Topics in Approximability

Konstantinos Mastakas

Department of Mathematics, University of Athens, Athens, Greece

31-1-13

Optimization Problem

Given an optimization problem Π and instance I of Π , let S(I) denote the set of feasible solutions for I, then OPTIMUM(I) = $\min_{s \in S(I)} v(s) (\text{or } \max_{s \in S(I)} v(s))$ for minimization (or maximization) where v(s) denotes the value of the instance

$\epsilon-$ Approximation Algorithm

An algorithm A is an ϵ - approximation algorithm for problem Π iff for every instance I, $\frac{|v(A(I)) - OPTIMUM(I)|}{\max \{OPTIMUM(I), v(A(I))\}} \leq \epsilon$, holds.

Approximation Threshold

A problem's II approximation threshold is the $\inf \{ \epsilon \ge 0 : \text{there exists a polynomial } \epsilon - \text{approximation algorithm} \}$

Optimization Problem

Given an optimization problem Π and instance I of Π , let S(I) denote the set of feasible solutions for I, then OPTIMUM(I) = $\min_{s \in S(I)} v(s) (\text{or } \max_{s \in S(I)} v(s))$ for minimization (or maximization) where v(s) denotes the value of the instance

$\epsilon-$ Approximation Algorithm

An algorithm A is an ϵ - approximation algorithm for problem Π iff for every instance I, $\frac{|v(A(I)) - OPTIMUM(I)|}{\max \{OPTIMUM(I), v(A(I))\}} \leq \epsilon$, holds.

Approximation Threshold

A problem's II approximation threshold is the $\inf \{\epsilon \ge 0 : \text{there exists a polynomial } \epsilon - \text{approximation algorithm} \}$

Optimization Problem

Given an optimization problem Π and instance I of Π , let S(I) denote the set of feasible solutions for I, then OPTIMUM(I) = $\min_{s \in S(I)} v(s) (\text{or } \max_{s \in S(I)} v(s))$ for minimization (or maximization) where v(s) denotes the value of the instance

$\epsilon-$ Approximation Algorithm

An algorithm A is an ϵ - approximation algorithm for problem II iff for every instance I, $\frac{|v(A(I)) - OPTIMUM(I)|}{\max \{OPTIMUM(I), v(A(I))\}} \leq \epsilon$, holds.

Approximation Threshold

A problem's Π approximation threshold is the $\inf \{\epsilon \geq 0: {\rm there \ exists \ a \ polynomial \ } \epsilon - {\rm approximation \ algorithm} \}$

Polynomial Time Approximation Scheme (PTAS)

An algorithm A is a PTAS for the optimization problem II, if for every instance I and $\epsilon > 0$ the relative error of $A(I, \epsilon)$ from the OPTIMUM is at most ϵ and $A(I, \epsilon)$ is calculated in time polynomially depending on |I|.

If $A(I, \epsilon)$ is also polynomially depending on $\frac{1}{\epsilon}$, then A is called a Fully PTAS (FPTAS).

The probabilistic relaxation of FPTAS is FPRAS, where an algorithm A is called an FPRAS for the problem II, if for every instance of a problem, the probability, the relative error to be less than ϵ is greater than or equal to $\frac{3}{4}$.

Polynomial Time Approximation Scheme (PTAS)

An algorithm A is a PTAS for the optimization problem Π , if for every instance I and $\epsilon > 0$ the relative error of $A(I, \epsilon)$ from the OPTIMUM is at most ϵ and $A(I, \epsilon)$ is calculated in time polynomially depending on |I|.

If $A(I, \epsilon)$ is also polynomially depending on $\frac{1}{\epsilon}$, then A is called a Fully PTAS (FPTAS).

The probabilistic relaxation of FPTAS is FPRAS, where an algorithm A is called an FPRAS for the problem II, if for every instance of a problem, the probability, the relative error to be less than ϵ is greater than or equal to $\frac{3}{4}$.

Polynomial Time Approximation Scheme (PTAS)

An algorithm A is a PTAS for the optimization problem Π , if for every instance I and $\epsilon > 0$ the relative error of $A(I, \epsilon)$ from the OPTIMUM is at most ϵ and $A(I, \epsilon)$ is calculated in time polynomially depending on |I|.

If $A(I, \epsilon)$ is also polynomially depending on $\frac{1}{\epsilon}$, then A is called a Fully PTAS (FPTAS).

The probabilistic relaxation of FPTAS is FPRAS, where an algorithm A is called an FPRAS for the problem Π , if for every instance of a problem, the probability, the relative error to be less than ϵ is greater than or equal to $\frac{3}{4}$.

Consider that there are n objects, and each of them $(1 \le i \le n)$ has a profit (p_i) and a weight (w_i) , and we want to put a subset of the objects (the most profitable one) in a knapsack that can contain objects with weight at most W.

Pseudopolynomial algorithm

FPTAS: Consider an arbitrary number b and then $p'_i = \lfloor \frac{p_i}{2^b} \rfloor$ (remove the

Consider that there are n objects, and each of them $(1 \le i \le n)$ has a profit (p_i) and a weight (w_i) , and we want to put a subset of the objects (the most profitable one) in a knapsack that can contain objects with weight at most W.

Pseudopolynomial algorithm

Consider P to be the maximum profit of the objects, then $\sum_i p_i \leq nP$, then for $1 \leq i \leq n$ and $0 \leq p \leq nP$ let W(i, p) to be the minimum weight of a set $S \subseteq \{1, 2, \ldots, i\}$ such that $\sum_{u \in S} p_u = p$, ∞ otherwise (no set with sum of profits equals to p exists).

 $W(1, p_1) = w_1$ and $W(1, p) = \infty, p \neq p_1$ and $W(i + 1, p) = \min \{W(i, p), W(i, p - p_{i+1}) + w_{i+1}\}$. Using dynamic programming the problem is solved in $O(n^2P)$ **FPTAS:** Consider an arbitary number b and then $p'_i = \lfloor \frac{p_i}{2^b} \rfloor$ (remove the last b digits), and apply the pseudopolynomial algorithm. Now the time is $O(\frac{n^2P}{2^b})$, and for the solution found the relative error is at most $\frac{n2^b}{P}$. So, for every $\epsilon > 0$, b is chosen to be equal to $\lceil \log \frac{\epsilon P}{n} \rceil$ and then the execution time is $O(\frac{n^3}{\epsilon})$

Consider that there are n objects, and each of them $(1 \le i \le n)$ has a profit (p_i) and a weight (w_i) , and we want to put a subset of the objects (the most profitable one) in a knapsack that can contain objects with weight at most W.

Pseudopolynomial algorithm

Consider P to be the maximum profit of the objects, then $\sum_i p_i \leq nP$, then for $1 \leq i \leq n$ and $0 \leq p \leq nP$ let W(i,p) to be the minimum weight of a set $S \subseteq \{1, 2, \ldots, i\}$ such that $\sum_{u \in S} p_u = p$, ∞ otherwise (no set with sum of profits equals to p exists). $W(1,p_1) = w_1$ and $W(1,p) = \infty, p \neq p_1$ and $W(i+1,p) = \min \{W(i,p), W(i,p-p_{i+1}) + w_{i+1}\}$. Using dynamic programming the problem is solved in $O(n^2P)$

FPTAS: Consider an arbitary number b and then $p'_i = \lfloor \frac{p_i}{2^b} \rfloor$ (remove the last b digits), and apply the pseudopolynomial algorithm. Now the time is $O(\frac{n^2P}{2^b})$, and for the solution found the relative error is at most $\frac{n2^b}{P}$. So, for every $\epsilon > 0$, b is chosen to be equal to $\lceil \log \frac{\epsilon P}{n} \rceil$ and then the execution time is $O(\frac{n^3}{\epsilon})$

Consider that there are n objects, and each of them $(1 \le i \le n)$ has a profit (p_i) and a weight (w_i) , and we want to put a subset of the objects (the most profitable one) in a knapsack that can contain objects with weight at most W.

Pseudopolynomial algorithm

Consider P to be the maximum profit of the objects, then $\sum_{i} p_i \leq nP$, then for $1 \le i \le n$ and $0 \le p \le nP$ let W(i, p) to be the minimum weight of a set $S \subseteq \{1, 2, \dots, i\}$ such that $\sum_{u \in S} p_u = p, \infty$ otherwise (no set with sum of profits equals to p exists). $W(1, p_1) = w_1$ and $W(1, p) = \infty, p \neq p_1$ and $W(i+1,p) = \min \{W(i,p), W(i,p-p_{i+1}) + w_{i+1}\}$. Using dynamic programming the problem is solved in $O(n^2P)$ **FPTAS:** Consider an arbitrary number b and then $p'_i = \lfloor \frac{p_i}{2b} \rfloor$ (remove the last b digits), and apply the pseudopolynomial algorithm. Now the time is $O(\frac{n^2 P}{2b})$, and for the solution found the relative error is at most $\frac{n2^b}{P}$.

Consider that there are n objects, and each of them $(1 \le i \le n)$ has a profit (p_i) and a weight (w_i) , and we want to put a subset of the objects (the most profitable one) in a knapsack that can contain objects with weight at most W.

Pseudopolynomial algorithm

Consider P to be the maximum profit of the objects, then $\sum_{i} p_i \leq nP$, then for $1 \le i \le n$ and $0 \le p \le nP$ let W(i, p) to be the minimum weight of a set $S \subseteq \{1, 2, \dots, i\}$ such that $\sum_{u \in S} p_u = p, \infty$ otherwise (no set with sum of profits equals to p exists). $W(1, p_1) = w_1$ and $W(1, p) = \infty, p \neq p_1$ and $W(i+1,p) = \min \{W(i,p), W(i,p-p_{i+1}) + w_{i+1}\}$. Using dynamic programming the problem is solved in $O(n^2P)$ **FPTAS:** Consider an arbitrary number b and then $p'_i = \lfloor \frac{p_i}{2^b} \rfloor$ (remove the last b digits), and apply the pseudopolynomial algorithm. Now the time is $O(\frac{n^2 P}{2b})$, and for the solution found the relative error is at most $\frac{n2^b}{P}$. So, for every $\epsilon > 0$, b is chosen to be equal to $\left[\log \frac{\epsilon P}{r}\right]$ and then the execution time is $O(\frac{n^3}{2})$

Definition of L-Reductions

Consider the optimization problems Π_1 and Π_2 , then the pair of functions (f,g) is an L-reduction from Π_1 to Π_2 iff:

- f,g computable in logarithmic space.
- (a) for any instance I of Π_1 , f(I) is an instance of Π_2 .
- (a) if s is a solution of f(I), then g(s) is a solution of I.
- If there are positive constant numbers α, β such that:
 - $\mathsf{OPTIMUM}(f(I)) \leq \alpha \cdot \mathsf{OPTIMUM}(I)$ and
 - If $s \in S(f(I)),$ then $|\mathsf{OPTIMUM}(I) v(g(s))| \leq \beta |\mathsf{OPTIMUM}(f(I)) v(s)|$

Definition of L-Reductions

Consider the optimization problems Π_1 and Π_2 , then the pair of functions (f,g) is an L-reduction from Π_1 to Π_2 iff:

- f,g computable in logarithmic space.
- **2** for any instance I of Π_1 , f(I) is an instance of Π_2 .
- **③** if s is a solution of f(I), then g(s) is a solution of I.
- If there are positive constant numbers α, β such that:
 - $\mathsf{OPTIMUM}(f(I)) \leq \alpha \cdot \mathsf{OPTIMUM}(I)$ and
 - If $s \in S(f(I))$, then $|\mathsf{OPTIMUM}(I) v(g(s))| \le \beta |\mathsf{OPTIMUM}(f(I)) v(s)|$

Definition of L-Reductions

Consider the optimization problems Π_1 and Π_2 , then the pair of functions (f,g) is an L-reduction from Π_1 to Π_2 iff:

- f,g computable in logarithmic space.
- **2** for any instance I of Π_1 , f(I) is an instance of Π_2 .
- (a) if s is a solution of f(I), then g(s) is a solution of I.
- There are positive constant numbers α, β such that:
 - $\mathsf{OPTIMUM}(f(I)) \leq \alpha \cdot \mathsf{OPTIMUM}(I)$ and
 - If $s \in S(f(I)),$ then $|\mathsf{OPTIMUM}(I) v(g(s))| \leq \beta |\mathsf{OPTIMUM}(f(I)) v(s)|$

Properties of L-Reductions

Transitivity:Consider the optimization problems Π_1, Π_2 and Π_3 , if there exist (f,g) and (f',g') L-Reduction from Π_1 to Π_2 and Π_2 to Π_3 , respectively, then there exist an L-Reduction $(f' \cdot f, g \cdot g')$ from Π_1 to Π_3 (where $(h \cdot h')(x) = h(h'(x))$).

Proposition:Let (f, g, α, β) an L-Reduction from Π_1 to Π_2 , and there exists a polynomial time ϵ -approximation algorithm for Π_2 , then there exists a polynomial time approximation algorithm for Π_1 with ratio $\frac{\alpha\beta\epsilon}{1-\epsilon}$. **Proof:** Consider I to be an instance of Π_1 and $s \in S(f(I))$, the solution of the approximation algorithm of Π_2 , then

$$\frac{|\mathsf{OPTIMUM}(I) - v(g(s))|}{\max\left\{\mathsf{OPTIMUM}(I), v(g(s))\right\}} \le \frac{\beta|\mathsf{OPTIMUM}(f(I)) - v(s)|}{\frac{\mathsf{OPTIMUM}(f(I))}{\alpha}} \le \frac{\alpha\beta|\mathsf{OPTIMUM}(f(I)) - v(s)|}{(1 - \epsilon)\max\left\{\mathsf{OPTIMUM}(f(I)), v(s)\right\}} \le \frac{\alpha\beta\epsilon}{1 - \epsilon}$$

Theorem: Let Π_1, Π_2 be optimization problems, then if Π_1 L-Reduces to Π_2 and there exists a PTAS for Π_2 then there exists a PTAS for Π_1 .

Properties of L-Reductions

Transitivity: Consider the optimization problems Π_1, Π_2 and Π_3 , if there exist (f,g) and (f',g') L-Reduction from Π_1 to Π_2 and Π_2 to Π_3 , respectively, then there exist an L-Reduction $(f' \cdot f, g \cdot g')$ from Π_1 to Π_3 (where $(h \cdot h')(x) = h(h'(x))$). **Proposition:**Let (f, g, α, β) an L-Reduction from Π_1 to Π_2 , and there exists a polynomial time ϵ -approximation algorithm for Π_2 , then there exists a polynomial time approximation algorithm for Π_1 with ratio $\frac{\alpha\beta\epsilon}{1-\epsilon}$. **Proof:** Consider I to be an instance of Π_1 and $s \in S(f(I))$, the solution of the

approximation algorithm of Π_2 , then

$$\begin{aligned} &\frac{|\mathsf{OPTIMUM}(I) - v(g(s))|}{\max\left\{\mathsf{OPTIMUM}(I), v(g(s))\right\}} \leq \frac{\beta|\mathsf{OPTIMUM}(f(I)) - v(s)|}{\frac{\mathsf{OPTIMUM}(f(I))}{\alpha}} \\ &\leq \frac{\alpha\beta|\mathsf{OPTIMUM}(f(I)) - v(s)|}{(1 - \epsilon) \max\left\{\mathsf{OPTIMUM}(f(I)), v(s)\right\}} \leq \frac{\alpha\beta\epsilon}{1 - \epsilon} \end{aligned}$$

Theorem: Let Π_1, Π_2 be optimization problems, then if Π_1 L-Reduces to Π_2 and there exists a PTAS for Π_2 then there exists a PTAS for Π_1 .

Transitivity:Consider the optimization problems Π_1, Π_2 and Π_3 , if there exist (f,g) and (f',g') L-Reduction from Π_1 to Π_2 and Π_2 to Π_3 , respectively, then there exist an L-Reduction $(f' \cdot f, g \cdot g')$ from Π_1 to Π_3 (where $(h \cdot h')(x) = h(h'(x))$). **Proposition:**Let (f, g, α, β) an L-Reduction from Π_1 to Π_2 , and there exists a

Proposition: Let (J, g, α, β) an L-Reduction from Π_1 to Π_2 , and there exists a polynomial time ϵ -approximation algorithm for Π_2 , then there exists a polynomial time approximation algorithm for Π_1 with ratio $\frac{\alpha\beta\epsilon}{1-\epsilon}$. **Proof:** Consider I to be an instance of Π_1 and $s \in S(f(I))$, the solution of the approximation algorithm of Π_2 , then

$$\begin{aligned} &\frac{|\mathsf{OPTIMUM}(I) - v(g(s))|}{\max\left\{\mathsf{OPTIMUM}(I), v(g(s))\right\}} \leq \frac{\beta|\mathsf{OPTIMUM}(f(I)) - v(s)|}{\frac{\mathsf{OPTIMUM}(f(I))}{\alpha}} \\ &\leq \frac{\alpha\beta|\mathsf{OPTIMUM}(f(I)) - v(s)|}{(1 - \epsilon)\max\left\{\mathsf{OPTIMUM}(f(I)), v(s)\right\}} \leq \frac{\alpha\beta\epsilon}{1 - \epsilon} \end{aligned}$$

Theorem: Let Π_1, Π_2 be optimization problems, then if Π_1 L-Reduces to Π_2 and there exists a PTAS for Π_2 then there exists a PTAS for Π_1 . **Transitivity:**Consider the optimization problems Π_1, Π_2 and Π_3 , if there exist (f,g) and (f',g') L-Reduction from Π_1 to Π_2 and Π_2 to Π_3 , respectively, then there exist an L-Reduction $(f' \cdot f, g \cdot g')$ from Π_1 to Π_3 (where $(h \cdot h')(x) = h(h'(x))$). **Proposition:**Let (f, g, α, β) an L-Reduction from Π_1 to Π_2 , and there exists a polynomial time ϵ -approximation algorithm for Π_2 , then there exists a

polynomial time approximation algorithm for Π_1 with ratio $\frac{\alpha\beta\epsilon}{1-\epsilon}$. **Proof:** Consider I to be an instance of Π_1 and $s \in S(f(I))$, the solution of the approximation algorithm of Π_2 , then

$$\begin{aligned} &\frac{|\mathsf{OPTIMUM}(I) - v(g(s))|}{\max\left\{\mathsf{OPTIMUM}(I), v(g(s))\right\}} \leq \frac{\beta|\mathsf{OPTIMUM}(f(I)) - v(s)|}{\frac{\mathsf{OPTIMUM}(f(I))}{\alpha}} \\ &\leq \frac{\alpha\beta|\mathsf{OPTIMUM}(f(I)) - v(s)|}{(1 - \epsilon) \max\left\{\mathsf{OPTIMUM}(f(I)), v(s)\right\}} \leq \frac{\alpha\beta\epsilon}{1 - \epsilon} \end{aligned}$$

Theorem: Let Π_1, Π_2 be optimization problems, then if Π_1 L-Reduces to Π_2 and there exists a PTAS for Π_2 then there exists a PTAS for Π_1 .

 $\max_{S} | \left\{ (u_1, u_2, \dots, u_k) \in V^k : \phi(G_1, G_2, \dots, G_m, S, u_1, u_2, \dots, u_k) \right\}$

MAXSNP: An optimization problem Π belongs to the MAXSNP class iff there exists an L-Reduction from Π to an optimization problem $\Pi' \in MAXSNP_0$

MAX-CUT is a MAXSNP₀(also, MAXSNP) problem: $\max_{S \subseteq V} | \{(u, v) : (G(u, v) \lor G(v, u)) \land S(u) \land \neg S(v) \} |$

Theorem: Every problem belonging to MAXSNP₀ written as $\max_{S} |\{(u_1, u_2, \ldots, u_k) : \phi\}|$ has a $1 - 2^{-n_{\phi}}$ -approximation algorithm, with n_{ϕ} indicating how many atomic expressions in φ are related to S.

MAXSNP

Strict NP (SNP): is the class of the decision problems that can be expressed as: $\exists S \forall u_1 \forall u_2 \dots \forall u_k \phi(G_1, G_2, \dots, G_m, S, u_1, u_2, \dots, u_k)$ for optimization problems, a more appropriate class is considered **MAXSNP**₀**:** is the class of the optimization problems that can be expressed as:

 $\max_{G} | \{ (u_1, u_2, \dots, u_k) \in V^k : \phi(G_1, G_2, \dots, G_m, S, u_1, u_2, \dots, u_k) \} |$ **MAX-CUT** is a MAXSNP₀(also, MAXSNP) problem: **Theorem:** Every problem belonging to MAXSNP₀ written as

$$\begin{split} \max_{S} | \left\{ (u_1, u_2, \ldots, u_k) \in V^k : \phi(G_1, G_2, \ldots G_m, S, u_1, u_2, \ldots, u_k) \right\} | \\ \textbf{MAXSNP:} & \text{An optimization problem } \Pi \text{ belongs to the MAXSNP} \\ \text{class iff there exists an L-Reduction from } \Pi \text{ to an optimization} \\ \text{problem } \Pi' \in \text{MAXSNP}_0 \end{split}$$

MAX-CUT is a MAXSNP₀(also, MAXSNP) problem: $\max_{S \subseteq V} | \{(u, v) : (G(u, v) \lor G(v, u)) \land S(u) \land \neg S(v)\} |$ **Theorem:** Every problem belonging to MAXSNP₀ written as $\max_{S} | \{(u_1, u_2, \dots, u_k) : \phi\} | \text{ has a } 1 - 2^{-n_{\phi}} \text{-approximation}$ algorithm, with n_{ϕ} indicating how many atomic expressions in ϕ are related to S.

 $\max_{G} | \{ (u_1, u_2, \dots, u_k) \in V^k : \phi(G_1, G_2, \dots, G_m, S, u_1, u_2, \dots, u_k) \} |$ **MAXSNP:** An optimization problem Π belongs to the MAXSNP class iff there exists an L-Reduction from Π to an optimization problem $\Pi' \in MAXSNP_0$ **MAX-CUT** is a MAXSNP₀(also, MAXSNP) problem: $\max_{S \subseteq V} |\{(u,v) : (G(u,v) \lor G(v,u)) \land S(u) \land \neg S(v)\}|$ **Theorem:** Every problem belonging to MAXSNP₀ written as

 $\max_{G} | \{ (u_1, u_2, \dots, u_k) \in V^k : \phi(G_1, G_2, \dots, G_m, S, u_1, u_2, \dots, u_k) \} |$ **MAXSNP:** An optimization problem Π belongs to the MAXSNP class iff there exists an L-Reduction from Π to an optimization problem $\Pi' \in MAXSNP_0$ **MAX-CUT** is a MAXSNP₀(also, MAXSNP) problem: $\max_{S \subseteq V} |\{(u,v) : (G(u,v) \lor G(v,u)) \land S(u) \land \neg S(v)\}|$ **Theorem:** Every problem belonging to MAXSNP₀ written as $\max | \{(u_1, u_2, \dots, u_k) : \phi\} |$ has a $1 - 2^{-n_{\phi}}$ -approximation algorithm, with n_{ϕ} indicating how many atomic expressions in ϕ are related to S.

MAXSNP-Completeness

A problem Π is called MAXSNP-Complete if it belongs to MAXSNP and every other problem in MAXSNP L-Reduce to it.

If there is a PTAS for a MAXSNP-Complete problem, then for every problem in MAXSNP there is a PTAS. MAX3SAT is MAXSNP-Complete A problem Π is called MAXSNP-Complete if it belongs to MAXSNP and every other problem in MAXSNP L-Reduce to it. If there is a PTAS for a MAXSNP-Complete problem, then for every problem in MAXSNP there is a PTAS.

MAX3SAT is MAXSNP-Complete

A problem II is called MAXSNP-Complete if it belongs to MAXSNP and every other problem in MAXSNP L-Reduce to it. If there is a PTAS for a MAXSNP-Complete problem, then for every problem in MAXSNP there is a PTAS. MAX3SAT is MAXSNP-Complete

Christos H. Papadimitriou, *Computational Complexity*, Addison-Wesley Publishing Company, 1995.

Vijay V. Vazirani, *Approximation Algorithm*, Springer, 2003.