The classes L and NL,

Savitch's, Immerman-Szelepscényi, Reingold's Theorems

Christos Moyzes
MPLA 2012-2013

Quick Reminders / Definitions

Consider a Turing Machine with 3 tapes

A problem is in $\operatorname{SPACE}(s(n))$ iff a TM uses $s(n)$ space for work and output tapes A problem is in $\operatorname{NSPACE}(s(n))$ iff a NTM uses $s(n)$ space for work and output tapes

$$
L=\operatorname{SPACE}(\mathrm{O}(\operatorname{logn})) \quad N L=\operatorname{NSPACE}(\mathrm{O}(\log n))
$$

$\mathrm{n}=$ the length of input x

Theorem If a machine halts, and uses space $\mathrm{s}(\mathrm{n}) \geq \operatorname{logn}$, it runs in time $2^{00(s(n))}$

- configuration : the specific state, position of header(s), contents of tape(s)
- So number of possible configurations is states (finite) * length of input x * possible (binary) strings of length $s(n)$ hence $\mathrm{O}(1)^{*} \mathrm{n}^{*} 2^{\mathrm{s}(\mathrm{n})}=2^{\mathrm{O}(\mathrm{s}(\mathrm{n}))+\operatorname{logn}}=2^{\mathrm{O}(s(n))}$
- It takes 1 step to visit every state and that is only once (otherwise machine would not halt) so \#configurations $=$ time $=2^{0(s(n))}$

Theorem NL $\subseteq P$

- It still holds \#configurations $=2^{O(s(n))}=2^{O(\operatorname{logn})}=n^{O(1)}$
- Consider directed graph with vertices = configurations Configuration Graph edges = allowable transitions
- Question is : Starting from original state is there an acceptance state?
- We run algorithm for REACHABILITY for each such acceptance "vertex"
- There are polynomially many destination vertices and REACHABILITY is solved polynomially so we are still in P.

What about reductions?

- For P,NP we reduce in polynomial time Should we do the same for L,NL ? NO because NL $\subseteq \mathbf{P}$ We will be reducing problems in log space
- Suppose M_{f} computes f

Problem: If M_{f} computes f and output $|f(x)|>\operatorname{logn}$ how is M_{f} working in log space? Solution: We will ask M_{f} for only 1 bit at a time.

Definition : A is \log space reducible to $B, A \leq_{\log } B$ iff \exists a function f implicitly computable in log space such that $x \in A \Leftrightarrow f(x) \in B$

Theorem If $A \leq_{\log } B$ and $B \in L \Rightarrow A \in L$

- M_{B} wants to read bit i of $f(x)$ and "asks" M_{f}
- M_{f} computes the bit in log space and writes it on output tape.
- repeat

Definition

A is NL-Hard if $\forall B \in N L, B \leq_{\log } A$
A is NL-Complete iff A is NL-Hard \& $A \in N L$

The P-NP analog

$L \subseteq N L \subseteq P \subseteq N P \subseteq P S P A C E \subseteq E X P$

REACHABILITY(s,t) is NL-Complete

Reachability \in NL

- For every vertex, starting at s, non-deterministically choose neighbor to go to.
- If you reach t in at most n steps then YES
- If you don't reach t in n steps then NO
- We only need to remember the index of the vertex and the number of steps so far. They are numbers at most n, so 2 * logn space to represent, hence $O(\operatorname{logn})$

Reachability is NL-hard

- Let $A \in N L, M_{A}$ the machine that decides it, x input of M_{A}. We compute (implicitly) the configuration graph of $M_{A}(x)$.
- We add a vertex t and add edges from all accepting vertexes to t .
- $M_{A}(x)$ accepts \Leftrightarrow REACHABILITY($\left.s, t\right)$ returns YES
- The reduction f is in log space:
f need only answer for two vertices at a time so O(logn) space for them.
Also a sub-routine than can check if transition is allowable is relatively easy.

Theorem (Savitch) NSPACE(f(n)) $\subseteq \operatorname{SPACE}^{\left(f^{2}(n)\right)}$

- Let $A \in \operatorname{NSPACE}(f(n))$. The configuration graph $G(V, E)$ has $2^{0(f(n))}$ vertices.
- Deterministic recursive algorithm:

Reach($\mathrm{s}, \mathrm{t}, 1$): $(\mathrm{s}, \mathrm{t}) \in \mathrm{E}$
Reach(s, t, k): $\forall w \in V \backslash\{s, t\}$ compute Reach(s, w,[k/2]) and Reach(w, t,[k/2])
If they both accept, accept. Else, reject.

- Space: $S(1)=O(f(n))$ to remember what edge we're checking
$\mathrm{S}(\mathrm{k})=\mathrm{O}(\mathrm{f}(\mathrm{n}))$ to remember $\mathrm{w}+\mathrm{S}(\mathrm{k} / 2)$
$\Rightarrow \mathrm{S}(\mathrm{k})=\mathrm{O}(\mathrm{f}(\mathrm{n}))^{*} \log \mathrm{k}=\mathrm{O}(\mathrm{f}(\mathrm{n}))^{*} \mathrm{O}(\mathrm{f}(\mathrm{n}))=\mathrm{O}\left(\mathrm{f}^{2}(\mathrm{n})\right)$
- This is still the one with the best known space bound.
- Time: $\mathrm{T}(1)=\mathrm{O}(|\mathrm{V}|+|E|)$
$\mathrm{T}(\mathrm{k})=\mathrm{O}(1)+\mathrm{n}^{*} 2 * \mathrm{~T}(\mathrm{k} / 2)$
This solves to $T(k)=n^{\circ}{ }^{(\text {logk })}$ (superpolynomial)
- No known algorithm achieves polynomial log-space and polynomial time simultaneously

Corollaries:

- REACHABILITY \in SPACE $\left(\log ^{2} n\right)$
- NPSPACE = PSPACE
- Non-determinism is less powerful with respect to space than to time.

Theorem (Immerman-Szelepcsényi) NSPACE = coNSPACE

Based on NL=coNL

- REACHABILITY' is coNL-complete
- We need to show REACHABILITY' \in NL then we have coNL $\subseteq \mathrm{NL}$
- Similarly REACHABILITY' \in NL \Rightarrow
\Rightarrow REACHABILITY $\in \operatorname{co~NL~}$
$\Rightarrow \mathrm{NL} \subseteq \mathrm{coNL}$

Idea for REACHABILITY' \in NL

- Algorithm 1
input: G = (V, E), s, t, r
output: YES if it discovers that t is not reachable from s, and NO otherwise
assumption: there are exactly r distinct vertices reachable from s
- Algorithm 2 (find r) input: $G=(V, E), s, k, r_{k-1}$ output: the number of vertices reachable from s in at most k steps (including s in this count) assumption: r_{k-1} is the exact number of vertices reachable from s in at most $\mathrm{k}-1$ steps

Certificate Definition of NL

We can copy the certificate definition for NP.
Problem : If certificate $p(x)$ is polynomially long, log space work tape can't hold it.
Solution : We allow extra "read once" input tape

Definition $2 A \in N L$ iff there exists log space TM M such that $x \in A \Leftrightarrow \exists u|u|<p(|x|) \& M(x, u)=Y E S$

- u is on "read once" input tape
- ppolynomial

Let N be the NTM of Definition 1

- Definition $1 \Rightarrow$ Definition 2

N makes polynomially many guesses
These guesses form certificate u
M simulates N and reads guess from tape u One u exists that returns YES.

- Definition $2 \Rightarrow$ Definition 1
N chooses non-deterministic next bit of u and simulates M.
Only one bit of u at time (can't store whole u)

The class SL

Definition $S L$ is the class of problems log-space reducible to undirected REACHABILITY
(or can be solved by symmetric NTM)

Theorem (Reingold - 2004) SL = L

Obvious Consequence SL-complete problems can be used for the design of log space, polylog space, log reductions.

SL- complete problems

- USTCON
- Simulation of symmetric Turing machines: does an STM accept a given input in a certain space, given in unary?
- Vertex-disjoint paths: are there k paths between two vertices, sharing vertices only at the endpoints? (a generalization of USTCON, equivalent to asking whether a graph is k-edge-connected)
- Is a given graph a bipartite graph, or equivalently, does it have a graph coloring using 2 colors?
- Do two undirected graphs have the same number of connected components?
- Does a graph have an even number of connected components?
- Given a graph, is there a cycle containing a given edge?
- Do the spanning forests of two graphs have the same number of edges?
- Given a graph where all its edges have distinct weights, is a given edge in the minimum weight spanning forest?
- Exclusive or 2-satisfiability: given a formula requiring that x_{i} xor x_{j} hold for a number of pairs of variables (x_{i}, x_{j}), is there an assignment to the variables that makes it true?

Sources

- Lecture Notes on Computational Complexity, Luca Trevisan
- Computational Complexity: A Modern Approach, Sanjeev Arora and Boaz Barak
- Computational Complexity, Christos Papadimitriou
- http://en.wikipedia.org/wiki/SL (complexity), Wikipedia

