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Alternation: important generalization of non-determinism 
 
Redefining Non-Determinism in terms of configurations: a 
configuration “lead to acceptance ” iff it is a final accepting 
configuration or at least one of its successors leads to 
Acceptance. 
 
Each configuration is in some sense an implicit OR of its 
successor configurations.  
 
In contrast the machine for the complement of the same 
language will have implicit AND’s as configurations.  



Suppose that we allow both modes in our nondeterministic  

machines 

 

 AND configurations accept if all of their successors accept 

 

 OR configurations accept if at least one of their successors  

accept 

 

 The machine accepts its input iff its initial configuration with 
this input does. 





ATM: a nondeterministic TM N = (K , Σ, Δ, s) in 

which the set of states K is partitioned into two  

sets, K = KAND ᴜ KOR. Let x be the input and  

consider the tree of computations of N on input  

x. Each node in this tree is a configuration of  

the precise machine, and includes the step  

number of the machine.  



 ATIME(f(n)): the class of all languages  

decided by an ATM, all computations of which 

on input x halt after at most f(lxl) steps  

 

AP =      ATIME(nc) 

 

 ASPACE(f(n)): the class of all languages decided 
by an ATM that uses no more than f(lxl) space on 
input x. 

     

AL = ASPACE (logn) 



Proof Sketch:  

 

 MCVP is P-Complete (Ch.8) 

 

 MCVP is AL-Complete (to be proven) 

 

 Both classes are closed under reductions and the 
have the same complete problem. 

 

 



 The CIRCUIT VALUE problem is the following: 

when the laws of Boolean logic are applied to 

the gates in topological order, does the output 

evaluate to true? 

 Monotone Circuit:  

with only AND and OR gates. 

 if the one input changes from  

false to true the value of the  

function cannot change from  

true to false. 



 The input of our ATM is a circuit. 
The machine examines the output gate of the circuit.  
 
 If it is an AND gate, then the machine enters an AND state;  
 if the output gate is an OR gate, then it enters an OR state.  

 
 In either case, the machine determines the two gates that are 
predecessors of the output (it does so by remembering the output 
gate while examining all edges), and it nondeterministically 
chooses one.  
 The same process is repeated at the new gate, till the input gate 

where the machine accepts if it is a true gate, and rejects if it is a 
false gate.  

 
Only logarithmic space is needed. 



 Any language L is reducible to the MCVP. 

 Construct a monotone circuit C:  
◦ C’s output 
◦ Construction:  
 Gates (C,i) where C is a configuration for input x 

 There is an arc between (C1,i)     (C2,j) iff C2    C1, j = i +1 

 Gate type depends on the state:  

 KOR = OR  

 KAND = AND  

 Yes = true 

 No = false 

 Output= initial configuration 

 and i the step number 0 < i < |x|k  the time-bound in order 
to for the circuit to be acyclic 

 

 

 

 



 

 

Proof Sketch:  
 

 AP = ATIME(nc) 

 QSAT is PSPACE-Complete 

 QSAT is AP-Complete 

 Both classes are closed under reductions 
and the have the same complete 
problem. 

 



  Also known as QBF (Quantified Boolean 
Formula) 

 Given a Boolean expression φ in CNF, Φ is 

satisfied by the overall truth 

 assignment? 



 

 

 
 
 
QSAT is in AP 
 
The computation will guess the truth values of the variables 
X1, X2, . .. one- by-one, where existentially quantified 
variables are guessed at states in KOR , while universally 
quantified ones at states in KAND.  
A final state is accepting if the guessed truth assignment 
satisfies the expression, and rejecting otherwise.  
It follows from the definition of acceptance for alternating 
machines that a quantified expression is accepted iff it is 
true; the time needed is polynomial.  



 The computation of a polynomial-time ATM can be captured 
by a table, with extra nondeterministic choices.  

 In the resulting  expression the quantifiers for the 
nondeterministic choices are  
◦ universal if the current state is in KAND 

◦ existential if the current state in KOR.  

 We can standardize our ATMs so that the successors of KOR 
configurations are KAND, and vice-versa;  

 The variables standing for nondeterministic choices at even 
levels are existentially quantified, and at odd levels 
universally.  

 All other variables (the gates of the circuit) are quantified 
existentially.  

 The ATM accepts the input iff the resulting quantified               
expression is true. 



 

 Alternating space is precisely deterministic 
time, only one exponential higher 

 

ASPACE = EXP 

 

 Alternating time is roughly equivalent to 
deterministic space  

ASPACE(f(n))= TIME (kf(n)) 

 



For every i ∈ N, we define ΣiTIME(T(n)) to be the 

set of languages accepted by a T(n)-time ATM 

M whose initial state is labeled “∃” and on 

which every input and on every (directed) path  

from the starting configuration in the 

configuration graph, M can alternate at most 

i−1 times from states with one label to states 

with the other label. 



For every i ∈ N, we define ΠiTIME(T(n)) to be  

the set of languages accepted by a T(n)-time  

ATM M whose initial state is labeled “∀” and on 

which every input and on every (directed) path  

from the starting configuration in the 

configuration graph, M can alternate at most 

i−1 times from states with one label to states 

with the other label. 
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