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Introduction

• So far we have discussed the below problems:
If a desired solution exists in a problem
If the solution exists then which is it

• So , the resources (time and space) that we need to find this 
solution, are varied according to the problem. 

• But there is a third important and fundamentally different kind of 
problem:

How many solutions exist
• So, we need the number of different solutions in a problem.
• Then, the class that we will discuss is #P, which was defined at first 

by L.G. Valiant. The source of definition is the permanent problem. 



The Class #P

• #P belongs to the category of counting classes (of classes that there 
are functions to compute the several solutions for some instance of a 
problem.

• Definition 1 [Val79]
▫ A counting Turing machine is a standard nondeterministic TM with an 

auxiliary output device that (magically) prints in binary notation on a 
special tape the number of accepting computations induced by the 
input. It has (worst- case) time-complexity f(n) if the longest accepting 
computation induced by the set of all inputs of size n takes f(n) steps 
(when the TM is regarded as a standard nondeterministic machine with 
no auxiliary device).

• Definition 2 [Val79]
▫ # P is the class of functions that can be computed by counting TMs of 

polynomial time complexity.



The Class #P

• #P contains functions whose output is a natural number, and not 
just 0/1.

• Definition 3 (#P) [Ar09]
▫ A function f : {0,1}*→N is in #P if there exists a polynomial p: N→N and 

a polynomial-time TM M such that for every x Є {0,1}*:

• #P consists of all functions f such that f(x) is equal to the number 
of paths from the initial configuration to an accepting configuration
(in brief, “accepting paths”) in the configuration graph GM,x of a 
polynomial-time non deterministic TM M on input x.

• FP is the set of functions computable by a deterministic polynomial 
time TM, is the analog of efficiently computable functions (the analog 
of P for functions with more than one bit of output).
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The Class #P

#P=FP  ?

• If  #P=FP then  NP=P.  
• If  PSPACE = P then  #P=FP. 
• PP=P iff #P=FP.

▫ Let  f be a function in #P. Then there is some poly-time TM M such that 
for every x,  f(x) =#M(x) of strings u Є {0,1}m . For every two TM’s Mo+ M1 
taking m-bit certificates, the TM M’ that takes n+1 bit certificate where 
M’(x, bu)= Mb(x,u). Then #M0+M1(x)=#M0(x)+#M1(x). For N Є {0,…,2m }, 
MN the TM that on input x, u outputs 1 iff u is smaller than N.  #MN

(x)=N .  
If  PP=P then we  can determine in poly-time if  #MN

(x)=N + #M(x) ≥ 2m.



Counting Problems

• All the problems that belong to NP decisions problems, which are in 
effect of counting solutions, belongs to #P and then to #P-complete.

• But, there are decisions problems, which are easy to find a solution in 
P, then the counting corresponding problems belongs to #P-complete, 
such as the PERMANENT problem is #P-complete. 

• Some examples in effect of “counting versions” of NP-complete 
decision problems:
▫ #SAT: Given a Boolean expression φ, compute the number of different 

truth assignments that satisfies it.
▫ #CYCLE: Given a graph G, compute the number of  simple cycles.
▫ # HAMILTON PATH: Given a graph G, compute the number of  different 

paths.



Counting Problems

• #SAT has a polynomial-time algorithm, then SAT Є P and so P=NP.
• #CYCLE has a polynomial-time algorithm, then SAT Є P and so 

P=NP [Ar09].
▫ Show: if #CYCLE can be computed in polynomial time, then Ham Є P, 

where Ham is the NP-complete problem of deciding whether or not a 
given digraph has a Hamiltonian cycle. Given a graph G with n vertices, 
we construct a graph G’ such that G has a Hamiltonian cycle iff has at 
least nn2 cycles.

▫ To obtain G’, replace each edge (u, v) in G by the gadget, which has 
m=nlogn levels. It is an acyclic digraph, so cycles in G’ correspond to 
cycles in G. 

▫ There are 2m directed paths from u to v in the gadget, so a simple cycle 
of length l in G yields (2m)l simple cycles in G’. 

▫ If G has a Hamiltonian cycle, then G’ has at least (2m)n > nn2 cycles.
▫ If G has no a Hamiltonian cycle, then G’ has at least (2m)n-1 *(nn-1)< nn2

cycles.



Permanent

• Suppose that G=(U,V,E) is a bipartite graph with U={u1,…, un} and 
V={v1,…, vn} and E     UxV. The determinant of AG is:

• The permanent of AG is precisely the number of perfect matchings
in G [Val79]:
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#P-complete

• #SAT  is #P-complete [Pap 84].
▫ It’s a parsimonious variant of Cook’s Theorem. Suppose that we have an 

arbitrary counting problem in #P, defined in terms of the relation Q. Show 
that this problem reduces to #SAT. Q can be decided by a poly-time TM M, 
also is poly balanced, that is, for each x the only possible solutions y have 
length at most |x|k, the alphabet of the solutions y is {0,1}. From Cook’s 
Theorem, on M and x, construct in O(log|x|) space a circuit C(x), with |x|k

inputs, such that an input y makes the output of C(x) equal to true iff
(x,y) Є Q. Thus the construction of C(x) is a parsimonious reduction from 
the counting  problem of Q to the counting  problem of CIRCUIT SAT. And 
from CIRCUIT SAT to #SAT.  

• #HAMILTON PATH  is  #P-complete [Pap 84].
▫ Not using the known reductions from 3SAT to HAMILTON PATH because 

there is not 1-1 reduction (for one assignment exist many Hamilton paths). 
But, using the TSP problem which is FPNP-complete.



Valiant’s Theorem

• PERMANENT is  #P-complete [Val79].
• Steps of proof: 

▫ Reduction from the counting problem of paths a TM to the assignment 
values, that satisfy a proper construction f (#3SAT).

▫ Reduction from the #3SAT to Integer – permanent.
▫ Reduction from the Integer – permanent to (0,1)- permanent (mod N).
▫ Reduction from the (0,1) permanent (mod N) to (0,1)– permanent.

• #3SAT to Integer – permanent : There is a f Є FP where corresponds 
formulas in 3CNF with m clauses to matrices with entries -1,0,1,2,3: 
Perm (f(F))=4m*s(F), where s is the number of satisfying truth 
assignments.



Valiant’s Theorem

• For each variable, we will have a copy of the 
choice gadget. In any cycle cover the nodes 
of the graph must be covered by either the 
cycle to the left (x=true) or the cycle to the 
right (x=false).

• For each clause, we will have a copy of the 
clause gadget. The three “external” edges 
are all-connected by exclusive – or’s with 
the edges of the choice gadgets. 



Valiant’s Theorem

• The exclusive – or gadget• This gadget has only two 
cycle covers with weight 1 
and -1, corresponds
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Leslie Gabriel Valiant

▫ Leslie Gabriel Valiant (born 28 March 1949) is a British computer scientist 
and computational theorist. Valiant is world-renowned for his work in 
theoretical computer science. 

▫ He introduced the notion of #P-completeness to explain why enumeration 
and reliability problems are intractable. 

▫ Also, he introduced the “probably approximately correct” model of machine 
learning that has helped the field of computational learning theory grow, and 
the concept of holographic algorithms.

▫ He works in automata theory includes an algorithm for concept-free parsing, 
which is the asymptotically fastest known.

▫ He worked in computational neuroscience focusing on understanding 
memory and learning.

▫ Proved UNIQUE-SAT Є P then NP=RP (Valiant-Vazirani theorem)



Thank You!

Questions?


	Counting Complexity: �#P, #P-completeness
	Introduction
	The Class #P
	The Class #P
	The Class #P
	Counting Problems
	Counting Problems
	Permanent
	#P-complete
	Valiant’s Theorem
	Valiant’s Theorem
	Valiant’s Theorem
	References
	Leslie Gabriel Valiant
	Thank You!

