
Counting Complexity:
#P, #P-completeness

Nikolidaki Aikaterini
Algorithms and Complexity II

Fall semester 2012-2013

μ λΠ ∀

Introduction

• So far we have discussed the below problems:
If a desired solution exists in a problem
If the solution exists then which is it

• So , the resources (time and space) that we need to find this
solution, are varied according to the problem.

• But there is a third important and fundamentally different kind of
problem:

How many solutions exist
• So, we need the number of different solutions in a problem.
• Then, the class that we will discuss is #P, which was defined at first

by L.G. Valiant. The source of definition is the permanent problem.

The Class #P

• #P belongs to the category of counting classes (of classes that there
are functions to compute the several solutions for some instance of a
problem.

• Definition 1 [Val79]
▫ A counting Turing machine is a standard nondeterministic TM with an

auxiliary output device that (magically) prints in binary notation on a
special tape the number of accepting computations induced by the
input. It has (worst- case) time-complexity f(n) if the longest accepting
computation induced by the set of all inputs of size n takes f(n) steps
(when the TM is regarded as a standard nondeterministic machine with
no auxiliary device).

• Definition 2 [Val79]
▫ # P is the class of functions that can be computed by counting TMs of

polynomial time complexity.

The Class #P

• #P contains functions whose output is a natural number, and not
just 0/1.

• Definition 3 (#P) [Ar09]
▫ A function f : {0,1}*→N is in #P if there exists a polynomial p: N→N and

a polynomial-time TM M such that for every x Є {0,1}*:

• #P consists of all functions f such that f(x) is equal to the number
of paths from the initial configuration to an accepting configuration
(in brief, “accepting paths”) in the configuration graph GM,x of a
polynomial-time non deterministic TM M on input x.

• FP is the set of functions computable by a deterministic polynomial
time TM, is the analog of efficiently computable functions (the analog
of P for functions with more than one bit of output).

{ }(| |)() {0,1} : (,) 1p xf x y M x y= ∈ =

The Class #P

#P=FP ?

• If #P=FP then NP=P.
• If PSPACE = P then #P=FP.
• PP=P iff #P=FP.

▫ Let f be a function in #P. Then there is some poly-time TM M such that
for every x, f(x) =#M(x) of strings u Є {0,1}m . For every two TM’s Mo+ M1
taking m-bit certificates, the TM M’ that takes n+1 bit certificate where
M’(x, bu)= Mb(x,u). Then #M0+M1(x)=#M0(x)+#M1(x). For N Є {0,…,2m },
MN the TM that on input x, u outputs 1 iff u is smaller than N. #MN

(x)=N .
If PP=P then we can determine in poly-time if #MN

(x)=N + #M(x) ≥ 2m.

Counting Problems

• All the problems that belong to NP decisions problems, which are in
effect of counting solutions, belongs to #P and then to #P-complete.

• But, there are decisions problems, which are easy to find a solution in
P, then the counting corresponding problems belongs to #P-complete,
such as the PERMANENT problem is #P-complete.

• Some examples in effect of “counting versions” of NP-complete
decision problems:
▫ #SAT: Given a Boolean expression φ, compute the number of different

truth assignments that satisfies it.
▫ #CYCLE: Given a graph G, compute the number of simple cycles.
▫ # HAMILTON PATH: Given a graph G, compute the number of different

paths.

Counting Problems

• #SAT has a polynomial-time algorithm, then SAT Є P and so P=NP.
• #CYCLE has a polynomial-time algorithm, then SAT Є P and so

P=NP [Ar09].
▫ Show: if #CYCLE can be computed in polynomial time, then Ham Є P,

where Ham is the NP-complete problem of deciding whether or not a
given digraph has a Hamiltonian cycle. Given a graph G with n vertices,
we construct a graph G’ such that G has a Hamiltonian cycle iff has at
least nn2 cycles.

▫ To obtain G’, replace each edge (u, v) in G by the gadget, which has
m=nlogn levels. It is an acyclic digraph, so cycles in G’ correspond to
cycles in G.

▫ There are 2m directed paths from u to v in the gadget, so a simple cycle
of length l in G yields (2m)l simple cycles in G’.

▫ If G has a Hamiltonian cycle, then G’ has at least (2m)n > nn2 cycles.
▫ If G has no a Hamiltonian cycle, then G’ has at least (2m)n-1 *(nn-1)< nn2

cycles.

Permanent

• Suppose that G=(U,V,E) is a bipartite graph with U={u1,…, un} and
V={v1,…, vn} and E UxV. The determinant of AG is:

• The permanent of AG is precisely the number of perfect matchings
in G [Val79]:

⊆

, ()
1

det ()
n

G G
i i

i

A A π
π

σ π
=

= ∑ ∏

, ()
1

n
G G

i i
i

permA A π
π =

= ∑∏

#P-complete

• #SAT is #P-complete [Pap 84].
▫ It’s a parsimonious variant of Cook’s Theorem. Suppose that we have an

arbitrary counting problem in #P, defined in terms of the relation Q. Show
that this problem reduces to #SAT. Q can be decided by a poly-time TM M,
also is poly balanced, that is, for each x the only possible solutions y have
length at most |x|k, the alphabet of the solutions y is {0,1}. From Cook’s
Theorem, on M and x, construct in O(log|x|) space a circuit C(x), with |x|k

inputs, such that an input y makes the output of C(x) equal to true iff
(x,y) Є Q. Thus the construction of C(x) is a parsimonious reduction from
the counting problem of Q to the counting problem of CIRCUIT SAT. And
from CIRCUIT SAT to #SAT.

• #HAMILTON PATH is #P-complete [Pap 84].
▫ Not using the known reductions from 3SAT to HAMILTON PATH because

there is not 1-1 reduction (for one assignment exist many Hamilton paths).
But, using the TSP problem which is FPNP-complete.

Valiant’s Theorem

• PERMANENT is #P-complete [Val79].
• Steps of proof:

▫ Reduction from the counting problem of paths a TM to the assignment
values, that satisfy a proper construction f (#3SAT).

▫ Reduction from the #3SAT to Integer – permanent.
▫ Reduction from the Integer – permanent to (0,1)- permanent (mod N).
▫ Reduction from the (0,1) permanent (mod N) to (0,1)– permanent.

• #3SAT to Integer – permanent : There is a f Є FP where corresponds
formulas in 3CNF with m clauses to matrices with entries -1,0,1,2,3:
Perm (f(F))=4m*s(F), where s is the number of satisfying truth
assignments.

Valiant’s Theorem

• For each variable, we will have a copy of the
choice gadget. In any cycle cover the nodes
of the graph must be covered by either the
cycle to the left (x=true) or the cycle to the
right (x=false).

• For each clause, we will have a copy of the
clause gadget. The three “external” edges
are all-connected by exclusive – or’s with
the edges of the choice gadgets.

Valiant’s Theorem

• The exclusive – or gadget• This gadget has only two
cycle covers with weight 1
and -1, corresponds

References

• [Val79] L.G. Valiant, “The complexity of computing the permanent”,
Theoretical Computer Science, 189-201, 1979.

• [Ar09] S. Arora, B. Barak, “Computational Complexity: A Modern
Approach”, Cambridge University Press, 2009.

• [Pap84] C. Papadimitriou, “Computational Complexity”, Addison
Wesley, 1994.

Leslie Gabriel Valiant

▫ Leslie Gabriel Valiant (born 28 March 1949) is a British computer scientist
and computational theorist. Valiant is world-renowned for his work in
theoretical computer science.

▫ He introduced the notion of #P-completeness to explain why enumeration
and reliability problems are intractable.

▫ Also, he introduced the “probably approximately correct” model of machine
learning that has helped the field of computational learning theory grow, and
the concept of holographic algorithms.

▫ He works in automata theory includes an algorithm for concept-free parsing,
which is the asymptotically fastest known.

▫ He worked in computational neuroscience focusing on understanding
memory and learning.

▫ Proved UNIQUE-SAT Є P then NP=RP (Valiant-Vazirani theorem)

Thank You!

Questions?

	Counting Complexity: �#P, #P-completeness
	Introduction
	The Class #P
	The Class #P
	The Class #P
	Counting Problems
	Counting Problems
	Permanent
	#P-complete
	Valiant’s Theorem
	Valiant’s Theorem
	Valiant’s Theorem
	References
	Leslie Gabriel Valiant
	Thank You!

