runs in an expected time O (T (|x |)) such
that for every input x ∈ {0, 1}∗, whenever M halts on x , the
output M(x) it produces is exactly L(x). We define:

ZPP =
⋃
c∈N

ZTIME[nc ]
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ZPP Class

The output of a ZPP machine is always correct!

The problem is that we aren’t sure about the running time.

We can easily see that ZPP = RP ∩ coRP.

The next Hasse diagram summarizes the previous inclusions:
(Recall that ∆Σp

2 = Σp
2 ∩ Πp

2 = NPNP ∩ coNPNP)
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PSPACE
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2
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coNP
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BPP
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coRP
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PSPACE
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OO

(∀/∃)

66mmmmmmmmmmmmm
(∃/∀)

hhQQQQQQQQQQQQQ

(∃+/∃+)

OO

(∀/∃+)
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Error Reduction for BPP

Theorem (Error Reduction for BPP)

Let L ⊆ {0, 1}∗ be a language and suppose that there exists a
poly-time PTM M such that for every x ∈ {0, 1}∗:

Pr[M(x) = L(x)] ≥ 1

2
+ |x |−c

Then, for every constant d > 0, ∃ poly-time PTM M ′ such that for
every x ∈ {0, 1}∗:

Pr[M ′(x) = L(x)] ≥ 1− 2−|x |
d
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Error Reduction

Proof: The machine M ′ does the following:

Run M(x) for every input x for k = 8|x |2c+d times,
and obtain outputs y1, y2, . . . , yk ∈ {0, 1}.
If the majority of these outputs is 1, return 1

Otherwise, return 0.

We define the r.v. Xi for every i ∈ [k] to be 1 if yi = L(x) and 0
otherwise.
X1,X2, . . . ,Xk are indepedent Boolean r.v.’s, with:

E[Xi ] = Pr[Xi = 1] ≥ p =
1

2
+ |x |−c

Applying a Chernoff Bound we obtain:

Pr

[
|

k∑
i=1

Xi − pk | > δpk

]
< e−

δ2

4
pk = e

− 1
4|x|2c

1
2

8|x |2c+d

≤ 2−|x |
d

�
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Intermission: Chernoff Bounds

How many samples do we need in order to estimate µ up to
an error of ±ε with probability at least 1− δ?
Chernoff Bound tells us that this number is O

(
ρ/ε2

)
, where

ρ = log(1/δ).
The probability that k is ρ

√
n far from µn decays

exponentially with ρ.
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Error Reduction

Intermission: Chernoff Bounds

Pr

[
n∑

i=1

Xi ≥ (1 + δ)µ

]
≤
[

eδ

(1 + δ)1+δ

]µ

Pr

[
n∑

i=1

Xi ≤ (1− δ)µ

]
≤
[

e−δ

(1− δ)1−δ

]µ
Other useful form is:

Pr

[
|

n∑
i=1

Xi − µ| ≥ cµ

]
≤ 2e−min{c2/4,c/2}·µ

This probability is bounded by 2−Ω(µ).
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Error Reduction for BPP

From the above we can obtain the following interesting
corollary:

Corollary

For c > 0, let BPP1/2+n−c denote the class of languages L for
which there is a polynomial-time PTM M satisfying
Pr[M(x) = L(x)] ≥ 1/2 + |x |−c for every x ∈ {0, 1}∗.Then:

BPP1/2+n−c = BPP

Obviously, ∃+ = ∃+
1/2+ε = ∃+

2/3 = ∃+
3/4 = ∃+

0.99 = ∃+
1−2−p(|x|)
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Error Reduction

Complete Problems for BPP?

The defining property of BPTIME machines is semantic!

We cannot test whether a TM can accept every input string
with probability ≥ 2/3 or with ≤ 1/3 (why?)

In contrast, the defining property of NP is syntactic!

We have:

Syntactic Classes
Semantic Classes

If finally P = BPP, then BPP will have complete problems!!

For the same reason, in semantic classes we cannot prove
Hierarchy Theorems using Diagonalization.



Randomized Computation Non-Uniform Complexity

Error Reduction

Complete Problems for BPP?

The defining property of BPTIME machines is semantic!

We cannot test whether a TM can accept every input string
with probability ≥ 2/3 or with ≤ 1/3 (why?)

In contrast, the defining property of NP is syntactic!

We have:

Syntactic Classes
Semantic Classes

If finally P = BPP, then BPP will have complete problems!!

For the same reason, in semantic classes we cannot prove
Hierarchy Theorems using Diagonalization.



Randomized Computation Non-Uniform Complexity

Error Reduction

The Class PP

Definition

A language L ∈ PP if there exists a poly-time TM M and a
polynomial p ∈ poly(n), such that for every x ∈ {0, 1}∗:

Prr∈{0,1}p(n) [M(x , r) = L(x)] ≥ 1

2

Or, more “syntactically”:

Definition

A language L ∈ PP if there exists a poly-time TM M and a
polynomial p ∈ poly(n), such that for every x ∈ {0, 1}∗:

x ∈ L⇔
∣∣∣{y ∈ {0, 1}p(|x |) : M(x , y) = 1

}∣∣∣ ≥ 1

2
· 2p(|x |)
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Due to the lack of a gap between the two cases, we cannot
amplify the probability with polynomially many repetitions, as
in the case of BPP.

PP is closed under complement.

A breakthrough result of R. Beigel, N. Reingold and D.
Spielman is that PP is closed under intersection!

The syntactic definition of PP gives the possibility for
complete problems:

Consider the problem MAJSAT:
Given a Boolean Expression, is it true that the majority of the
2n truth assignments to its variables (that is, at least 2n−1 + 1
of them) satisfy it?
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The Class PP

Theorem

MAJSAT is PP-complete!

MAJSAT is not likely in NP, since the (obvious) certificate is
not very succinct!

Theorem

NP ⊆ PP ⊆ PSPACE

Proof:
It is easy to see that PP ⊆ PSPACE:
We can simulate any PP machine by enumerating all strings y of
length p(n) and verify whether PP machine accepts. The
PSPACE machine accepts if and only if there are more than
2p(n)−1 such y ’s (by using a counter).
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The Class PP

Proof (cont’d):
Now, for NP ⊆ PP, let A ∈ NP. That is, ∃p ∈ poly(n) and a
poly-time and balanced predicate R such that:

x ∈ A ⇔ (∃y , |y | = p(|x |)) : R(x , y)

Consider the following TM:

M accepts input (x , by), with |b| = 1 and |y | = p(|x |), if
and only if R(x , y) = 1 or b = 1.

If x ∈ A, then ∃ at least one y s.t. R(x , y).
Thus, Pr[M(x) accepts] ≥ 1/2 + 2−(p(n)+1).

If x /∈ A, then Pr[M(x) accepts] = 1/2.

�
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Other Results

Theorem

If NP ⊆ BPP, then NP = RP.

Proof:

RP is closed under ≤p
m-reducibility.

It suffices to show that if SAT ∈ BPP, then SAT ∈ RP.

Recall that SAT has the self-reducibility property:
φ(x1, . . . , xn): φ ∈ SAT⇔ (φ|x1=0 ∈ SAT ∨ φ|x1=1 ∈ SAT).

SAT ∈ BPP: ∃ PTM M computing SAT with error probability
bounded by 2−|φ|.

We can use the self-reducibility of SAT to produce a truth
assignment for φ as follows:
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Other Results

Proof (cont’d):

Input: A Boolean formula φ with n variables

If M(φ) = 0 then reject φ;
For i = 1 to n
→ If M(φ|x1=α1,...,xi−1=αi−1,xi=0) = 1 then let αi = 0
→ ElseIf M(φ|x1=α1,...,xi−1=αi−1,xi=1) = 1 then let αi = 1
→ Else reject φ and halt;

If φ|x1=α1,...,xn=αn = 1 then accept F
Else reject F

Note that M1 accepts φ only if a t.a. t(xi ) = αi is found.
Therefore, M1 never makes mistakes if φ /∈ SAT.
If φ ∈ SAT, then M rejects φ on each iteration of the loop w.p.
2−|φ|.
So, Pr[M1 accepting x ] = (1− 2−|φ|)n, which is greater than 1/2 if
|φ| ≥ n > 1. �
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Relativized Results

Theorem

Relative to a random oracle A, PA = BPPA. That is,

PrA[PA = BPPA] = 1

Also,

BPPA ( NPA, relative to a random oracle A.

There exists an A such that: PA 6= RPA.

There exists an A such that: RPA 6= coRPA

There exists an A such that: RPA 6= NPA.

Corollary

There exists an A such that:

PA 6= RPA 6= NPA * BPPA
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Boolean Circuits

A Boolean Circuit is a natural model of nonuniform
computation, a generalization of hardware computational
methods.

A non-uniform computational model allows us to use a
different “algorithm” to be used for every input size, in
contrast to the standard (or uniform) Turing Machine model,
where the same T.M. is used on (infinitely many) input sizes.

Each circuit can be used for a fixed input size, which limits or
model.
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Boolean Circuits

Definition (Boolean circuits)

For every n ∈ N an n-input, single output Boolean Circuit C is a
directed acyclic graph with n sources and one sink.

All nonsource vertices are called gates and are labeled with one of ∧
(and), ∨ (or) or ¬ (not).

The vertices labeled with ∧ and ∨ have fan-in (i.e. number or
incoming edges) 2.

The vertices labeled with ¬ have fan-in 1.

The size of C , denoted by |C |, is the number of vertices in it.

For every vertex v of C , we assign a value as follows: for some input
x ∈ {0, 1}n, if v is the i-th input vertex then val(v) = xi , and
otherwise val(v) is defined recursively by applying v ’s logical
operation on the values of the vertices connected to v .

The output C (x) is the value of the output vertex.

The depth of C is the length of the longest directed path from an
input node to the output node.
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Boolean Circuits

To overcome the fixed input length size, we need to allow
families (or sequences) of circuits to be used:

Definition

Let T : N→ N be a function. A T (n)-size circuit family is a
sequence {Cn}n∈N of Boolean circuits, where Cn has n inputs and
a single output, and its size |Cn| ≤ T (n) for every n.

These infinite families of circuits are defined arbitrarily: There
is no pre-defined connection between the circuits, and also we
haven’t any ”guarantee” that we can construct them
efficiently.

Like each new computational model, we can define a
complexity class on it by imposing some restriction on a
complexity measure:
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Boolean Circuits

Definition

We say that a language L is in SIZE(T (n)) if there is a T (n)-size
circuit family {Cn}n∈N, such that ∀x ∈ {0, 1}n:

x ∈ L⇔ Cn(x) = 1

Definition

P/poly is the class of languages that are decidable by polynomial
size circuits families. That is,

P/poly =
⋃
c∈N

SIZE(nc)

Theorem (Nonuniform Hierarchy Theorem)

For every functions T ,T ′ : N→ N with 2n

n > T ′(n) > 10T (n) > n,

SIZE(T (n)) ( SIZE(T ′(n))
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Turing Machines that take advice

Definition

Let T , a : N→ N. The class of languages decidable by T (n)-time
Turing Machines with a(n) bits of advice, denoted

DTIME (T (n)/a(n))

containts every language L such that there exists a sequence
{an}n∈N of strings, with an ∈ {0, 1}a(n) and a Turing Machine M
satisfying:

x ∈ L⇔ M(x , an) = 1

for every x ∈ {0, 1}n, where on input (x , an) the machine M runs
for at most O(T (n)) steps.
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Turing Machines that take advice

Theorem (Alternative Definition of P/poly)

P/poly =
⋃

c,d∈N
DTIME(nc/nd)

Proof: (⊆) Let L ∈ P/poly. Then, ∃{Cn}n∈N : C|x | = L(x).
We can use Cn ’s encoding as an advice string for each n.
(⊇) Let L ∈ DTIME(nc/nd). Then, since CVP is P-complete, we
construct for every n a circuit Dn such that, for
x ∈ {0, 1}n, an ∈ {0, 1}a(n):

Dn(x , an) = M(x , an)

Then, let Cn(x) = Dn(x , an) (We hard-wire the advice string!)
Since a(n) = nd , the circuits have polynomial size. �.
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Relationship among Complexity Classes

Theorem

P  P/poly

For “⊆”, recall that CVP is P-complete.

But why proper inclusion?

Consider the following language:

U = {1n|n’s binary expression encodes a pair < M, x > s.t. M(x) ↓}

It is easy to see that U ∈ P/poly, but....

Theorem (Karp-Lipton Theorem)

If NP ⊆ P/poly, then PH = Σp
2 .

Theorem (Meyer’s Theorem)

If EXP ⊆ P/poly, then EXP = Σp
2 .
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Relationship among Complexity Classes

Uniform Families of Circuits

We saw that P/poly contains an undecidable language.

The root of this problem lies in the “weak” definition of such
families, since it suffices that ∃ a circuit family for L.

We haven’t a way (or an algorithm) to construct such a family.

So, may be useful to restric or attention to families we can
construct efficiently:

Theorem (P-Uniform Families)

A circuit family {Cn}n∈N is P-uniform if there is a polynomial-time
T.M. that on input 1n outputs the description of the circuit Cn.

But...

Theorem

A language L is computable by a P-uniform circuit family iff L ∈ P.
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Relationship among Complexity Classes

Theorem

BPP ⊂ P/poly

Proof: Recall that if L ∈ BPP, then ∃ PTM M such that:

Prr∈{0,1}poly(n) [M(x , r) 6= L(x)] < 2−n

Then, taking the union bound:

Pr [∃x ∈ {0, 1}n : M(x , r) 6= L(x)] = Pr

 ⋃
x∈{0,1}n

M(x , r) 6= L(x)

 ≤
≤

∑
x∈{0,1}n

Pr [M(x , r) 6= L(x)] < 2−n + · · ·+ 2−n = 1

So, ∃rn ∈ {0, 1}poly(n), s.t. ∀x{0, 1}n: M(x , r) = L(x).
Using {rn}n∈N as advice string, we have the non-uniform machine.

�
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Relationship among Complexity Classes

Theorem

The following are equivalent:

1 A ∈ P/poly.

2 There exists a sparse set S such that A ≤P
T S.

Corollary

Every sparse set has polynomial-size circuits.
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Relationship among Complexity Classes

Definition (Circuit Complexity or Worst-Case Hardness)

For a finite Boolean Function f : {0, 1}n → {0, 1}, we define the
(circuit) complexity of f as the size of the smallest Boolean Circuit
computing f (that is, C (x) = f (x), ∀x ∈ {0, 1}n).

Definition (Average-Case Hardness)

The minimum S such that there is a circuit C of size S such that:

Pr [C (x) = f (x)] ≥ 1

2
+

1

S

is called the (average-case) hardness of f .



Randomized Computation Non-Uniform Complexity

Relationship among Complexity Classes

Hierarchies for Semantic Classes with advice

We have argued why we can’t obtain Hierarchies for semantic
measures using classical diagonalization techniques. But using
small advice we can have the following results:

Theorem ([Bar02], [GST04])

For a, b ∈ R, with 1 ≤ a < b:

BPTIME(na)/1  BPTIME(nb)/1

Theorem ([FST05])

For any 1 ≤ a ∈ R there is a real b > a such that:

RTIME(nb)/1  RTIME(na)/ log(n)1/2a
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The Quest for Lower Bounds

Circuit Lower Bounds

The significance of proving lower bounds for this
computational model is related to the famous ”P vs NP”
problem, since:

NPr P/poly 6= ∅ ⇒ P 6= NP

But...after decades of efforts, The best lower bound for an
NP language is 5n − o(n), proved very recently (2005).

There are better lower bounds for some special cases, i.e.
some restricted classes of circuits, such as: bounded depth
circuits, monotone circuits, and bounded depth circuits with
”counting” gates.
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The Quest for Lower Bounds

Definition

Let PAR : {0, 1}n → {0, 1} be the parity function, which outputs
the modulo 2 sum of an n-bit input. That is:

PAR(x1, ..., xn) ≡
n∑

i=1

xi ( mod 2)

Theorem

For all constant d, PAR has no polynomial-size circuit of depth d.

The above result (improved by Håstad and Yao) gives a
relatively tight lower bound of exp

(
Ω(n1/(d−1))

)
, on the size

of n-input PAR circuits of depth d .
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The Quest for Lower Bounds

Definition

For x , y ∈ {0, 1}n, we denote x � y if every bit that is 1 in x is
also 1 in y . A function f : {0, 1}n → {0, 1} is monotone if
f (x) ≤ f (y) for every x � y .

Definition

A Boolean Circuit is monotone if it contains only AND and OR
gates, and no NOT gates. Such a circuit can only compute
monotone functions.

Theorem (Monotone Circuit Lower Bound for CLIQUE)

Denote by CLIQUEk,n : {0, 1}(
n
2) → {0, 1} the function that on

input an adjacency matrix of an n-vertex graph G outputs 1 iff G
contains an k-clique. There exists some constant ε > 0 such that
for every k ≤ n1/4, there is no monotone circuit of size less than

2ε
√
k that computes CLIQUEk,n.
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The Quest for Lower Bounds

So, we proved a significant lower bound (2Ω(n1/8))

The significance of the above theorem lies on the fact that
there was some alleged connection between monotone and
non-monotone circuit complexity (e.g. that they would be
polynomially related). Unfortunately, Éva Tardos proved in
1988 that the gap between the two complexities is
exponential.

Where is the problem finally?
Today, we know that a result for a lower bound using such
techniques would imply the inversion of strong one-way
functions:
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Epilogue: What’s Wrong?

*Natural Proofs [Razborov, Rudich 1994]

Definition

Let P be the predicate:

”A Boolean function f : {0, 1}n → {0, 1} doesn’t have nc -sized
circuits for some c ≥ 1.”

P(f ) = 0,∀f ∈ SIZE(nc) for a c ≥ 1. We call this nc -usefulness.

A predicate P is natural if:

There is an algorithm M ∈ E such that for a function
g : {0, 1}n → {0, 1}: M(g) = P(g).

For a random function g : Pr [P(g) = 1] ≥ 1
n

Theorem

If strong one-way functions exist, then there exists a constant c ∈ N such
that there is no nc -useful natural predicate P.
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Introduction

Introduction

“Maybe Fermat had a proof! But an important party was
certainly missing to make the proof complete: the
verifier. Each time rumor gets around that a student
somewhere proved P = NP, people ask “Has Karp seen
the proof?” (they hardly even ask the student’s name).
Perhaps the verifier is most important that the prover.”
(from [BM88])

The notion of a mathematical proof is related to the
certificate definition of NP.

We enrich this scenario by introducing interaction in the
basic scheme:
The person (or TM) who verifies the proof asks the person
who provides the proof a series of ”queries”, before he is
convinced, and if he is, he provide the certificate.
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Introduction

Introduction

The first person will be called Verifier, and the second
Prover.

In our model of computation, Prover and Verifier are
interacting Turing Machines.

We will categorize the various proof systems created by using:

various TMs (nondeterministic, probabilistic etc)
the information exchanged (private/public coins etc)
the number of TMs (IPs, MIPs,...)
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Introduction

Warmup: Interactive Proofs with deterministic Verifier

Definition (Deterministic Proof Systems)

We say that a language L has a k-round deterministic interactive
proof system if there is a deterministic Turing Machine V that on
input x , α1, α2, . . . , αi runs in time polynomial in |x |, and can have
a k-round interaction with any TM P such that:

x ∈ L⇒ ∃P : 〈V ,P〉(x) = 1 (Completeness)

x /∈ L⇒ ∀P : 〈V ,P〉(x) = 0 (Soundness)

The class dIP contains all languages that have a k-round
deterministic interactive proof system, where p is polynomial in the
input length.

〈V ,P〉(x) denotes the output of V at the end of the
interaction with P on input x , and αi the exchanged strings.
The above definition does not place limits on the
computational power of the Prover!
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Introduction

Warmup: Interactive Proofs with deterministic Verifier

But...

Theorem

dIP = NP

Proof: Trivially, NP ⊆ dIP. X
Let L ∈ dIP:

A certificate is a transcript (α1, . . . , αk) causing V to accept,
i.e. V (x , α1, . . . , αk) = 1.
We can efficiently check if V (x) = α1, V (x , α1, α2) = α3

etc...
If x ∈ L such a transcript exists!
Conversely, if a transcript exists, we can define define a proper
P to satisfy: P(x , α1) = α2, P(x , α1, α2, α3) = α4 etc., so
that 〈V ,P〉(x) = 1, so x ∈ L.

So L ∈ NP! �
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The class IP

Probabilistic Verifier: The Class IP

We saw that if the verifier is a simple deterministic TM, then
the interactive proof system is described precisely by the class
NP.

Now, we let the verifier be probabilistic, i.e. the verifier’s
queries will be computed using a probabilistic TM:

Definition (Goldwasser-Micali-Rackoff)

For an integer k ≥ 1 (that may depend on the input length), a
language L is in IP[k] if there is a probabilistic polynomial-time
T.M. V that can have a k-round interaction with a T.M. P such
that:

x ∈ L⇒ ∃P : Pr [〈V ,P〉(x) = 1] ≥ 2
3 (Completeness)

x /∈ L⇒ ∀P : Pr [〈V ,P〉(x) = 1] ≤ 1
3 (Soundness)
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The class IP

Probabilistic Verifier: The Class IP

Definition

We also define:
IP =

⋃
c∈N

IP[nc ]

The “output” 〈V ,P〉(x) is a random variable.

We’ll see that IP is a very large class! (⊇ PH)

As usual, we can replace the completeness parameter 2/3 with
1− 2−n

s
and the soundness parameter 1/3 by 2−n

s
, without

changing the class for any fixed constant s > 0.

We can also replace the completeness constant 2/3 with 1
(perfect completeness), without changing the class, but
replacing the soundness constant 1/3 with 0, is equivalent
with a deterministic verifier, so class IP collapses to NP.
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The class IP

Interactive Proof for Graph Non-Isomorphism

Definition

Two graphs G1 and G2 are isomorphic, if there exists a
permutation π of the labels of the nodes of G1, such that
π(G1) = G2. If G1 and G2 are isomorphic, we write G1

∼= G2.

GI: Given two graphs G1,G2, decide if they are isomorphic.

GNI: Given two graphs G1,G2, decide if they are not
isomorphic.

Obviously, GI ∈ NP and GNI ∈ coNP.

This proof system relies on the Verifier’s access to a private
random source which cannot be seen by the Prover, so we
confirm the crucial role the private coins play.
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The class IP

Interactive Proof for Graph Non-Isomorphism

Verifier: Picks i ∈ {1, 2} uniformly at random.
Then, it permutes randomly the vertices of Gi to get a
new graph H. Is sends H to the Prover.
Prover: Identifies which of G1, G2 was used to produce H.
Let Gj be the graph. Sends j to V .
Verifier: Accept if i = j . Reject otherwise.

If G1 � G2, then the powerfull prover can (nondeterministivally)
guess which one of the two graphs is isomprphic to H, and so the
Verifier accepts with probability 1.

If G1
∼= G2, the prover can’t distinguish the two graphs, since a

random permutation of G1 looks exactly like a random permutation

of G2. So, the best he can do is guess randomly one, and the

Verifier accepts with probability (at most) 1/2, which can be

reduced by additional repetitions.
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The class IP

Interactive Proof for Graph Non-Isomorphism

Verifier: Picks i ∈ {1, 2} uniformly at random.
Then, it permutes randomly the vertices of Gi to get a
new graph H. Is sends H to the Prover.
Prover: Identifies which of G1, G2 was used to produce H.
Let Gj be the graph. Sends j to V .
Verifier: Accept if i = j . Reject otherwise.

If G1 � G2, then the powerfull prover can (nondeterministivally)
guess which one of the two graphs is isomprphic to H, and so the
Verifier accepts with probability 1.

If G1
∼= G2, the prover can’t distinguish the two graphs, since a

random permutation of G1 looks exactly like a random permutation

of G2. So, the best he can do is guess randomly one, and the

Verifier accepts with probability (at most) 1/2, which can be

reduced by additional repetitions.



Interactive Proofs Counting Complexity

Arthur-Merlin Games

Babai’s Arthur-Merlin Games

Definition (Extended (FGMSZ89))

An Arhur-Merlin Game is a pair of interactive TMs A and M, and
a predicate R such that:

On input x , exactly 2q(|x |) messages of length m(|x |) are
exchanged, q,m ∈ poly(|x |).

A goes first, and at iteration 1 ≤ i ≤ q(|x |) chooses u.a.r. a
string ri of length m(|x |).

M’s reply in the i th iteration is yi = M(x , r1, . . . , ri ) (M’s
strategy).

For every M ′, a conversation between A and M ′ on input x
is r1y1r2y2 · · · rq(|x |)yq(|x |).

The set of all conversations is denoted by CONV M′
x ,

|CONV M′
x | = 2q(|x |)m(|x |).
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Arthur-Merlin Games

Babai’s Arthur-Merlin Games

Definition (cont’d)

The predicate R maps the input x and a conversation to a
Boolean value.

The set of accepting conversations is denoted by ACCR,M
x ,

and is the set:

{r1 · · · rq|∃y1 · · · yq s.t. r1y1 · · · rqyq ∈ CONV M
x ∧R(r1y1 · · · rqyq) = 1}

A language L has an Arthur-Merlin proof system if:

There exists a strategy for M, such that for all x ∈ L:
ACCR,M

x

CONVM
x
≥ 2

3 (Completeness)

For every strategy for M, and for every x /∈ L:
ACCR,M

x

CONVM
x
≤ 1

3

(Soundness)



Interactive Proofs Counting Complexity

Arthur-Merlin Games

Definitions

So, with respect to the previous IP definition:

Definition

For every k , the complexity class AM[k] is defined as a subset to
IP[k] obtained when we restrict the verifier’s messages to be
random bits, and not allowing it to use any other random bits that
are not contained in these messages.
We denote AM ≡ AM[2].

Merlin → Prover

Arthur → Verifier
Also, the class MA consists of all languages L, where there’s an
interactive proof for L in which the prover first sending a message,
and then the verifier is ”tossing coins” and computing its decision
by doing a deterministic polynomial-time computation involving the
input, the message and the random output.
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Arthur-Merlin Games

Definitions
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Arthur-Merlin Games

Public vs. Private Coins

Theorem

GNI ∈ AM[2]

Theorem

For every p ∈ poly(n):

IP (p(n)) = AM(p(n) + 2)

So,
IP[poly ] = AM[poly ]
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Arthur-Merlin Games

Properties of Arthur-Merlin Games

MA ⊆ AM

MA[1] = NP, AM[1] = BPP

AM could be intuitively approached as the probabilistic
version of NP (usually denoted as AM = BP·NP).

AM ⊆ Πp
2 and MA ⊆ Σp

2 ∩ Πp
2 .

NPBPP ⊆MA, MABPP = MA, AMBPP = AM and
AM∆Σp

1 = AMNP∩coNP = AM

If we consider the complexity classes AM[k] (the languages
that have Arthur-Merlin proof systems of a bounded number
of rounds, they form an hierarchy:

AM[0] ⊆ AM[1] ⊆ · · · ⊆ AM[k] ⊆ AM[k + 1] ⊆ · · ·

Are these inclusions proper ? ? ?
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Arthur-Merlin Games

Properties of Arthur-Merlin Games

NP // MA //

$$JJJJJJJJJJ Σp
2

AM

��----------------------

P //
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coNP // coMA //
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2
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Arthur-Merlin Games

Properties of Arthur-Merlin Games

Proper formalism (Zachos et al.):

Definition (Majority Quantifier)

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a predicate, and ε a rational
number, such that ε ∈

(
0, 1

2

)
. We denote by (∃+y , |y | = k)R(x , y)

the following predicate:

“There exist at least
(

1
2 + ε

)
· 2k strings y of length m

for which R(x , y) holds.”

We call ∃+ the overwhelming majority quantifier.

∃+
r means that the fraction r of the possible certificates of a

certain length satisfy the predicate for the certain input.

Obviously, ∃+ = ∃+
1/2+ε = ∃+

2/3 = ∃+
3/4 = ∃+

0.99 = ∃+
1−2−p(|x|)
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Arthur-Merlin Games

Properties of Arthur-Merlin Games

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃,∀,∃+}, the class
C of languages L satisfying:

x ∈ L⇒ Q1y R(x , y)

x /∈ L⇒ Q2y ¬R(x , y)

So: P = (∀/∀), NP = (∃/∀), coNP = (∀/∃)
BPP = (∃+/∃+), RP = (∃+/∀), coRP = (∀/∃+)

Arthur-Merlin Games

AM = BP ·NP = (∃+∃/∃+∀)

MA = N · BPP = (∃∃+/∀∃+)

Similarly: AMA = (∃+∃∃+/∃+∀∃+) etc.
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Properties of Arthur-Merlin Games
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Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem

i MA = (∃∀/∀∃+)

ii AM = (∀∃/∃+∀)

Proof:

Lemma

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀) (1) (BPP-Theorem)

(∃∀/∀∃+) ⊆ (∀∃/∃+∀) (2)

i) MA = N · BPP = (∃∃+/∀∃+)
(1)
= (∃∃+∀/∀∀∃+) ⊆ (∃∀/∀∃+)

(the last inclusion holds by quantifier contraction). Also,
(∃∀/∀∃+) ⊆ (∃∃+/∀∃+) = MA.
ii) Similarly,
AM = BP ·NP = (∃+∃/∃+∀) = (∀∃+∃/∃+∀∀) ⊆ (∀∃/∃+∀).
Also, (∀∃/∃+∀) ⊆ (∃+∃/∃+∀) = AM.
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Properties of Arthur-Merlin Games
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BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀) (1) (BPP-Theorem)

(∃∀/∀∃+) ⊆ (∀∃/∃+∀) (2)

i) MA = N · BPP = (∃∃+/∀∃+)
(1)
= (∃∃+∀/∀∀∃+) ⊆ (∃∀/∀∃+)

(the last inclusion holds by quantifier contraction). Also,
(∃∀/∀∃+) ⊆ (∃∃+/∀∃+) = MA.
ii) Similarly,
AM = BP ·NP = (∃+∃/∃+∀) = (∀∃+∃/∃+∀∀) ⊆ (∀∃/∃+∀).
Also, (∀∃/∃+∀) ⊆ (∃+∃/∃+∀) = AM.
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Properties of Arthur-Merlin Games

Theorem

MA ⊆ AM

Proof:
Obvious from (2): (∃∀/∀∃+) ⊆ (∀∃/∃+∀). �

Theorem

i AM ⊆ Πp
2

ii MA ⊆ Σp
2 ∩ Πp

2

Proof:
i) AM = (∀∃/∃+∀) ⊆ (∀∃/∃∀) = Πp

2

ii) MA = (∃∀/∀∃+) ⊆ (∃∀/∀∃) = Σp
2 , and

MA ⊆ AM⇒MA ⊆ Πp
2 . So, MA ⊆ Σp

2 ∩ Πp
2 . �
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Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM



Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM



Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM



Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM



Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM



Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM



Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Proof:

The general case is implied by the generalization of
BPP-Theorem (1) & (2):

(Q1∃+Q2/Q3∃+Q4) = (Q1∃+∀Q2/Q3∀∃+Q4) =
(Q1∀∃+Q2/Q3∃+∀Q4) (1′)

(Q1∃∀Q2/Q3∀∃+Q4) ⊆ (Q1∀∃Q2/Q3∃+∀Q4) (2′)

Using the above we can easily see that the Arthur-Merlin
Hierarchy collapses at the second level. (Try it!) �
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Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP ⊆ AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH = Σp

2 = AM.

Proof: Our hypothesis states: (∀/∃) ⊆ (∀∃/∃+∀)
Then:

Σp
2 = (∃∀/∀∃)

Hyp.
⊆ (∃∀∃/∀∃+∀)

(2)

⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) =
AM ⊆ (∀∃/∃∀) = Πp

2 . �
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Arthur-Merlin Games

Measure One Results

PA 6= NPA, for almost all oracles A.

PA = BPPA, for almost all oracles A.

NPA = AMA, for almost all oracles A.

Definition

almostC =
{

L|PrA∈{0,1}∗
[
L ∈ CA

]
= 1
}

Theorem

i almostP = BPP [BG81]

ii almostNP = AM [NW94]

iii almostPH = PH
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Arthur-Merlin Games

Measure One Results

Theorem (Kurtz)

For almost every pair of oracles B,C :

i BPP = PB ∩ PC

ii almostNP = NPB ∩NPC

Indicative Open Questions

Does exist an oracle separating AM from almostNP?

Is almostNP contained in some finite level of
Polynomial-Time Hierarchy?

Motivated by [BHZ] : If coNP ⊆ almostNP, does it follow
that PH collapses?
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Arithmetization

The power of Interactive Proofs

As we saw, Interaction alone does not gives us computational
capabilities beyond NP.

Also, Randomization alone does not give us significant power
(we know that BPP ⊆ Σp

2 , and many researchers believe that
P = BPP, which holds under some plausible assumptions).

How much power could we get by their combination?

We know that for fixed k ∈ N, IP[k] collapses to

IP[k] = AM = BP ·NP

a class that is “close” to NP (under similar assumptions, the

non-deterministic analogue of P vs. BPP is NP vs. AM.)

If we let k be a polynomial in the size of the input, how much
more power could we get?
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Arithmetization

The power of Interactive Proofs

Surprisingly:

Theorem (L.F.K.N. & Shamir)

IP = PSPACE
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Arithmetization

The power of Interactive Proofs

Lemma 1

IP ⊆ PSPACE
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Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Lemma 2

PSPACE ⊆ IP

For simplicity, we will construct an Interactive Proof for
UNSAT (a coNP-complete problem), showing that:

Theorem

coNP ⊆ IP

Let N be a prime.

We will translate a formula φ with m clauses and n variables
x1, . . . , xn to a polynomial p over the field (modN) (where
N > 2n · 3m), in the following way:
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Shamir’s Theorem

Arithmetization

Arithmetic generalization of a CNF Boolean Formula.

T −→ 1
F −→ 0
¬x −→ 1− x
∧ −→ ×
∨ −→ +

Example

(x3 ∨ ¬x5 ∨ x17) ∧ (x5 ∨ x9) ∧ (¬x3 ∨ x4)
↓

(x3 + (1− x5) + x17) · (x5 + x9) · ((1− x3) + (1− x4))

Each literal is of degree 1, so the polynomial p is of degree at
most m.
Also, 0 < p < 3m.
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Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)
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Warmup: Interactive Proof for UNSAT

If φ is unsatisfiable,then∑
x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

p(x1, . . . , xn) ≡ 0 (modN)

and the protocol will succeed.

Also, the arithmetization can be done in polynomial time, and
if we take N = 2O(n+m), then the elements in the field can be
represented by O(n + m) bits, and thus an evaluation of p in
any point of {0, . . . ,N − 1} can be computed in polynomial
time.

We have to show that if φ is satisfiable, then the verifier will
reject with high probability.

If φ is satisfiable, then∑
x1∈{0,1}

∑
x2∈{0,1} · · ·

∑
xn∈{0,1} p(x1, . . . , xn) 6= 0 (modN)
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So, p1(01) + p1(1) 6= 0, so if the prover send p1 we ’re done.

If the prover send q1 6= p1, then the polynomials will agree on
at most m places. So, Pr [p1(r1) 6= q1(r1)] ≥ 1− m

N .

If indeed p1(r1) 6= q1(r1) and the prover sends p2 = q2, then
the verifier will reject since q2(0) + q2(1) = p1(r1) 6= q1(r1).

Thus, the prover must send q2 6= p2.

We continue in a similar way: If qi 6= pi , then with probability
at least 1− m

N , ri is such that qi (ri ) 6= pi (ri ).

Then, the prover must send qi+1 6= pi+1 in order for the
verifier not to reject.

At the end, if the verifier has not rejected before the last
check, Pr [pn 6= qn] ≥ 1− (n − 1)mN .

If so, with probability at least 1− m
N the verifier will reject

since, qn(x) and p(r1, . . . , rn−1, x) differ on at least that
fraction of points.

The total probability that the verifier will accept if at most nm
N .
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Arithmetization of QBF

∃ −→
∑

∀ −→
∏

Example

∀x1∃x2[(x1 ∧ x2) ∨ ∃x3(x̄2 ∧ x3)]

↓

∏
x1∈{0,1}

∑
x2∈{0,1}

(x1 · x2) +
∑

x3∈{0,1}

(1− x2) · x3


Theorem

A closed QBF is true if and only if tha value of its arithmetic form
is non-zero.
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Arithmetization of QBF

If a QBF is true, its value could be quite large:

Theorem

Let A be a closed QBF of size n. Then, the value of its arithmetic
form cannot exceed O

(
22n
)
.

Since such numbers cannot be handled by the protocol, we
reduce them modulo some -smaller- prime p:

Theorem

Let A be a closed QBF of size n. Then, there exists a prime p of
length polynomial in n, such that its arithmetization

A′ 6= 0(modp)⇔ A is true.
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Shamir’s Theorem

Arithmetization of QBF

A QBF with all the variables quantified is called closed, and
can be evaluated to either True or False.

An open QBF with k > 0 free variables can be interpreted as
a boolean function {0, 1}k → {0, 1}.
Now, consider the language of all true quantified boolean
formulas:

TQBF = {Φ|Φ is a true quantified Boolean formula}

It is known that TQBF is a PSPACE-complete language!

So, if we have a interactive proof protocol recognizing TQBF,
then we have a protocol for every PSPACE language.
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Shamir’s Theorem

Protocol for TQBF

Given a quantified formula

Ψ = ∀x1∃x2∀x3 · · · ∃xn φ(x1, . . . , xn)

we use arithmetization to construct the polynomial Pφ. Then,
Ψ ∈ TQBF if and only if∏

b1∈{0,1}∗

∑
b2∈{0,1}∗

∏
b3∈{0,1}∗

· · ·
∑

bn∈{0,1}∗
Pφ(b1, . . . , bn) 6= 0
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PCPs

Epilogue: Probabilistically Checkable Proofs

But if we put a proof instead of a Prover?

The alleged proof is a string, and the (probabilistic)
verification procedure is given direct (oracle) access to the
proof.

The verification procedure can access only few locations in the
proof!

We parameterize these Interactive Proof Systems by two
complexity measures:

Query Complexity
Randomness Complexity

The effective proof length of a PCP system is upper-bounded
by q(n) · 2r(n) (in the non-adaptive case).
(How long can be in the adaptive case?)
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PCP Definitions

Definition

PCP Verifiers Let L be a language and q, r : N→ N. We say that
L has an (r(n), q(n))-PCP verifier if there is a probabilistic
polynomial-time algorithm V (the verifier) satisfying:

Efficiency: On input x ∈ {0, 1}∗ and given random oracle access to
a string π ∈ {0, 1}∗ of length at most q(n) · 2r(n) (which we call the
proof), V uses at most r(n) random coins and makes at most q(n)
non-adaptive queries to locations of π. Then, it accepts or rejects.
Let V π(x) denote the random variable representing V ’s output on
input x and with random access to π.

Completeness: If x ∈ L, then ∃π ∈ {0, 1}∗ : Pr [V π(x) = 1] = 1

Soundness: If x /∈ L, then ∀π ∈ {0, 1}∗ : Pr [V π(x) = 1] ≤ 1
2

We say that a language L is in PCP(r(n), q(n)) if L has a
(O(r(n)),O(q(n)))-PCP verifier.
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PCPs

Main Results

Obviously:

PCP(0, 0) = ?
PCP(0, poly) = ?
PCP(poly , 0) = ?

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

The PCP Theorem

NP = PCP(log n, 1)
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PCPs

Main Results

The restriction that the proof length is at most q2r is
inconsequential, since such a verifier can look on at most this
number of locations.

We have that PCP[r(n), q(n)] ⊆ NTIME[2O(r(n))q(n)], since
a NTM could guess the proof in 2O(r(n))q(n) time, and verify
it deterministically by running the verifier for all 2O(r(n))

possible choices of its random coin tosses. If the verifier
accepts for all these possible tosses, then the NTM accepts.
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Introduction

Why counting?

So far, we have seen two versions of problems:

Decision Problems (if a solution exists)
Function Problems (if a solution can be produced)

A very important type of problems in Complexity Theory is
also:

Counting Problems (how many solution exist)

Example (#SAT)

Given a Boolean Expression, compute the number of different truth
assignments that satisfy it.

Note that if we can solve #SAT in polynomial time, we can
solve SAT also.

Similarly, we can define #HAMILTON PATH, #CLIQUE, etc.
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Introduction

Basic Definitions

Definition (#P)

A function f : {0, 1}∗ → N is in #P if there exists a polynomial
p : N→ N and a polynomial-time Turing Machine M such that for
every x ∈ {0, 1}∗:

f (x) = |{y ∈ {0, 1}p(|x |) : M(x , y) = 1}|

The definition implies that f (x) can be expressed in poly(|x |) bits.

Each function f in #P is equal to the number of paths from an
initial configuration to an accepting configuration, or
accepting paths in the configuration graph of a poly-time NDTM.

FP ⊆ #P ⊆ PSPACE

If #P = FP, then P = NP.

If P = PSPACE, then #P = FP.
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Introduction

In order to formalize a notion of completeness for #P, we
must define proper reductions:

Definition (Cook Reduction)

A function f is #P-complete if it is in #P and every g ∈ #P is in
FPg .

As we saw, for each problem in NP we can define the
associated counting problem: If A ∈ NP, then
#A(x) = |{y ∈ {0, 1}p(|x |) : RA(x , y) = 1}| ∈ #P

We now define a more strict form of reduction:

Definition (Parsimonious Reduction)

We say that there is a parsimonious reduction from #A to #B if
there is a polynomial time transformation f such that for all x :

|{y : RA(x , y) = 1}| = |{z : RB(f (x), z) = 1}|
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Introduction

Completeness Results

Theorem

#CIRCUIT SAT is #P-complete.

Proof:

Let f ∈ #P. Then, ∃M, p:
f = |{y ∈ {0, 1}p(|x |) : M(x , y) = 1}|.
Given x , we want to construct a circuit C such that:

|{z : C (z)}| = |{y : y ∈ {0, 1}p(|x |,M(x , y) = 1}|

We can construct a circuit Ĉ such that on input x , y
simulates M(x , y).

We know that this can be done with a circuit with size about
the square of M’s running time.

Let C (y) = Ĉ (x , y). �
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Introduction

Completeness Results

Theorem

#SAT is #P-complete.

Proof:

We reduce #CIRCUIT SAT to #SAT:

Let a circuit C , with x1, . . . , xn input gates and 1, . . . ,m gates.

We construct a Boolean formula φ with variables
x1, . . . , xn, g1, . . . , gm, where gi represents the output of gate
i .

A gate can be complete described by simulating the output
for each of the 4 possible inputs.

In this way, we have reduced C to a formula φ with n + m
variables and 4m clauses. �
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Valiant’s Theorem

The Permanent

Definition (PERMANENT)

For a n × n matrix A, the permanent of A is:

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

Permanent is similar to the determinant, but it seems more
difficult to compute.
Combinatorial interpretation: If A has entries ∈ {0, 1}, it can
be viewed as the adjacency matrix of a bipartite graph
G (X ,Y ,E ) with X = {x1, . . . , xn}, Y = {y1, . . . , yn} and
{xi , yi} ∈ E iff Ai ,j = 1.

The term
∏n

i=1 Ai ,σ(i) is 1 iff σ has a perfect matching.
So, in this case perm(A) is the number of perfect matchings
in the corresponding graph!
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Valiant’s Theorem

Theorem (Valiant’s Theorem)

PERMANENT is #P-complete.

Notice that the decision version of PERMANENT is in P ! !
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Toda’s Theorem

Quantifiers vs Counting

An imporant open question in the 80s concerned the relative
power of Polynomial Hierarchy and #P.

Both are natural generalizations of NP, but it seemed that
their features were not directly comparable to each other.

But, in 1989, S. Toda showed the following theorem:

Theorem (Toda’s Theorem)

PH ⊆ P#P[1]
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Toda’s Theorem

The Class ⊕P

Definition

A language L is in the class ⊕P if there is a NDTM M such that
for all strings x , x ∈ L iff the number of accepting paths on input
x is odd.

The problems ⊕SAT and ⊕HAMILTON PATH are ⊕P-complete.

⊕P is closed under complement.

Theorem

NP ⊆ RP⊕P
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