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Approximation Algorithms

Optimization Problem

Given an optimization problem Π and instance I of Π, let S(I)
denote the set of feasible solutions for I, then
OPTIMUM(I) = min

s∈S(I)
v(s)(or max

s∈S(I)
v(s)) for minimization (or

maximization) where v(s) denotes the value of the instance

ε− Approximation Algorithm

An algorithm A is an ε− approximation algorithm for problem Π iff

for every instance I,
|v(A(I))−OPTIMUM(I)|

max {OPTIMUM(I), v(A(I))}
≤ ε, holds.

Approximation Threshold

A problem’s Π approximation threshold is the
inf {ε ≥ 0 : there exists a polynomial ε− approximation algorithm}
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Polynomial Time Approximation Scheme (PTAS)

An algorithm A is a PTAS for the optimization problem Π, if for
every instance I and ε > 0 the relative error of A(I, ε) from the
OPTIMUM is at most ε and A(I, ε) is calculated in time
polynomially depending on |I|.
If A(I, ε) is also polynomially depending on 1

ε , then A is called a
Fully PTAS (FPTAS).
The probabilistic relaxation of FPTAS is FPRAS, where an
algorithm A is called an FPRAS for the problem Π, if for every
instance of a problem, the probability, the relative error to be less
than ε is greater than or equal to 3

4 .
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FPTAS for Knapsack

Consider that there are n objects, and each of them (1 ≤ i ≤ n) has a
profit (pi) and a weight (wi), and we want to put a subset of the objects
(the most profitable one) in a knapsack that can contain objects with
weight at most W .
Pseudopolynomial algorithm
Consider P to be the maximum profit of the objects, then

∑
i pi ≤ nP ,

then for 1 ≤ i ≤ n and 0 ≤ p ≤ nP let W (i, p) to be the minimum
weight of a set S ⊆ {1, 2, . . . , i} such that

∑
u∈S pu = p, ∞ otherwise

(no set with sum of profits equals to p exists).
W (1, p1) = w1 and W (1, p) =∞, p 6= p1 and
W (i+ 1, p) = min {W (i, p),W (i, p− pi+1) + wi+1}. Using dynamic
programming the problem is solved in O(n2P )
FPTAS: Consider an arbitary number b and then p′i = b pi

2b
c(remove the

last b digits), and apply the pseudopolynomial algorithm. Now the time is

O(n
2P
2b

), and for the solution found the relative error is at most n2b

P .

So, for every ε > 0, b is chosen to be equal to dlog εP
n e and then the

execution time is O(n
3

ε )
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Definition of L-Reductions

Consider the optimization problems Π1 and Π2, then the pair of
functions (f, g) is an L-reduction from Π1 to Π2 iff:

1 f,g computable in logarithmic space.

2 for any instance I of Π1, f(I) is an instance of Π2.

3 if s is a solution of f(I), then g(s) is a solution of I.
4 There are positive constant numbers α, β such that:

OPTIMUM(f(I)) ≤ α · OPTIMUM(I) and
If s ∈ S(f(I)), then
|OPTIMUM(I)− v(g(s))| ≤ β|OPTIMUM(f(I))− v(s)|
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Properties of L-Reductions

Transitivity:Consider the optimization problems Π1,Π2 and Π3, if there exist
(f, g) and (f ′, g′) L-Reduction from Π1 to Π2 and Π2 to Π3, respectively, then
there exist an L-Reduction (f ′ · f, g · g′) from Π1 to Π3 (where
(h · h′)(x) = h(h′(x))).
Proposition:Let (f, g, α, β) an L-Reduction from Π1 to Π2, and there exists a
polynomial time ε−approximation algorithm for Π2, then there exists a
polynomial time approximation algorithm for Π1 with ratio αβε

1−ε .
Proof: Consider I to be an instance of Π1 and s ∈ S(f(I)), the solution of the
approximation algorithm of Π2, then

|OPTIMUM(I)− v(g(s))|
max {OPTIMUM(I), v(g(s))} ≤

β|OPTIMUM(f(I))− v(s)|
OPTIMUM(f(I))

α

≤ αβ|OPTIMUM(f(I))− v(s)|
(1− ε) max {OPTIMUM(f(I)), v(s)} ≤

αβε

1− ε

Theorem: Let Π1,Π2 be optimization problems, then if Π1 L-Reduces to Π2

and there exists a PTAS for Π2 then there exists a PTAS for Π1.
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MAXSNP

Strict NP (SNP): is the class of the decision problems that can be
expressed as: ∃S∀u1∀u2 . . . ∀ukφ(G1, G2, . . . Gm, S, u1, u2, . . . , uk)
for optimization problems, a more appropriate class is considered
MAXSNP0: is the class of the optimization problems that can be
expressed as:

max
S
|
{

(u1, u2, . . . , uk) ∈ V k : φ(G1, G2, . . . Gm, S, u1, u2, . . . , uk)
}
|

MAXSNP: An optimization problem Π belongs to the MAXSNP
class iff there exists an L-Reduction from Π to an optimization
problem Π′ ∈ MAXSNP0

MAX-CUT is a MAXSNP0(also, MAXSNP) problem:
max
S⊆V
| {(u, v) : (G(u, v) ∨G(v, u)) ∧ S(u) ∧ ¬S(v)} |

Theorem: Every problem belonging to MAXSNP0 written as
max
S
| {(u1, u2, . . . , uk) : φ} | has a 1− 2−nφ-approximation

algorithm, with nφ indicating how many atomic expressions in φ
are related to S.
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MAXSNP-Completeness

A problem Π is called MAXSNP-Complete if it belongs to
MAXSNP and every other problem in MAXSNP L-Reduce to it.
If there is a PTAS for a MAXSNP-Complete problem, then for
every problem in MAXSNP there is a PTAS.
MAX3SAT is MAXSNP-Complete
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