ULIAY

Counting Complexity:
#P, #P-completeness

Nikolidaki Aikaterini
Algorithms and Complexity |1

Fall semester 2012-2013

Introduction

So far we have discussed the below problems:
- If a desired solution exists in a problem
+ If the solution exists then which is it

So , the resources (time and space) that we need to find this
solution, are varied according to the problem.

But there is a third important and fundamentally different kind of
problem:

- How many solutions exist
So, we need the number of different solutions in a problem.

Then, the class that we will discuss is #P, which was defined at first
by L.G. Valiant. The source of definition is the permanent problem.

The Class #P

- #P belongs to the category of counting classes (of classes that there
are functions to compute the several solutions for some instance of a
problem.

- Definition 1 [Val79]

> A counting Turing machine is a standard nondeterministic TM with an
auxiliary output device that (magically) prints in binary notation on a
special tape the number of accepting computations induced by the
input. It has (worst- case) time-complexity f(n) if the longest accepting
computation induced by the set of all inputs of size n takes f(n) steps
(when the TM is regarded as a standard nondeterministic machine with
no auxiliary device).

- Definition 2 [Val79]

o # P is the class of functions that can be computed by counting TMs of
polynomial time complexity.

The Class #P

#P contains functions whose output is a natural number, and not
just 0/1.
Definition 3 (#P) [Aro9]

» A function f : {0,1}*—N is in #P if there exists a polynomial p: N—N and
a polynomial-time TM M such that for every x € {0,1}*:

f(x) = ‘{y e {0,13°% : M (x, y) = 1}\

#P consists of all functions f such that f(x) is equal to the number
of paths from the initial configuration to an accepting configuration
(in brief, “accepting paths”) in the configuration graph G,;, of a
polynomial-time non deterministic TM M on input x.

FP is the set of functions computable by a deterministic polynomial
time TM, is the analog of efficiently computable functions (the analog
of P for functions with more than one bit of output).

The Class #P

#P=FP ?

- If #P=FP then NP=P.

- If PSPACE =P then #P=FP.

- PP=P iff #P=FP.

= Let f be a function in #P. Then there is some poly-time TM M such that

for every x, f(x) =#,,(x) of strings u € {0,1}™ . For every two TM’s Mo+ M1
taking m-bit certificates, the TM M’ that takes n+1 bit certificate where
M’(x, bu)= M (x,u). Then #,;, 0, (X)=#,(X)+#,,(X). For N € {0,...,2m },
M, the TM that on input x, u outputs 1 iff u is smaller than N. #, (x)=N.
If PP=P then we can determine in poly-time if #MN(X)=N + #y(x) = 2m,

Counting Problems

- All the problems that belong to NP decisions problems, which are in
effect of counting solutions, belongs to #P and then to #P-complete.

- But, there are decisions problems, which are easy to find a solution in

P, then the counting corresponding problems belongs to #P-complete,
such as the PERMANENT problem is #P-complete.

- Some examples in effect of “counting versions” of NP-complete
decision problems:

- #SAT: Given a Boolean expression ¢, compute the number of different
truth assignments that satisfies it.

- #CYCLE: Given a graph G, compute the number of simple cycles.

« # HAMILTON PATH: Given a graph G, compute the number of different
paths.

Counting Problems

- #SAT has a polynomial-time algorithm, then SAT € P and so P=NP.

- #CYCLE has a polynomial-time algorithm, then SAT € P and so
P=NP [Aro9].

Show: if #CYCLE can be computed in polynomial time, then Ham € P,
where Ham is the NP-complete problem of deciding whether or not a
given digraph has a Hamiltonian cycle. Given a graph G with n vertices,
we construct a graph G’ such that G has a Hamiltonian cycle iff has at
least n»” cycles.

To obtain G’, replace each edge (u, v) in G by the gadget, which has
m=nlogn levels. It is an acyclic digraph, so cycles in G’ correspond to
cycles in G.

There are 2m directed paths from u to v in the gadget, so a simple cycle
of length | in G yields (2™)! simple cycles in G’.
If G has a Hamiltonian cycle, then G’ has at least (2m)» > n»* cycles.

If G has no a Hamiltonian cycle, then G’ has at least (2m)-1 *(n»-t)< nn?
cycles.

Permanent

 Suppose that G=(U,V,E) is a bipartite graph with U={u,,..., u,} and
V={v,,..., v,y and ES UxV. The determinant of A® is:

det A® = Z G(ﬂ)lj Ac;(i)

- The permanent of ACis precisely the number of perfect matchings
in G [Val79]:

permA® =3 [[A%

T i=1

#P-complete

- #SAT is #P-complete [Pap 84].

» It’s a parsimonious variant of Cook’s Theorem. Suppose that we have an
arbitrary counting problem in #P, defined in terms of the relation Q. Show
that this problem reduces to #SAT. Q can be decided by a poly-time TM M,
also is poly balanced, that is, for each x the only possible solutions y have
length at most |x|%, the alphabet of the solutions y is {0,1}. From Cook’s
Theorem, on M and x, construct in O(log|x|) space a circuit C(x), with |x|k
inputs, such that an input y makes the output of C(x) equal to true iff
(x,y) € Q. Thus the construction of C(x) is a parsimonious reduction from
the counting problem of Q to the counting problem of CIRCUIT SAT. And
from CIRCUIT SAT to #SAT.

- #HAMILTON PATH is #P-complete [Pap 84].

= Not using the known reductions from 3SAT to HAMILTON PATH because
there is not 1-1 reduction (for one assignment exist many Hamilton paths).

But, using the TSP problem which is FPNP-complete.

Valiant’s Theorem

- PERMANENT is #P-complete [Val79].
- Steps of proof:

s Reduction from the counting problem of paths a TM to the assignment
values, that satisfy a proper construction f (#3SAT).

> Reduction from the #3SAT to Integer — permanent.
> Reduction from the Integer — permanent to (0,1)- permanent (mod N).
> Reduction from the (0,1) permanent (mod N) to (0,1)— permanent.

« #3SAT to Integer — permanent : There is a f € FP where corresponds
formulas in 3CNF with m clauses to matrices with entries -1,0,1,2,3:
Perm (f(F))=4"*s(F), where s is the number of satisfying truth
assignments.

Valiant’s Theorem

- For each variable, we will have a copy of the
choice gadget. In any cycle cover the nodes
x=true x=false

of the graph must be covered by either the \Q/

cycle to the left (x=true) or the cycle to the
right (x=false).

- For each clause, we will have a copy of the
clause gadget. The three “external” edges
are all-connected by exclusive — or’s with
the edges of the choice gadgets.

Valiant’s Theorem

 This gadget has only two « The exclusive — or gadget
cycle covers with weight 1 ~
and -1, corresponds

\
N

dhya

References

 [Valy9] L.G. Valiant, “The complexity of computing the permanent”,
Theoretical Computer Science, 189-201, 1979.

- [Arog] S. Arora, B. Barak, “Computational Complexity: A Modern
Approach”, Cambridge University Press, 2009.

- [Pap84] C. Papadimitriou, “Computational Complexity”, Addison
Wesley, 1994.

Leslie Gabriel Valiant

e | . oA
Leslie Gabriel Valiant (born 28 March 1949) is a British computer scientist
and computational theorist. Valiant is world-renowned for his work in
theoretical computer science.
He introduced the notion of #P-completeness to explain why enumeration
and reliability problems are intractable.
Also, he introduced the “probably approximately correct” model of machine
learning that has helped the field of computational learning theory grow, and
the concept of holographic algorithms.
He works in automata theory includes an algorithm for concept-free parsing,
which is the asymptotically fastest known.
He worked in computational neuroscience focusing on understanding
memory and learning.
Proved UNIQUE-SAT € P then NP=RP (Valiant-Vazirani theorem)

Thank You!

Questions?

	Counting Complexity: �#P, #P-completeness
	Introduction
	The Class #P
	The Class #P
	The Class #P
	Counting Problems
	Counting Problems
	Permanent
	#P-complete
	Valiant’s Theorem
	Valiant’s Theorem
	Valiant’s Theorem
	References
	Leslie Gabriel Valiant
	Thank You!

