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● The Parity Class and Toda’s Theorem

✦ References:

■ C. Papadimitriou, Computational Complexity, ch.
18.2

■ S. Arora and B. Barak, Computational Complexity:
A Modern Approach, ch. 17.4

● Counting Classes

✦ Reference:

■ Fenner SA, Fortnow LJ and Kurtz S, Gap-Definable
Counting Classes, J. of Computer and System
Sciences, 48, 116-148 (1994)
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● Any counting problem in #P can be solved in polynomial
space

✦ reusing space enumerate all solutions in lexicographic
order, keeping a counter of the ones that we have seen

● Thus #P like the polynomial hierarchy is no more powerful
than polynomial space

● A question arises:

✦ how do the polynomial hierarchy and #P compare in
power?

✦ or, does counting takes you further than quantifiers?
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● Definition . A language L is in the class ⊕P (“odd P” or
“parity P”) if there is a nondeterministic Turing machine M

such that for all strings x we have x ∈ L if and only if the
number of accepting computations of M on input x is odd.

✦ equivalently if there is a polynomially balanced and
polynomially desidable relation R such that x ∈ L if and
only if the number of y’s such that (x, y) ∈ R is odd

● The following problems are defined:

✦ ⊕SAT: given a set of clauses, is the number of
satisfying truth assignments odd?

✦ ⊕HAMILTON PATH: given a graph, does it have an odd
number of Hamilton Paths?
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● Theorem : ⊕SAT and ⊕HAMILTON PATH are ⊕P-complete.

✦ Proof : They are in ⊕P based on the previous second
definition of ⊕P and the definition of the problems.
Completeness follows from the parsimonious
reductions of any problem in #P to #SAT and from that
to #HAMILTON PATH.
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● Theorem : ⊕P is closed under complement.

✦ Proof : The complement of ⊕SAT (whether there is an
even number of satisfying truth assignments) is
obviously co ⊕ P-complete. Next we reduce this
language to ⊕SAT. Given any set of clauses on n

variables x1, · · · , xn we add the new variable z, we add
to all clauses the literal z, and add the n clauses
(z ⇒ xi) for i = 1, ..., n. Thus any satisfying truth
assignment of the old expression is still satisfying (with
z = false), and we have the extra all-true satisfying truth
assignment (the only one with z = true). Hence we
increased the number of satisfying truth assignments by
one and this is a reduction from the complement of
⊕SAT to ⊕SAT. Since ⊕SAT is both ⊕P-complete and
co ⊕ P-complete and these classes are closed under
reductions it follows that ⊕P = co ⊕ P.
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● Theorem (Toda’s Theorem): PH ⊆ P#SAT

✦ Which means that we can solve any problem in the
polynomial hierarchy given an oracle to a #P-complete
problem.

● Because PP (more than half of the computations of a
nondeterministic machine are accepting) is closely related
to #SAT

✦ PH ⊆ PPP
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● ⊕P captures a fairly weak aspect of counting: the parity of
the number of solutions.

● But it can be shown that if an RP machine is equipped with
an ⊕P oracle it can simulate all of NP.

● This result uses oracle machines that are more powerful and
a much weaker oracle. The class captured is the lowest
level of PH.

● Theorem : NP ⊆ RP⊕P

✦ the proof uses similar arguments of the proof of Toda’s
theorem
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● Definition . A counting machine (CM) is a nondeterministic
Turing machine running in polynomial time with two halting
states: accepting and rejecting.

✦ Every computational path must end in one of these
states.

● Definition . Let M be a CM. We define the function
#M : Σ∗ → Z

+ to be such that for all x ∈ Σ∗, #M(x) is the
number of accepting computation paths of M on input x.

✦ Similarly, TotalM : Σ∗ → Z
+ is the total number of

computation paths of M on input x.

✦ The CM M̄ is the machine identical to M but with the
accepting and rejecting states interchanged.



The Classes

Outline

Parity Class & Toda’s
Theorem

Counting Classes

❖ Definitions

❖ The Classes

❖ Need for Closure

❖ Gaps

❖ Closure Properties

❖ Closure

The End

10 / 20

● #P df
= {#M | M is a CM}

● PP is the class of all languages L such that there exists M

and FP function f such that, for all x,

x ∈ L ⇔ #M(x) > f(x)

the function f is the threshold of M

● C=P is the class of all languages L such that there exists M

and an FP function f such that, for all x,

x ∈ L ⇔ #M(x) = f(x)
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● For k ≥ 2, define ModkP to be the class of all languages L

such that there exists M such that, for all x,

x ∈ L ⇔ #M(x) 6= 0 modk

the class ModkP is also called ⊕P (“Parity P”)
(Papadimitriou and Zachos, Goldschlager and Parberry)

● For any language L, L ∈ FewP if and only if there exist a
CM M and a polynomial p such that for all x ∈ Σ∗,
#M(x) ≤ p(| x |) and

x ∈ L ⇔ #M(x) > 0
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● For any language L, L ∈ Few if and only if there exist a CM
M , a polynomial p, and a polynomial-time computable
predicate A(x, y) such that for all x ∈ Σ∗, #M(x) ≤ p(| x |)
and

x ∈ L ⇔ A(x,#M(x))

we know FewP ⊆ NP but this is not known for Few
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● The function class #P lacks an important closure property

✦ #P functions cannot take on negative values

✦ it is not closed under subtraction

● Remedy: the function class GapP is a natural alternative

✦ GapP is the closure of #P under subtraction

✦ has all the other useful properties of #P as well

● GapP is a function class consisting of differences, or “gaps”

✦ between the number of accepting and rejecting paths of
NP Turing machines
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● Definition . If M is a CM, define the function gapM : Σ∗ → Z

gapM

df
= #M −#M̄

● gapM represents the gap between the number of accepting
and the number of rejecting paths of M

● The natural gap analog of the function class #P

✦ Definition.

GapP df
= {gapM | M is a CM}
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● Lemma . For every CM M , there is a CM N such that
gapN = #M . That is #P ⊆ GapP.

● Proposition . GapP = #P −#P = #P − FP = FP −#P
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● Closure Property 1.

GapP ◦ FP = GapP and FP ⊆ GapP

● Closure Property 2.

If f ∈ GapP then − f ∈ GapP
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● Closure Property 3.

If f ∈ GapP and q is a polynomial, then the function

g(x)
df
=

∑

|y|≤q(|x|)

f(〈x, y〉)

is in GapP

● Closure Property 4.

If f ∈ GapP and q is a polynomial, then the function

g(x)
df
=

∏

0≤y≤q(|x|)

f(〈x, y〉)

is in GapP
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● Closure Property 5.

If f ∈ GapP, k ∈ FP, and k(x) is bounded by a polynomial in

|x|, then the function g(x)
df
=

(

f(x)
k(x)

)

is in GapP

● Closure Property 6.

If f, g ∈ GapP and 0 ≤ g(x) ≤ q(|x|) for some polynomial q,

then the function h(x)
df
= f(〈x, g(x)〉) is in GapP
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● An outcome of the closure properties is the following

✦ Corollary . GapP is closed under adition, subtraction
and multiplication
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