Counting Complexity: \#P, \#P-completeness

Nikolidaki Aikaterini
Algorithms and Complexity II

Fall semester 2012-2013

Introduction

- So far we have discussed the below problems:
- If a desired solution exists in a problem
- If the solution exists then which is it
- So , the resources (time and space) that we need to find this solution, are varied according to the problem.
- But there is a third important and fundamentally different kind of problem:
- How many solutions exist
- So, we need the number of different solutions in a problem.
- Then, the class that we will discuss is \#P, which was defined at first by L.G. Valiant. The source of definition is the permanent problem.

The Class \#\#

- \#P belongs to the category of counting classes (of classes that there are functions to compute the several solutions for some instance of a problem.
- Definition 1 [Val79]
- A counting Turing machine is a standard nondeterministic TM with an auxiliary output device that (magically) prints in binary notation on a special tape the number of accepting computations induced by the input. It has (worst- case) time-complexity $f(n)$ if the longest accepting computation induced by the set of all inputs of size n takes $f(n)$ steps (when the TM is regarded as a standard nondeterministic machine with no auxiliary device).
- Definition 2 [Val79]
- \# P is the class of functions that can be computed by counting TMs of polynomial time complexity.

The Class \#

- \#P contains functions whose output is a natural number, and not just o/1.
- Definition 3 (\#P) [Aro9]
- A function $\mathrm{f}:\{0,1\}^{*} \rightarrow \mathrm{~N}$ is in \#P if there exists a polynomial $\mathrm{p}: \mathrm{N} \rightarrow \mathrm{N}$ and a polynomial-time TM M such that for every $\mathrm{x} \in\{0,1\}^{*}$:

$$
f(x)=\left|\left\{y \in\{0,1\}^{p(x)}: M(x, y)=1\right\}\right|
$$

- \#P consists of all functions f such that $\mathrm{f}(\mathrm{x})$ is equal to the number of paths from the initial configuration to an accepting configuration (in brief, "accepting paths") in the configuration graph $\mathrm{G}_{\mathrm{M}, \mathrm{x}}$ of a polynomial-time non deterministic TM M on input x.
- FP is the set of functions computable by a deterministic polynomial time TM, is the analog of efficiently computable functions (the analog of P for functions with more than one bit of output).

The Class \#

\#P=FP ?

- If \#P=FP then $\mathbf{N P}=\mathbf{P}$.
- If $\mathbf{P S P A C E}=\mathbf{P}$ then $\mathbf{\# P}=\mathbf{F P}$.
- $\mathbf{P P}=\mathbf{P}$ iff $\mathbf{\# P = F P}$.
- Let f be a function in \#P. Then there is some poly-time TM M such that for every $\mathrm{x}, \mathrm{f}(\mathrm{x})=\#_{\mathrm{M}}(\mathrm{x})$ of strings $\mathrm{u} \in\{0,1\}^{\mathrm{m}}$. For every two TM's Mo+ M1 taking m -bit certificates, the TM M' that takes $\mathrm{n}+1$ bit certificate where $\mathrm{M}^{\prime}(\mathrm{x}, \mathrm{bu})=\mathrm{M}_{\mathrm{b}}(\mathrm{x}, \mathrm{u})$. Then $\#_{\mathrm{Mo}+\mathrm{M1}}(\mathrm{x})=\#_{\mathrm{Mo}}(\mathrm{x})+\#_{\mathrm{Mi}}(\mathrm{x})$. For $\mathrm{N} \in\left\{0, \ldots, 2^{\mathrm{m}}\right\}$, M_{N} the TM that on input x, u outputs 1 iff u is smaller than N. $\#_{M_{N}}(x)=N$. If $\mathrm{PP}=\mathrm{P}$ then we can determine in poly-time if $\#_{M_{\mathrm{N}}}(\mathrm{x})=\mathrm{N}+\#_{\mathrm{M}}(\mathrm{x}) \geq 2^{\mathrm{m}}$.

Counting Problems

- All the problems that belong to NP decisions problems, which are in effect of counting solutions, belongs to \#P and then to \#P-complete.
- But, there are decisions problems, which are easy to find a solution in P , then the counting corresponding problems belongs to \#P-complete, such as the PERMANENT problem is \#P-complete.
- Some examples in effect of "counting versions" of NP-complete decision problems:
- \#SAT: Given a Boolean expression φ, compute the number of different truth assignments that satisfies it.
- \#CYCLE: Given a graph G, compute the number of simple cycles.
- \# HAMILTON PATH: Given a graph G, compute the number of different paths.

Counting Problems

- \#SAT has a polynomial-time algorithm, then SAT E P and so P=NP.
- \#CYCLE has a polynomial-time algorithm, then SAT E P and so $\mathrm{P}=\mathrm{NP}$ [Aro9].
- Show: if \#CYCLE can be computed in polynomial time, then Ham E P, where Ham is the NP-complete problem of deciding whether or not a given digraph has a Hamiltonian cycle. Given a graph G with n vertices, we construct a graph G' such that G has a Hamiltonian cycle iff has at least $\mathrm{n}^{\mathrm{n}^{2}}$ cycles.
- To obtain G', replace each edge (u, v) in G by the gadget, which has $\mathrm{m}=$ nlogn levels. It is an acyclic digraph, so cycles in G^{\prime} correspond to cycles in G.
- There are 2 m directed paths from u to v in the gadget, so a simple cycle of length l in G yields $\left(2^{\mathrm{m}}\right)^{1}$ simple cycles in G^{\prime}.
- If G has a Hamiltonian cycle, then G^{\prime} has at least $\left(2^{\mathrm{m}}\right)^{\mathrm{n}}>\mathrm{n}^{\mathrm{n}^{2}}$ cycles.
- If G has no a Hamiltonian cycle, then G' has at least $\left(2^{m}\right)^{n-1} *\left(n^{n-1}\right)<\mathrm{n}^{\mathrm{n}^{2}}$ cycles.

Permanent

- Suppose that $G=(U, V, E)$ is a bipartite graph with $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E \subseteq U x V$. The determinant of A^{G} is:

$$
\operatorname{det} A^{G}=\sum_{\pi} \sigma(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G}
$$

- The permanent of A^{G} is precisely the number of perfect matchings in G [Val79]:

$$
\operatorname{perm}^{G}=\sum_{\pi} \prod_{i=1}^{n} A_{i, \pi(i)}^{G}
$$

\# P-complete

- \#SAT is \#P-complete [Pap 84].
- It's a parsimonious variant of Cook's Theorem. Suppose that we have an arbitrary counting problem in \#P, defined in terms of the relation Q. Show that this problem reduces to \#SAT. Q can be decided by a poly-time TM M, also is poly balanced, that is, for each x the only possible solutions y have length at most $|\mathrm{x}|^{\mathrm{k}}$, the alphabet of the solutions y is $\{0,1\}$. From Cook's Theorem, on M and x, construct in $O(\log |x|)$ space a circuit $C(x)$, with $|x|^{k}$ inputs, such that an input y makes the output of $C(x)$ equal to true iff $(\mathrm{x}, \mathrm{y}) \in \mathrm{Q}$. Thus the construction of $\mathrm{C}(\mathrm{x})$ is a parsimonious reduction from the counting problem of Q to the counting problem of CIRCUIT SAT. And from CIRCUIT SAT to \#SAT.
- \#HAMILTON PATH is \#P-complete [Pap 84].
- Not using the known reductions from 3SAT to HAMILTON PATH because there is not 1-1 reduction (for one assignment exist many Hamilton paths). But, using the TSP problem which is $\mathrm{FP}^{\mathrm{NP}-\text { complete. }}$

Valiant's Theorem

- PERMANENT is \#P-complete [Val79].
- Steps of proof:
- Reduction from the counting problem of paths a TM to the assignment values, that satisfy a proper construction $f(\# 3 S A T)$.
- Reduction from the \#3SAT to Integer - permanent.
- Reduction from the Integer - permanent to $(0,1)$ - permanent $(\bmod N)$.
- Reduction from the $(0,1)$ permanent $(\bmod N)$ to $(0,1)-$ permanent.
- \#3SAT to Integer - permanent : There is a $\mathrm{f} \in \mathrm{FP}$ where corresponds formulas in 3 CNF with m clauses to matrices with entries $-1,0,1,2,3$: Perm $(f(F))=4^{m *} s(F)$, where s is the number of satisfying truth assignments.

Valiant's Theorem

- For each variable, we will have a copy of the choice gadget. In any cycle cover the nodes of the graph must be covered by either the cycle to the left ($x=$ true) or the cycle to the right ($x=$ false).
- For each clause, we will have a copy of the clause gadget. The three "external" edges are all-connected by exclusive - or's with the edges of the choice gadgets.

Valiant's Theorem

- This gadget has only two cycle covers with weight 1 and -1 , corresponds

- The exclusive - or gadget

References

- [Val79] L.G. Valiant, "The complexity of computing the permanent", Theoretical Computer Science, 189-201, 1979.
- [Aro9] S. Arora, B. Barak, "Computational Complexity: A Modern Approach", Cambridge University Press, 2009.
- [Pap84] C. Papadimitriou, "Computational Complexity", Addison Wesley, 1994.

Leslie Gabriel Valiant

- Leslie Gabriel Valiant (born 28 March 1949) is a British computer scientist and computational theorist. Valiant is world-renowned for his work in theoretical computer science.
- He introduced the notion of \#P-completeness to explain why enumeration and reliability problems are intractable.
- Also, he introduced the "probably approximately correct" model of machine learning that has helped the field of computational learning theory grow, and the concept of holographic algorithms.
- He works in automata theory includes an algorithm for concept-free parsing, which is the asymptotically fastest known.
- He worked in computational neuroscience focusing on understanding memory and learning.
- Proved UNIQUE-SAT E P then NP=RP (Valiant-Vazirani theorem)

Thank You!

Questions?

