Topics in Approximability

Konstantinos Mastakas

Department of Mathematics, University of Athens, Athens, Greece

31-1-13

Approximation Algorithms

Optimization Problem

Given an optimization problem Π and instance I of Π, let $S(I)$ denote the set of feasible solutions for I, then $\operatorname{OPTIMUM}(I)=\min _{s \in S(I)} v(s)\left(\right.$ or $\left.\max _{s \in S(I)} v(s)\right)$ for minimization (or maximization) where $v(s)$ denotes the value of the instance

Approximation Algorithm

An algorithm A is an ϵ - approximation algorithm for problem Π iff
for every instance I

Approximation Threshold

> A problem's Π approximation threshold is the
> $\inf \{\epsilon \geq 0:$ there exists a polynomial $\epsilon-$ approximation algorithm $\}$

Approximation Algorithms

Optimization Problem

Given an optimization problem Π and instance I of Π, let $S(I)$ denote the set of feasible solutions for I, then $\operatorname{OPTIMUM}(I)=\min _{s \in S(I)} v(s)\left(\right.$ or $\left.\max _{s \in S(I)} v(s)\right)$ for minimization (or maximization) where $v(s)$ denotes the value of the instance

$\epsilon-$ Approximation Algorithm

An algorithm A is an ϵ - approximation algorithm for problem Π iff for every instance $I, \frac{|v(A(I))-O P T I M U M(I)|}{\max \{O P T I M U M(I), v(A(I))\}} \leq \epsilon$, holds.

[^0]
Approximation Algorithms

Optimization Problem

Given an optimization problem Π and instance I of Π, let $S(I)$ denote the set of feasible solutions for I, then $\operatorname{OPTIMUM}(I)=\min _{s \in S(I)} v(s)\left(\right.$ or $\left.\max _{s \in S(I)} v(s)\right)$ for minimization (or maximization) where $v(s)$ denotes the value of the instance

$\epsilon-$ Approximation Algorithm

An algorithm A is an ϵ - approximation algorithm for problem Π iff for every instance $I, \frac{|v(A(I))-O P T I M U M(I)|}{\max \{O P T I M U M(I), v(A(I))\}} \leq \epsilon$, holds.

Approximation Threshold

A problem's Π approximation threshold is the $\inf \{\epsilon \geq 0$: there exists a polynomial ϵ - approximation algorithm $\}$

Polynomial Time Approximation Scheme (PTAS)

An algorithm A is a PTAS for the optimization problem Π, if for every instance I and $\epsilon>0$ the relative error of $A(I, \epsilon)$ from the OPTIMUM is at most ϵ and $A(I, \epsilon)$ is calculated in time polynomially depending on $|I|$.

Fully PTAS (FPTAS)
The probabilistic relaxation of FPTAS is FPRAS, where an algorithm A is called an FPRAS for the problem Π, if for every instance of a problem, the probability, the relative error to be less than ϵ is greater than or equal to

Polynomial Time Approximation Scheme (PTAS)

An algorithm A is a PTAS for the optimization problem Π, if for every instance I and $\epsilon>0$ the relative error of $A(I, \epsilon)$ from the OPTIMUM is at most ϵ and $A(I, \epsilon)$ is calculated in time polynomially depending on $|I|$.
If $A(I, \epsilon)$ is also polynomially depending on $\frac{1}{\epsilon}$, then A is called a Fully PTAS (FPTAS).
The probabilistic relaxation of FPTAS is FPRAS, where an
algorithm A is called an FPRAS for the problem Π, if for every
instance of a problem, the probability, the relative error to be less
than ϵ is greater than or equal to

Polynomial Time Approximation Scheme (PTAS)

An algorithm A is a PTAS for the optimization problem Π, if for every instance I and $\epsilon>0$ the relative error of $A(I, \epsilon)$ from the OPTIMUM is at most ϵ and $A(I, \epsilon)$ is calculated in time polynomially depending on $|I|$.
If $A(I, \epsilon)$ is also polynomially depending on $\frac{1}{\epsilon}$, then A is called a Fully PTAS (FPTAS).
The probabilistic relaxation of FPTAS is FPRAS, where an algorithm A is called an FPRAS for the problem Π, if for every instance of a problem, the probability, the relative error to be less than ϵ is greater than or equal to $\frac{3}{4}$.

FPTAS for Knapsack

Consider that there are n objects, and each of them $(1 \leq i \leq n)$ has a profit (p_{i}) and a weight (w_{i}), and we want to put a subset of the objects (the most profitable one) in a knapsack that can contain objects with weight at most W.
Pseudopolynomial algorithm
Consider P to be the maximum profit of the objects, then $\sum_{i} p_{i} \leq n P$ then for $1 \leq i \leq n$ and $0 \leq p \leq n P$ let $W(i, p)$ to be the minimum weight of a set $S \subseteq\{1,2, \ldots, i\}$ such that $\sum_{u \in S} p_{u}=p, \infty$ otherwise (no set with sum of profits equals to p exists). $W\left(1, p_{1}\right)=w_{1}$ and $W(1, p)=\infty, p \neq p_{1}$ and $W(i+1, p)=\min \left\{W(i, p), W\left(i, p-p_{i+1}\right)+w_{i+1}\right\}$. Using dynamic programming the problem is solved in $O\left(n^{2} P\right)$ FPTAS: Consider an arbitary number b and then $p_{i}^{\prime}=\left\lfloor\frac{p_{i}}{2^{b}}\right\rfloor$ (remove the last b digits), and apply the pseudopolynomial algorithm. Now the time is $O\left(\frac{n^{2} P}{2^{b}}\right)$, and for the solution found the relative error is at most $\frac{n 2^{b}}{P}$ So, for every $\epsilon>0, b$ is chosen to be equal to $\left\lceil\log \frac{\epsilon P}{n}\right\rceil$ and then the execution time is $O\left(\frac{n^{3}}{n}\right)$

FPTAS for Knapsack

Consider that there are n objects, and each of them $(1 \leq i \leq n)$ has a profit (p_{i}) and a weight (w_{i}), and we want to put a subset of the objects (the most profitable one) in a knapsack that can contain objects with weight at most W.

Pseudopolynomial algorithm

Consider P to be the maximum profit of the objects, then $\sum_{i} p_{i} \leq n P$, then for $1 \leq i \leq n$ and $0 \leq p \leq n P$ let $W(i, p)$ to be the minimum weight of a set $S \subseteq\{1,2, \ldots, i\}$ such that $\sum_{u \in S} p_{u}=p, \infty$ otherwise (no set with sum of profits equals to p exists).

FPTAS for Knapsack

Consider that there are n objects, and each of them $(1 \leq i \leq n)$ has a profit (p_{i}) and a weight (w_{i}), and we want to put a subset of the objects (the most profitable one) in a knapsack that can contain objects with weight at most W.

Pseudopolynomial algorithm

Consider P to be the maximum profit of the objects, then $\sum_{i} p_{i} \leq n P$, then for $1 \leq i \leq n$ and $0 \leq p \leq n P$ let $W(i, p)$ to be the minimum weight of a set $S \subseteq\{1,2, \ldots, i\}$ such that $\sum_{u \in S} p_{u}=p, \infty$ otherwise (no set with sum of profits equals to p exists).
$W\left(1, p_{1}\right)=w_{1}$ and $W(1, p)=\infty, p \neq p_{1}$ and
$W(i+1, p)=\min \left\{W(i, p), W\left(i, p-p_{i+1}\right)+w_{i+1}\right\}$. Using dynamic programming the problem is solved in $O\left(n^{2} P\right)$
FPTAS: Consider an arbitary number b and then $p_{i}^{\prime}=\left\lfloor\frac{p_{i}}{2^{b}}\right\rfloor$ (remove the
last b digits), and apply the pseudopolynomial algorithm. Now the time is
$O\left(\frac{n^{2} P}{2}\right)$ and for the solution found the relative error is at most $\frac{n 2^{b}}{p}$
So, for every $\epsilon>0, b$ is chosen to be equal to $\left\lceil\log \frac{\epsilon P}{n}\right\rceil$ and then the
execution time is $O\left(\frac{n^{3}}{\epsilon}\right)$

FPTAS for Knapsack

Consider that there are n objects, and each of them $(1 \leq i \leq n)$ has a profit (p_{i}) and a weight (w_{i}), and we want to put a subset of the objects (the most profitable one) in a knapsack that can contain objects with weight at most W.

Pseudopolynomial algorithm

Consider P to be the maximum profit of the objects, then $\sum_{i} p_{i} \leq n P$, then for $1 \leq i \leq n$ and $0 \leq p \leq n P$ let $W(i, p)$ to be the minimum weight of a set $S \subseteq\{1,2, \ldots, i\}$ such that $\sum_{u \in S} p_{u}=p, \infty$ otherwise (no set with sum of profits equals to p exists).
$W\left(1, p_{1}\right)=w_{1}$ and $W(1, p)=\infty, p \neq p_{1}$ and
$W(i+1, p)=\min \left\{W(i, p), W\left(i, p-p_{i+1}\right)+w_{i+1}\right\}$. Using dynamic programming the problem is solved in $O\left(n^{2} P\right)$
FPTAS: Consider an arbitary number b and then $p_{i}^{\prime}=\left\lfloor\frac{p_{i}}{2^{b}}\right\rfloor$ (remove the last b digits), and apply the pseudopolynomial algorithm. Now the time is $O\left(\frac{n^{2} P}{2^{b}}\right)$, and for the solution found the relative error is at most $\frac{n 2^{b}}{P}$.

[^1]execution time is $O\left(\frac{n^{3}}{\epsilon}\right)$

FPTAS for Knapsack

Consider that there are n objects, and each of them $(1 \leq i \leq n)$ has a profit (p_{i}) and a weight (w_{i}), and we want to put a subset of the objects (the most profitable one) in a knapsack that can contain objects with weight at most W.

Pseudopolynomial algorithm

Consider P to be the maximum profit of the objects, then $\sum_{i} p_{i} \leq n P$, then for $1 \leq i \leq n$ and $0 \leq p \leq n P$ let $W(i, p)$ to be the minimum weight of a set $S \subseteq\{1,2, \ldots, i\}$ such that $\sum_{u \in S} p_{u}=p, \infty$ otherwise (no set with sum of profits equals to p exists).
$W\left(1, p_{1}\right)=w_{1}$ and $W(1, p)=\infty, p \neq p_{1}$ and
$W(i+1, p)=\min \left\{W(i, p), W\left(i, p-p_{i+1}\right)+w_{i+1}\right\}$. Using dynamic programming the problem is solved in $O\left(n^{2} P\right)$
FPTAS: Consider an arbitary number b and then $p_{i}^{\prime}=\left\lfloor\frac{p_{i}}{2^{b}}\right\rfloor$ (remove the last b digits), and apply the pseudopolynomial algorithm. Now the time is $O\left(\frac{n^{2} P}{2^{b}}\right)$, and for the solution found the relative error is at most $\frac{n 2^{b}}{P}$. So, for every $\epsilon>0, b$ is chosen to be equal to $\left\lceil\log \frac{\epsilon P}{n}\right\rceil$ and then the execution time is $O\left(\frac{n^{3}}{\epsilon}\right)$

Definition of L-Reductions

Consider the optimization problems Π_{1} and Π_{2}, then the pair of functions (f, g) is an L-reduction from Π_{1} to Π_{2} iff:
(1) f,g computable in logarithmic space.
(2) for any instance I of $\Pi_{1}, f(I)$ is an instance of Π_{2}.
(3) if s is a solution of $f(I)$, then $g(s)$ is a solution of I
(There are positive constant numbers α, β such that:

- OPTIMUM $(f(I)) \leq \alpha \cdot \operatorname{OPTIMUM}(I)$ and
- If $s \in S(f(I))$, then
$|\operatorname{OPTIMUM}(I)-v(g(s))| \leq \beta \mid O P T I M U M(f(I))-v(s)$

Definition of L-Reductions

Consider the optimization problems Π_{1} and Π_{2}, then the pair of functions (f, g) is an L-reduction from Π_{1} to Π_{2} iff:
(1) f,g computable in logarithmic space.
(2) for any instance I of $\Pi_{1}, f(I)$ is an instance of Π_{2}.
(3) if s is a solution of $f(I)$, then $g(s)$ is a solution of I.

Definition of L-Reductions

Consider the optimization problems Π_{1} and Π_{2}, then the pair of functions (f, g) is an L-reduction from Π_{1} to Π_{2} iff:
(1) f,g computable in logarithmic space.
(2) for any instance I of $\Pi_{1}, f(I)$ is an instance of Π_{2}.
(3) if s is a solution of $f(I)$, then $g(s)$ is a solution of I.
(9) There are positive constant numbers α, β such that:

- $\operatorname{OPTIMUM}(f(I)) \leq \alpha \cdot \operatorname{OPTIMUM}(I)$ and
- If $s \in S(f(I))$, then $|\operatorname{OPTIMUM}(I)-v(g(s))| \leq \beta|\operatorname{OPTIMUM}(f(I))-v(s)|$

Properties of L-Reductions

Transitivity:Consider the optimization problems Π_{1}, Π_{2} and Π_{3}, if there exist (f, g) and $\left(f^{\prime}, g^{\prime}\right)$ L-Reduction from Π_{1} to Π_{2} and Π_{2} to Π_{3}, respectively, then there exist an L-Reduction $\left(f^{\prime} \cdot f, g \cdot g^{\prime}\right)$ from Π_{1} to Π_{3} (where $\left.\left(h \cdot h^{\prime}\right)(x)=h\left(h^{\prime}(x)\right)\right)$.
Proposition:Let (f, g, α, β) an L-Reduction from Π_{1} to Π_{2}, and there exists a
polynomial time ϵ-approximation algorithm for Π_{2}, then there exists a
polynomial time approximation algorithm for Π_{1} with ratio $\frac{\alpha \beta \epsilon}{1-\epsilon}$
Proof: Consider I to be an instance of Π_{1} and $s \in S(f(I))$, the solution of the approximation algorithm of Π_{2}, then

Theorem: Let Π_{1}, Π_{2} be optimization problems, then if Π_{1} L-Reduces to Π_{2} and there exists a PTAS for Π_{2} then there exists a PTAS for Π_{1}

Properties of L-Reductions

Transitivity:Consider the optimization problems Π_{1}, Π_{2} and Π_{3}, if there exist (f, g) and $\left(f^{\prime}, g^{\prime}\right)$ L-Reduction from Π_{1} to Π_{2} and Π_{2} to Π_{3}, respectively, then there exist an L-Reduction $\left(f^{\prime} \cdot f, g \cdot g^{\prime}\right)$ from Π_{1} to Π_{3} (where $\left.\left(h \cdot h^{\prime}\right)(x)=h\left(h^{\prime}(x)\right)\right)$.
Proposition:Let (f, g, α, β) an L-Reduction from Π_{1} to Π_{2}, and there exists a polynomial time ϵ-approximation algorithm for Π_{2}, then there exists a polynomial time approximation algorithm for Π_{1} with ratio $\frac{\alpha \beta \epsilon}{1-\epsilon}$.
Proof: Consider I to be an instance of Π_{1} and $s \in S(f(I))$, the solution of the approximation algorithm of Π_{2}, then

Theorem: Let Π_{1}, Π_{2} be optimization problems, then if Π_{1} L-Reduces to Π_{2}
and there exists a PTAS for Π_{2} then there exists a PTAS for Π_{1}

Properties of L-Reductions

Transitivity:Consider the optimization problems Π_{1}, Π_{2} and Π_{3}, if there exist (f, g) and $\left(f^{\prime}, g^{\prime}\right)$ L-Reduction from Π_{1} to Π_{2} and Π_{2} to Π_{3}, respectively, then there exist an L-Reduction $\left(f^{\prime} \cdot f, g \cdot g^{\prime}\right)$ from Π_{1} to Π_{3} (where $\left.\left(h \cdot h^{\prime}\right)(x)=h\left(h^{\prime}(x)\right)\right)$.
Proposition:Let (f, g, α, β) an L-Reduction from Π_{1} to Π_{2}, and there exists a polynomial time ϵ-approximation algorithm for Π_{2}, then there exists a polynomial time approximation algorithm for Π_{1} with ratio $\frac{\alpha \beta \epsilon}{1-\epsilon}$.
Proof: Consider I to be an instance of Π_{1} and $s \in S(f(I))$, the solution of the approximation algorithm of Π_{2}, then

$$
\begin{aligned}
& \frac{|\operatorname{OPTIMUM}(I)-v(g(s))|}{\max \{\operatorname{OPTIMUM}(I), v(g(s))\}} \leq \frac{\beta|\operatorname{OPTIMUM}(f(I))-v(s)|}{\frac{\operatorname{OPTIMUM}(f(I))}{\alpha}} \\
& \leq \frac{\alpha \beta|\operatorname{OPTIMUM}(f(I))-v(s)|}{(1-\epsilon) \max \{\operatorname{OPTIMUM}(f(I)), v(s)\}} \leq \frac{\alpha \beta \epsilon}{1-\epsilon}
\end{aligned}
$$

Theorem: Let Π_{1}, Π_{2} be optimization problems, then if Π_{1} L-Reduces to Π_{2}
and there exists a PTAS for Π_{2} then there exists a PTAS for Π_{1}

Properties of L-Reductions

Transitivity:Consider the optimization problems Π_{1}, Π_{2} and Π_{3}, if there exist (f, g) and $\left(f^{\prime}, g^{\prime}\right)$ L-Reduction from Π_{1} to Π_{2} and Π_{2} to Π_{3}, respectively, then there exist an L-Reduction $\left(f^{\prime} \cdot f, g \cdot g^{\prime}\right)$ from Π_{1} to Π_{3} (where $\left.\left(h \cdot h^{\prime}\right)(x)=h\left(h^{\prime}(x)\right)\right)$.
Proposition:Let (f, g, α, β) an L-Reduction from Π_{1} to Π_{2}, and there exists a polynomial time ϵ-approximation algorithm for Π_{2}, then there exists a polynomial time approximation algorithm for Π_{1} with ratio $\frac{\alpha \beta \epsilon}{1-\epsilon}$.
Proof: Consider I to be an instance of Π_{1} and $s \in S(f(I))$, the solution of the approximation algorithm of Π_{2}, then

$$
\begin{aligned}
& \frac{|\operatorname{OPTIMUM}(I)-v(g(s))|}{\max \{\operatorname{OPTIMUM}(I), v(g(s))\}} \leq \frac{\beta|\operatorname{OPTIMUM}(f(I))-v(s)|}{\frac{\operatorname{OPTIMUM}(f(I))}{\alpha}} \\
& \leq \frac{\alpha \beta|\operatorname{OPTIMUM}(f(I))-v(s)|}{(1-\epsilon) \max \{\operatorname{OPTIMUM}(f(I)), v(s)\}} \leq \frac{\alpha \beta \epsilon}{1-\epsilon}
\end{aligned}
$$

Theorem: Let Π_{1}, Π_{2} be optimization problems, then if Π_{1} L-Reduces to Π_{2} and there exists a PTAS for Π_{2} then there exists a PTAS for Π_{1}.

MAXSNP

Strict NP (SNP): is the class of the decision problems that can be expressed as: $\exists S \forall u_{1} \forall u_{2} \ldots \forall u_{k} \phi\left(G_{1}, G_{2}, \ldots G_{m}, S, u_{1}, u_{2}, \ldots, u_{k}\right)$ for optimization problems, a more appropriate class is considered MAXSNP $_{0}$: is the class of the optimization problems that can be expressed as:

MAXSNP: An optimization problem Π belongs to the MAXSNP class iff there exists an L-Reduction from Π to an optimization problem $\Pi^{\prime} \in \operatorname{MAXSNP} 0$
MAX-CUT is a MAXSNP 0_{0} (also, MAXSNP) problem: $\max _{C \subset V}|\{(u, v):(G(u, v) \vee G(v, u)) \wedge S(u) \wedge \neg S(v)\}|$
Theorem: Every problem belonging to MAXSNP 0 written as $\max \left|\left\{\left(u_{1}, u_{2}, \ldots, u_{k}\right): \phi\right\}\right|$ has a $1-2^{-n_{\phi}-\text { approximation }}$ algorithm, with n_{ϕ} indicating how many atomic expressions in ϕ are related to

MAXSNP

Strict NP (SNP): is the class of the decision problems that can be expressed as: $\exists S \forall u_{1} \forall u_{2} \ldots \forall u_{k} \phi\left(G_{1}, G_{2}, \ldots G_{m}, S, u_{1}, u_{2}, \ldots, u_{k}\right)$ for optimization problems, a more appropriate class is considered MAXSNP $_{0}$: is the class of the optimization problems that can be expressed as:
$\max _{S}\left|\left\{\left(u_{1}, u_{2}, \ldots, u_{k}\right) \in V^{k}: \phi\left(G_{1}, G_{2}, \ldots G_{m}, S, u_{1}, u_{2}, \ldots, u_{k}\right)\right\}\right|$ MAXSNP: An optimization problem Π belongs to the MAXSNP class iff there exists an L-Reduction from Π to an optimization problem $\Pi^{\prime} \in$ MAXSNP $_{0}$ MAX-CUT is a MAXSNP $0_{0}($ also, MAXSNP $)$ problem: $\max _{S} \mid\{(u, v):(G(u, v) \vee G(v, u)) \wedge S(u) \wedge \neg S(v)\}$

Theorem: Every problem belonging to MAXSNP 0_{0} written as $\max \left|\left\{\left(u_{1}, u_{2}, \ldots, u_{k}\right): \phi\right\}\right|$ has a $1-2^{-n_{\phi} \text {-approximation }}$ algorithm, with n_{ϕ} indicating how many atomic expressions in ϕ are related to

MAXSNP

Strict NP (SNP): is the class of the decision problems that can be expressed as: $\exists S \forall u_{1} \forall u_{2} \ldots \forall u_{k} \phi\left(G_{1}, G_{2}, \ldots G_{m}, S, u_{1}, u_{2}, \ldots, u_{k}\right)$ for optimization problems, a more appropriate class is considered MAXSNP $_{0}$: is the class of the optimization problems that can be expressed as:
$\max _{S}\left|\left\{\left(u_{1}, u_{2}, \ldots, u_{k}\right) \in V^{k}: \phi\left(G_{1}, G_{2}, \ldots G_{m}, S, u_{1}, u_{2}, \ldots, u_{k}\right)\right\}\right|$
MAXSNP: An optimization problem Π belongs to the MAXSNP class iff there exists an L-Reduction from Π to an optimization problem $\Pi^{\prime} \in \mathrm{MAXSNP}_{0}$

MAXSNP

Strict NP (SNP): is the class of the decision problems that can be expressed as: $\exists S \forall u_{1} \forall u_{2} \ldots \forall u_{k} \phi\left(G_{1}, G_{2}, \ldots G_{m}, S, u_{1}, u_{2}, \ldots, u_{k}\right)$ for optimization problems, a more appropriate class is considered MAXSNP $_{0}$: is the class of the optimization problems that can be expressed as:
$\max _{S}\left|\left\{\left(u_{1}, u_{2}, \ldots, u_{k}\right) \in V^{k}: \phi\left(G_{1}, G_{2}, \ldots G_{m}, S, u_{1}, u_{2}, \ldots, u_{k}\right)\right\}\right|$
MAXSNP: An optimization problem Π belongs to the MAXSNP class iff there exists an L-Reduction from Π to an optimization problem $\Pi^{\prime} \in$ MAXSNP $_{0}$ MAX-CUT is a MAXSNP ${ }_{0}$ (also, MAXSNP) problem:
$\max _{S \subseteq V}|\{(u, v):(G(u, v) \vee G(v, u)) \wedge S(u) \wedge \neg S(v)\}|$ $S \subseteq V$
Theorem: Every problem belonging to MAXSNP 0 written as
$\max \left|\left\{\left(u_{1}, u_{2}, \ldots, u_{k}\right): \phi\right\}\right|$ has a $1-2^{-n_{\phi}-a p p r o x i m a t i o n ~}$
algorithm, with n_{∞} indicating how many atomic expressions in ϕ

MAXSNP

Strict NP (SNP): is the class of the decision problems that can be expressed as: $\exists S \forall u_{1} \forall u_{2} \ldots \forall u_{k} \phi\left(G_{1}, G_{2}, \ldots G_{m}, S, u_{1}, u_{2}, \ldots, u_{k}\right)$ for optimization problems, a more appropriate class is considered MAXSNP $_{0}$: is the class of the optimization problems that can be expressed as:
$\max _{S}\left|\left\{\left(u_{1}, u_{2}, \ldots, u_{k}\right) \in V^{k}: \phi\left(G_{1}, G_{2}, \ldots G_{m}, S, u_{1}, u_{2}, \ldots, u_{k}\right)\right\}\right|$
MAXSNP: An optimization problem Π belongs to the MAXSNP class iff there exists an L-Reduction from Π to an optimization problem $\Pi^{\prime} \in \mathrm{MAXSNP}_{0}$ MAX-CUT is a MAXSNP ${ }_{0}$ (also, MAXSNP) problem: $\max _{S \subseteq V}|\{(u, v):(G(u, v) \vee G(v, u)) \wedge S(u) \wedge \neg S(v)\}|$ $S \subseteq V$
Theorem: Every problem belonging to MAXSNP_{0} written as $\max _{S}\left|\left\{\left(u_{1}, u_{2}, \ldots, u_{k}\right): \phi\right\}\right|$ has a $1-2^{-n_{\phi-a}}$ approximation algorithm, with n_{ϕ} indicating how many atomic expressions in ϕ are related to S.

MAXSNP-Completeness

A problem Π is called MAXSNP-Complete if it belongs to MAXSNP and every other problem in MAXSNP L-Reduce to it. If there is a PTAS for a MAXSNP-Complete problem, then for every problem in MAXSNP there is a PTAS. MAX3SAT is MAXSNP-Complete

MAXSNP-Completeness

A problem Π is called MAXSNP-Complete if it belongs to MAXSNP and every other problem in MAXSNP L-Reduce to it. If there is a PTAS for a MAXSNP-Complete problem, then for every problem in MAXSNP there is a PTAS.

MAXSNP-Completeness

A problem Π is called MAXSNP-Complete if it belongs to MAXSNP and every other problem in MAXSNP L-Reduce to it. If there is a PTAS for a MAXSNP-Complete problem, then for every problem in MAXSNP there is a PTAS. MAX3SAT is MAXSNP-Complete

围 Christos H. Papadimitriou, Computational Complexity, Addison-Wesley Publishing Company, 1995.
嗇 Vijay V. Vazirani, Approximation Algorithm, Springer, 2003.

[^0]: Approximation Threshold
 A problem's Π approximation threshold is the
 $\inf \{\epsilon \geq 0$: there exists a polynomial $\epsilon-$ approximation algorithm $\}$

[^1]: So, for every $\epsilon>0, b$ is chosen to be equal to $\left[\log \frac{\epsilon P}{m}\right]$ and then the

