Dinur's Proof of the PCP Theorem

Zambetakis Manolis

School of Electrical and Computer Engineering National Technical University of Athens

January 28, 2013

《曰》 《聞》 《臣》 《臣》 三臣 …

Table of contents

Introduction

2 PCP Theorem Proof

- Expaderize the Graph
- Gap Amplification
- Alphabet Reduction
- Finishing the proof

▲口> ▲圖> ▲理> ▲理>

훈

Characterization of NP

M. Zambetakis (NTUA)

Dinur's Proof

January 28, 2013 3 / 42

Characterization of NP

Prover

The prover of a language *L* has to output a correct proof *y* with $|y| \le poly(|x|)$ when $x \in L$. When $x \notin L$ prover could output anything.

Verifier

The verifier of a language $L \in NP$ has to be efficient (polynomialy time bounded).

Characterization of NP

NP prover-verifier

For every language $L \in NP$ there exists a prover P and an efficient verifier V, that reads :

- the input string x
- the proof string y

and accepts or rejects such that :

Completeness : If $x \in L$ then P outputs a proof y such that V accepts.

Soundness : If $x \notin L$ then V rejects every proof y.

New characterization of NP [Arora, Safra]

M. Zambetakis (NTUA)

January 28, 2013 6 / 42

New characterization of NP [Arora, Safra] Probabilistically Checkable of Proofs

Definition : PCP [p(n), q(n)]

For every $L \in PCP[p(n), q(n)]$ there exists a prover P and an efficient verifier V, that reads :

- an input string x with length n
- a random string r with length p(n)
- q(n) bits randomly from the proof y

and accepts or rejects, such that :

Completeness : If $x \in L$ then *P* outputs a proof *y* such that *V* accepts with probability 1.

Soundness : If $x \notin L$ then V accepts with probability $\leq \frac{1}{2}$.

New characterization of NP [Arora, Safra] Probabilistically Checkable of Proofs

Definition : PCP $[O(\log n), O(1)]$

For every $L \in PCP[O(\log n), O(1)]$ there exists a prover P and an efficient verifier V, that reads :

- an input string x with length n
- a random string r with length $c \log n$
- k bits randomly from the proof y

with $c, k \in \mathbb{R}^+$ and accepts or rejects, such that :

Completeness : If $x \in L$ then P outputs a proof y such that V accepts with probability 1.

Soundness : If $x \notin L$ then V accepts with probability $\leq \frac{1}{2}$.

New characterization of NP [Arora, Safra] Probabilistically Checkable of Proofs

PCP Theorem [Arora-Lund-Motwani-Sudan-Szegedy 92]

$\mathsf{NP} = \mathsf{PCP}[\mathsf{O}(\mathsf{log}\ \mathsf{n}),\mathsf{O}(1)]$

Key Idea Graph Coloring Problem - Constraint Graph Problem

Key Idea Graph Coloring Problem - Constraint Graph Problem

Key Idea Graph Coloring Problem - Constraint Graph Problem

Add contraints for every path with length $\leq t$ in the graph G.

M. Zambetakis (NTUA)

Good Idea but...

M. Zambetakis (NTUA)

< 🗇 🕨

A Lemma on expanders... from Trevisan's lectures

Lemma

Let G = (V, E) be an expander and $F \subseteq E$ then for every path p in G with length t

$$\mathsf{Pr}[p \; \textit{completely misses } F] \leq \left(1 - t rac{|F|}{|E|}
ight)$$

3

Proof Overview

Proof Overview

Introduction to Expanders

Definition

The edge expansion of a graph G = (V, E), denoted by $\phi(G)$, is defined as $\phi(G) = \min_{S \subseteq V, |S| \le |V|/2} \frac{|E(S, \overline{S})|}{|S|}$

Introduction to Expanders

Lemma

There exists a constant ϕ_0 such that for every $n \in \mathbb{N}$ and d < n there is an efficient algorithm to construct a d-regular graph G with $\phi(G) \ge \phi_0$.

Introduction to Expanders

Lemma

There exists a constant ϕ_0 such that for every $n \in \mathbb{N}$ and d < n there is an efficient algorithm to construct a d-regular graph G with $\phi(G) \ge \phi_0$.

Lemma

Let G = (V, E) be an expander and $F \subseteq E$ then for every path p in G with length t

$$\mathsf{Pr}[p \; \mathit{completely misses} \; \mathsf{F}] \leq \left(1 - t rac{|\mathsf{F}|}{|\mathsf{E}|}
ight)$$

Introduction to Expanders

Lemma

There exists a constant ϕ_0 such that for every $n \in \mathbb{N}$ and d < n there is an efficient algorithm to construct a d-regular graph G with $\phi(G) \ge \phi_0$.

Lemma

Let G = (V, E) be an expander and $F \subseteq E$ then for every path p in G with length t

$$\mathsf{Pr}[\mathsf{p} \, \operatorname{\textit{completely misses}} \mathsf{F}] \leq \left(1 - t rac{|\mathsf{F}|}{|\mathsf{E}|}
ight)$$

useful property: If a we add edges to a graph which is expander then the graph remains expander.

M. Zambetakis (NTUA)

Expaderize the Graph

Union with expander

Expaderize the Graph

Union with expander

G is satifiable iff $G \cup H$ is satisfiable

M. Zambetakis (NTUA)

Expaderize the Graph

Union with expander

what about gap?

IVI. Zambelakis (INTOA)

Expaderize the Graph

Union with expander

G is satifiable iff $G \cup H$ is satisfiable

M. Zambetakis	(NTUA)
---------------	--------

Expaderize the Graph

Union with expander

$gap(G \cup H) \geq 1/2gap(G)$

M. Zambetakis (NTUA)

Expaderize the Graph

Proof Overview

Expaderize the Graph

Proof Overview

Make *G d*-regular Papadimitriou and Yannakakis Expaderize the Graph

- ∢ ⊢⊒ →

3

Expaderize the Graph

Make *G d*-regular Papadimitriou and Yannakakis

ም.

3

Expaderize the Graph

Make *G d*—regular Papadimitriou and Yannakakis

What kind of constraints in H_u ?

		<pre>/************************************</pre>
КЛ	/ambetakie i	
171.		
		· · ·

Expaderize the Graph

Make *G d*-regular Papadimitriou and Yannakakis

What kind of constraints in H_u ? EQUALITY

|--|

Expaderize the Graph

Make *G d*—regular Papadimitriou and Yannakakis

G is satifiable iff G' is satisfiable

Expaderize the Graph

Make *G d*-regular Papadimitriou and Yannakakis

M. Zambetakis	(NTUA)
---------------	--------

Expaderize the Graph

Make *G d*-regular Papadimitriou and Yannakakis

 $gap(G') \geq 1/O(1)gap(G)$

Expaderize the Graph

Proof Overview

Expaderize the Graph

Proof Overview

M. Zambetakis (NTUA)

Gap Amplification

Gap Amplification

Key Idea

Add contraints for every path with length $\leq t$ in the graph *G*.

э

Key Idea

Add contraints for every path with length $\leq t$ in the graph G.

for t = 2

Our initial alphabet is $\Sigma = \{red, green, blue\}.$

Now every vertex u has an *opinion* about the color of the vertices in N(u) and therefore the alphabet becomes $\Sigma' = \Sigma \times \Sigma^d$. For every path $\{u, w, v\}$ with length 2 we add an edge $\{u, v\}$ with constraint : $c_{\{u,v\}}$ is true if the opinion u has about w is the same as the opinion v has about w.

Key Idea

Add contraints for every path with length $\leq t$ in the graph *G*.

for every t

Our initial alphabet is $\Sigma = \{red, green, blue\}.$

Now every vertex u has an *opinion* about the color of the vertices in N(u) and therefore the alphabet becomes $\Sigma' = \Sigma \times \Sigma^d \times \cdots \times \Sigma^{d^t}$. For every path $\{u, w, \ldots, v\}$ with length t we add an edge $\{u, v\}$ with constraint : $c_{\{u,v\}}$ is true if the opinion u has about every internal vertex w is the same as the opinion v has about w, and every internal edge of G is valid using this opinion.

Key Idea

Add contraints for every path with length $\leq t$ in the graph *G*.

for every t

Our initial alphabet is $\Sigma = \{red, green, blue\}.$

Now every vertex u has an *opinion* about the color of the vertices in N(u) and therefore the alphabet becomes $\Sigma' = \Sigma \times \Sigma^d \times \cdots \times \Sigma^{d^t}$. For every path $\{u, w, \dots, v\}$ with length t we add an edge $\{u, v\}$ with constraint : $c_{\{u,v\}}$ is true if the opinion u has about every internal vertex w is the same as the opinion v has about w, and every internal edge of G is valid using this opinion.

G is satifiable iff G' is satisfiable

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Gap Amplification

Gap Amplification

Computational Complexity Oded Goldreich

M. Zambetakis (NTUA)

We have now to use the following :

Lemma

Let G = (V, E) be an expander and $F \subseteq E$ then for every path p in G with length t

$$\mathsf{Pr}[p \; \textit{completely misses } \mathsf{F}] \leq \left(1 - t rac{|\mathsf{F}|}{|\mathsf{E}|}
ight)$$

Where we set F the set of unsatisfied constraints in G.

Gap Amplification

Lemma

$$gap(G') \geq rac{t}{O(1)}gap(G)$$

Proof Sketch

$$gap(G') \ge 1/3 \Pr_{e'}[e' \text{ passes through } F]$$

 $\ge 1/3(1 - \Pr_{e'}[e' \text{ completely misses } F])$
 $\ge 1/3(1 - (t \cdot gap(G)))$
 $= \frac{t}{O(1)}gap(G)$

Image: Image:

э

Gap Amplification

Gap Amplification

If we set t = O(n) we have finished!

If we set t = O(n) we have finished! But we cannot do this because then $size(G') = O(d^t) = O(d^{O(n)})$ which is inefficient !!!

If we set t = O(n) we have finished! But we cannot do this because then $size(G') = O(d^t) = O(d^{O(n)})$ which is inefficient !!! Therefore t must be a constant!

Gap Amplification

Proof Overview

3. 3

Gap Amplification

Proof Overview

э

Gap Amplification

Proof Overview

M. Zambetakis (NTUA)

Dinur' s Proof

Gap Amplification

Proof Overview

M. Zambetakis (NTUA)

Dinur' s Proof

January 28, 2013 38 / 42

Alphabet Reduction

Effects of the Reduction

- Size increases a constant factor
- Gap decreases a constant factor
- Alphabet size redused to 16

Alphabet Reduction

Effects of the Reduction

- Size increases a constant factor
- Gap decreases a constant factor
- Alphabet size redused to 16

Proof Techniques

- Hadamard Codes
- Linearity Testing
- Fourier Analysis

Finishing the proof

Finishing the proof

M. Zambetakis (NTUA)

Conclusions

Let's flip the coin

Coin

For every language L in NP there is a way to write proofs such that for every instance x:

- If $x \in L$ then there is a correct proof
- If $x \notin L$ then every proof has a lot of errors

Conclusions

Let's flip the coin

Coin

For every language L in NP there is a way to write proofs such that for every instance x:

- If $x \in L$ then there is a correct proof
- If $x \notin L$ then every proof has a lot of errors

One side

PCP Theorem

Conclusions

Let's flip the coin

Coin

For every language L in NP there is a way to write proofs such that for every instance x:

- If $x \in L$ then there is a correct proof
- If $x \notin L$ then every proof has a lot of errors

One side PCP Theorem

The other side

Hardness of Approximation

Thank you! :)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで