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Approximation Algorithms

Optimization Problem

Given an optimization problem II and instance I of II, let S([)
denote the set of feasible solutions for I, then

OPTIMUM(I) = mi for minimizati
(1) Sg}gl(r})v(s)(orsrél&)})v(s)) or minimization (or

maximization) where v(s) denotes the value of the instance
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Approximation Algorithms

Optimization Problem

Given an optimization problem II and instance I of II, let S([)
denote the set of feasible solutions for I, then

OPTIMUM(I) = mi for minimizati
(1) Sgg(r})v(s)(orsrél&>})v(s)) or minimization (or

maximization) where v(s) denotes the value of the instance

e— Approximation Algorithm

An algorithm A is an e— approximation algorithm for problem IT iff
|[v(A(I)) — OPTIMUM(I)| < ¢ holds
<, .

max {OPTIMUM(I),v(A(I))}

for every instance I,
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Approximation Algorithms

Optimization Problem

Given an optimization problem II and instance I of II, let S([)
denote the set of feasible solutions for I, then

OPTIMUM(I) = mi for minimizati
(1) Sgg(r})v(s)(orsrél&>})v(s)) or minimization (or

maximization) where v(s) denotes the value of the instance

e— Approximation Algorithm

An algorithm A is an e— approximation algorithm for problem IT iff
|[v(A(I)) — OPTIMUM(I)| < ¢ holds
<, .

max {OPTIMUM(I),v(A(I))}

Approximation Threshold

A problem’s II approximation threshold is the
inf {e > 0 : there exists a polynomial € — approximation algorithm}
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Polynomial Time Approximation Scheme (PTAS)

An algorithm A is a PTAS for the optimization problem II, if for
every instance I and e > 0 the relative error of A(I,¢€) from the
OPTIMUM is at most € and A(/,€) is calculated in time
polynomially depending on |I].
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Polynomial Time Approximation Scheme (PTAS)

An algorithm A is a PTAS for the optimization problem II, if for
every instance I and e > 0 the relative error of A(I,¢€) from the
OPTIMUM is at most € and A(/,€) is calculated in time
polynomially depending on |I].

If A(I,¢€) is also polynomially depending on % then A is called a
Fully PTAS (FPTAS).
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Polynomial Time Approximation Scheme (PTAS)

An algorithm A is a PTAS for the optimization problem II, if for
every instance I and e > 0 the relative error of A(I,¢€) from the
OPTIMUM is at most € and A(/,€) is calculated in time
polynomially depending on |I].

If A(I,¢€) is also polynomially depending on % then A is called a
Fully PTAS (FPTAS).

The probabilistic relaxation of FPTAS is FPRAS, where an
algorithm A is called an FPRAS for the problem II, if for every
instance of a problem, the probability, the relative error to be less
than € is greater than or equal to %.
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FPTAS for Knapsack

Consider that there are n objects, and each of them (1 <4 <n) has a
profit (p;) and a weight (w;), and we want to put a subset of the objects
(the most profitable one) in a knapsack that can contain objects with
weight at most .
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FPTAS for Knapsack

Consider that there are n objects, and each of them (1 <4 <n) has a
profit (p;) and a weight (w;), and we want to put a subset of the objects
(the most profitable one) in a knapsack that can contain objects with
weight at most .

Pseudopolynomial algorithm

Consider P to be the maximum profit of the objects, then . p; < nP,
then for 1 <i<mnand 0 <p <nP let W(i,p) to be the minimum
weight of a set S C {1,2,...,4} such that ) _sp, = p, 0o otherwise
(no set with sum of profits equals to p exists).
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FPTAS for Knapsack

Consider that there are n objects, and each of them (1 <4 <n) has a
profit (p;) and a weight (w;), and we want to put a subset of the objects
(the most profitable one) in a knapsack that can contain objects with
weight at most .

Pseudopolynomial algorithm

Consider P to be the maximum profit of the objects, then . p; < nP,
then for 1 <i<mnand 0 <p <nP let W(i,p) to be the minimum
weight of a set S C {1,2,...,4} such that ) _sp, = p, 0o otherwise
(no set with sum of profits equals to p exists).

W(1,p1) = wy and W(1,p) = co,p # p1 and

Wi+ 1,p) = min {W(i,p), W(i,p — pit1) + wit1}. Using dynamic
programming the problem is solved in O(n?P)
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FPTAS for Knapsack

Consider that there are n objects, and each of them (1 <4 <n) has a
profit (p;) and a weight (w;), and we want to put a subset of the objects
(the most profitable one) in a knapsack that can contain objects with
weight at most .

Pseudopolynomial algorithm

Consider P to be the maximum profit of the objects, then . p; < nP,
then for 1 <i<mnand 0 <p <nP let W(i,p) to be the minimum
weight of a set S C {1,2,...,4} such that ) _sp, = p, 0o otherwise
(no set with sum of profits equals to p exists).

W(1,p1) = wy and W(1,p) = co,p # p1 and

Wi+ 1,p) = min {W(i,p), W(i,p — pit1) + wit1}. Using dynamic
programming the problem is solved in O(n?P)

FPTAS: Consider an arbitary number b and then p; = | & | (remove the
last b digits), and apply the pseudopolynomial algorithm. Now the time is

2 . . . b
O(™£), and for the solution found the relative error is at most “2-.
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FPTAS for Knapsack

Consider that there are n objects, and each of them (1 <4 <n) has a
profit (p;) and a weight (w;), and we want to put a subset of the objects
(the most profitable one) in a knapsack that can contain objects with
weight at most .

Pseudopolynomial algorithm

Consider P to be the maximum profit of the objects, then . p; < nP,
then for 1 <i<mnand 0 <p <nP let W(i,p) to be the minimum
weight of a set S C {1,2,...,4} such that ) _sp, = p, 0o otherwise
(no set with sum of profits equals to p exists).

W(1,p1) = wy and W(1,p) = co,p # p1 and

Wi+ 1,p) = min {W(i,p), W(i,p — pit1) + wit1}. Using dynamic
programming the problem is solved in O(n?P)

FPTAS: Consider an arbitary number b and then p; = | & | (remove the
last b digits), and apply the pseudopolynomial algorithm. Now the time is

2 . . . b
O(™£), and for the solution found the relative error is at most “2-.
So, for every € > 0, b is chosen to be equal to [log %W and then the

. . . 3
execution time is O(™%-)
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Definition of L-Reductions

Consider the optimization problems II; and Ils, then the pair of
functions (f, g) is an L-reduction from II; to Il iff:

@ f,g computable in logarithmic space.
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Definition of L-Reductions

Consider the optimization problems II; and Ils, then the pair of
functions (f, g) is an L-reduction from II; to Il iff:

@ f,g computable in logarithmic space.
@ for any instance I of IT;, f(I) is an instance of Ils.
@ if s is a solution of f(I), then g(s) is a solution of I.
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Definition of L-Reductions

Consider the optimization problems II; and Ils, then the pair of
functions (f, g) is an L-reduction from II; to Il iff:

@ f,g computable in logarithmic space.

@ for any instance I of II;, f(I) is an instance of IIs.

@ if s is a solution of f(I), then g(s) is a solution of I.

@ There are positive constant numbers «, 5 such that:
o OPTIMUM(f(I)) < a- OPTIMUM(I) and
o If s € S(f(I)), then
[OPTIMUM(I) — v(g(s))| < BJOPTIMUM(f(I)) — v(s)]
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Properties of L-Reductions

Transitivity:Consider the optimization problems II;,II> and Il3, if there exist
(f,g9) and (f',g") L-Reduction from II; to Il and Il to II3, respectively, then
there exist an L-Reduction (f' - f,g-g’) from II; to II3 (where

(h-1')(x) = h(h'(2))).
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Properties of L-Reductions

Transitivity:Consider the optimization problems II;,II> and Il3, if there exist
(f,g9) and (f',g") L-Reduction from II; to Il and Il to II3, respectively, then
there exist an L-Reduction (f' - f,g-g’) from II; to II3 (where

(h-1)(@) = h(K ().

Proposition:Let (f, g, «, 8) an L-Reduction from II; to Iz, and there exists a
polynomial time e—approximation algorithm for Il2, then there exists a

. . . . . . . afe
polynomial time approximation algorithm for Iy with ratio 7.
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Properties of L-Reductions

Transitivity:Consider the optimization problems II;,II> and Il3, if there exist
(f,g9) and (f',g") L-Reduction from II; to Il and Il to II3, respectively, then
there exist an L-Reduction (f' - f,g-g’) from II; to II3 (where

(h-1)(@) = h(K ().

Proposition:Let (f, g, «, 8) an L-Reduction from II; to Iz, and there exists a
polynomial time e—approximation algorithm for Il2, then there exists a
polynomial time approximation algorithm for Iy with ratio ?fi

Proof: Consider I to be an instance of II; and s € S(f(I)), the solution of the
approximation algorithm of Il3, then

[OPTIMUM(I) — v(g(s))| < BIOPTIMUM(f(I)) — v(s)]
max {OPTIMUM(I), v(g(s))} — OPTIMUM /(1))
af|OPTIMUM(f(I)) — v(s)| < afe
~ (1 - ¢)max {OPTIMUM(f(I)),v(s)} — 1 —¢
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Properties of L-Reductions

Transitivity:Consider the optimization problems II;,II> and Il3, if there exist
(f,g9) and (f',g") L-Reduction from II; to Il and Il to II3, respectively, then
there exist an L-Reduction (f' - f,g-g’) from II; to II3 (where

(h-1)(@) = h(K ().

Proposition:Let (f, g, «, 8) an L-Reduction from II; to Iz, and there exists a
polynomial time e—approximation algorithm for Il2, then there exists a
polynomial time approximation algorithm for Iy with ratio ?fi

Proof: Consider I to be an instance of II; and s € S(f(I)), the solution of the
approximation algorithm of Il3, then

[OPTIMUM(I) — v(g(s))| < BIOPTIMUM(f(I)) — v(s)]
max {OPTIMUM(I), v(g(s))} — OPTIMUM /(1))
af|OPTIMUM(f(I)) — v(s)| < afe
~ (1 - ¢)max {OPTIMUM(f(I)),v(s)} — 1 —¢

Theorem: Let II;, II> be optimization problems, then if II; L-Reduces to Il2
and there exists a PTAS for II2 then there exists a PTAS for I1;.
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MAXSNP

Strict NP (SNP): is the class of the decision problems that can be
expressed as: 3SVu Vus ... Vupd(G1, Ga, ... Gy, S, u1,ug, . .., ug)
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MAXSNP

Strict NP (SNP): is the class of the decision problems that can be
expressed as: 3SVu Vus ... Vupd(G1, Ga, ... Gy, S, u1,ug, . .., ug)
for optimization problems, a more appropriate class is considered
MAXSNPy: is the class of the optimization problems that can be
expressed as:

mgX’ {(ulaUQa” . ,Uk) € Vk : ¢(G17G2)~ ..Gm,S,U1,UQ,. . auk)} ’
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MAXSNP

Strict NP (SNP): is the class of the decision problems that can be
expressed as: 3SVu Vus ... Vupd(G1, Ga, ... Gy, S, u1,ug, . .., ug)
for optimization problems, a more appropriate class is considered
MAXSNPy: is the class of the optimization problems that can be
expressed as:

mgx[ {(ul,u2, cooup) €VEL(GL, G, G, Sy ug, us, . ,uk)} ]
MAXSNP: An optimization problem II belongs to the MAXSNP
class iff there exists an L-Reduction from II to an optimization
problem II" € MAXSNP,
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MAXSNP

Strict NP (SNP): is the class of the decision problems that can be
expressed as: 3SVu Vus ... Vupd(G1, Ga, ... Gy, S, u1,ug, . .., ug)
for optimization problems, a more appropriate class is considered
MAXSNPy: is the class of the optimization problems that can be
expressed as:

mgX’ {(ulaUQa” . ,Uk) € Vk : ¢(G17G2)~ ..Gm,S,U1,UQ,. . auk)} ’

MAXSNP: An optimization problem II belongs to the MAXSNP
class iff there exists an L-Reduction from II to an optimization
problem IT" € MAXSNP,

MAX-CUT is a MAXSNP(also, MAXSNP) problem:

max | {(,0) : (G(u,v) V G(v,u) A S(w) A=S(0)}
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MAXSNP

Strict NP (SNP): is the class of the decision problems that can be
expressed as: 3SVu Vus ... Vupd(G1, Ga, ... Gy, S, u1,ug, . .., ug)
for optimization problems, a more appropriate class is considered
MAXSNPy: is the class of the optimization problems that can be
expressed as:

mgx[ {(ul,u2, cooup) €VEL(GL, G, G, Sy ug, us, . ,uk)} ]
MAXSNP: An optimization problem II belongs to the MAXSNP
class iff there exists an L-Reduction from II to an optimization
problem II" € MAXSNP,

MAX-CUT is a MAXSNP(also, MAXSNP) problem:

max | {(u,v) : (G(u,v) V G(v,u)) ANS(u) A=S(v)} |

SCV
Theorem: Every problem belonging to MAXSNPq written as
max | {(u1,ug,...,ug): ¢} | has a 1 — 27 "¢-approximation

algorithm, with ng indicating how many atomic expressions in ¢
are related to S.
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MAXSNP-Completeness

A problem II is called MAXSNP-Complete if it belongs to
MAXSNP and every other problem in MAXSNP L-Reduce to it.
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MAXSNP-Completeness

A problem II is called MAXSNP-Complete if it belongs to
MAXSNP and every other problem in MAXSNP L-Reduce to it.
If there is a PTAS for a MAXSNP-Complete problem, then for
every problem in MAXSNP there is a PTAS.
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MAXSNP-Completeness

A problem II is called MAXSNP-Complete if it belongs to
MAXSNP and every other problem in MAXSNP L-Reduce to it.
If there is a PTAS for a MAXSNP-Complete problem, then for
every problem in MAXSNP there is a PTAS.

MAX3SAT is MAXSNP-Complete
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