
Algebraic Computation Models

Algebraic Computation Models

Ζυγομήτρος Ευάγγελος

ΜΠΛΑ 201118

Φεβρουάριος, 2013



Algebraic Computation Models

Reasons for using algebraic models of computation

The Turing machine model captures computations on bits. Many
algorithms are most naturally described as operating on uncountable
sets, like R or C (e.g. Newton’s method for finding roots of a given
real-valued function f).

A wide variety of such algorithms occurs in numerical analysis,
computer algebra, computational geometry and robotics, typically
assuming that a basic computational step involves an operation
(+,×, /) in some arbitrary field F.

Allowing arbitrary field operations in an algorithm may not be
directly implentable (since computers do arithmetic using finite
precision) but it provides a useful approximation to the asymptotic
behavior of the algorithm, as computers are allowed to use more and
more precision in their computations.



Algebraic Computation Models

Pitfalls

Allowing (arbitrary precision) arithmetic on real numbers as a basic step
can quickly lead to unrealistically strong models.

Example

Shamir has shown how to factor any integer N in poly(logN) time on any
model that allows arithmetic (including the mod operation) with arbitrary
precision (whereas factoring is a notoriously hard problem for classical
TMs).

Example

A real number can encode infinite amount of information, e.g. a single
real number is enough to encode the answer to every instance of SAT.
Thus, we have to be careful in defining a model that allows even a single
hardwired real number in its programs.

The usual way to avoid such pitfalls is to restrict the algorithm’s ability
to access individual bits.



Algebraic Computation Models

Models

Algebraic Straight-Line Programs

Algebraic Circuits

Algebraic Turing Machines

We will consider algorithms that get as input a tuple of numbers over a
field or a ring F (typically R or C). The input (x1, x2, . . . , xn) ∈ Fn is said
to have size n. A language over a field/ring F is a subset of ∪n≥1Fn.



Algebraic Computation Models

Algebraic Straight-Line Programs

Definition (Algebraic straight-line program over F)

An algebraic straight-line program of length T with input variables
x1, x2, . . . , xn ∈ F and built-in constants c1, c2, . . . , cn ∈ F is a sequence
of T statements of the form

yi = zi1 ? zi2, i = 1, 2, . . . ,T

where ? is one of the field operations + or × and each of zi1, zi2 is either
an input variable, or a built-in constant, or yj for j < i .

The straight-line computation consists of executing these simple
statements in order, finding values for y1, y2, . . . , yT . The output of the
computation is the value of yT .

straight-line: no conditionals or loops



Algebraic Computation Models

Algebraic Straight-Line Programs (cnt’d)

Example (Computation of e × (x1 + e) + π × x2 in R)

Input: x1, x2
Output: y4
Built-in constants: π, e
y1 = x1 + e
y2 = e × y1
y3 = π × x2
y4 = y2 + y3

Reminder: The degree of a multivariate polynomial p(x1, x2, . . . , xn) is
defined to be the maximum degree among all its monomials.
The degree of the monomial c

∏
i xdi

i is
∑

i di .

Lemma

The output of a staight-line program of length T with variables
x1, x2, . . . , xn is a polynomial p(x1, x2, . . . , xn) of degree at most 2T .



Algebraic Computation Models

Algebraic Straight-Line Programs (cnt’d)

We are interested in asymptotic complexity i.e. the length (as a function of n)
of such a program that computes a function fn of n variables.
Here are some examples of interesting functions that are computable by
polynomial length algebraic straight-line programs:

Polynomial Multiplication:

O
(
n2
)

using a naive algorithm

O
(
n log n

)
using the fast Fourier transform for fields that have

a primitive mth root of unity, where m is the smallest power of
2 greater than 2n
O
(
n log n log log n

)
for all fields

Fast Fourier Transform: O
(
n log n

)
[Cooley and Turkey]

Matrix Multiplication: O
(
n3
)

(naive algorithm). Improvements using
techniques like Strassen’s (O

(
n2.807

)
(1969)) with complexity O

(
nω

)
for

ω < 3 (current record: ω ∼ 2.3727 [Vassilevska Williams] (2011),
previous record: ω ∼ 2.3736 [Andrew Stothers] (2010) (broke the famous
bound, ω ∼ 2.376 [Coppersmith and Winograd] (1989))



Algebraic Computation Models

Algebraic Circuits

Definition

An algebraic circuit consists of an acyclic graph. The leaves are called input
nodes, are labeled x1, x2 . . . xn and take values in a field F. We also allow
special input nodes labeled with arbitrary constants c1, c2, . . . ck ∈ F. Each
internal node, called a gate, is labeled with one of the operations +,×. We
consider only circuits with a single output node and with the in-degree of each
gate being 2.
An algebraic formula is a circuit where each gate has out-degree equal to 1.

The size of a circuit is the number of gates in it. The depth of the circuit is the
length of the longest path from input to output in it.

Lemma

Let f : Fn → F be some function. If f has an algebraic straight-line program of
size S , then it has an algebraic circuit of size 3S . If f is computable by an
algebraic circuit of size S then it is computable by an algebraic straight line
program of length S .



Algebraic Computation Models

Algebraic Circuits (cnt’d)

Example (Computation of e × (x1 + e) + π × x2 in R)

Input: x1, x2
Constants: π, e



Algebraic Computation Models

Algebraic Circuits (cnt’d)

Definition (Analogs of P and NP for algebraic circuits)

Let F be a field. We say that a family of polynomials {pn}n∈N, where pn

takes n variables over F, has polynomially-bounded degree if there is a
constant c s.t. for every n the degree of pn is at most cnc .
The class AlgP/poly contains all polynomially bounded degree families of
polynomials that are computable by algebraic circuits of polynomial size
and polynomial degree.
The class AlgNP/poly is the class of polynomially bounded degree
families {pn} that are definable as

pn(x1, x2, . . . , xn) =
∑

e∈{0,1}m−n

gm(x1, x2, . . . , xn, en+1, . . . , em)

where gm ∈ AlgP/poly and m is polynomial in n.



Algebraic Computation Models

Algebraic Circuits (cnt’d)

Definition

A function f (x1, x2, . . . , xn) is a projection of a function g(y1, y2, . . . , yn)
if there is a mapping σ from {y1, y2, . . . , ym} to {0, 1, x1, x2, . . . , xn} s.t.
f (x1, x2, . . . , xn) = g(σ(y1), σ(y2), . . . σ(ym)).
We say that f is projection-reducible to g if f is a projection of g.

Example

The function f (x1, x2) = x1 + x2 is projection reducible to
g(y1, y2, y3) = y2

1 y3 + y2 since f (x1, x2) = g(1, x1, x2).



Algebraic Computation Models

Algebraic Circuits (cnt’d)

Theorem (Completeness of determinant and permanent)

For every field F and every polynomial family on n variables that is
computable by an algebraic formula of size u is projection reducible to
the determinant function (over the same field) on u + 2 variables.
For every field except those that have characteristic 2, every polynomial
family in AlgNP/poly is projection reducible to the permanent function
(over the same field) with polynomially more variables.

determinant is AlgP/poly-complete

permanent is AlgNP/poly-complete

It is necessary to show AlgP/poly 6= AlgNP/poly before one can show
P 6= NP.



Algebraic Computation Models

The Blum-Shub-Smale Model

The first uniform model we encounter

A generalization of Turing Machines

input: a string in Fn

output: accept or reject
each cell can hold an element of F

The machine has a finite set of internal states. Three categories of
states:

shift state: move the head to the left or to the right of the
current position
branch state: if the content of the current cell is a, then goto
state q1 else goto state q2

computation state: replace the content a of the current cell
with f (a), where f is a hard-wired function (polynomial or
rational depending on whether F is a ring or a field)



Algebraic Computation Models

The Blum-Shub-Smale Model (cnt’d)

In the standard model of the TM, the computation and branch operations
can be executed in the same step, whereas here they have to be
performed seperately.

In order to branch, the machine has to be able to remember the value it
just read one step ago. For this reason the machine has a single register
onto which it can copy the contents of the cell currently under the head,
and whose value can be used in the next step.

Very powerful model (e.g. can compute x2n in n steps (by repeating the
operation x ← x2)

The machine can only branch using tests like ”Is the content of this cell
equal to a?”

If we allow tests like ”Is the content of this cell greater than a?” it would
give the machine much more power, including the ability to decide every
language in P/poly in polynomial time (even if the language is undecidable)

If we allow rounding as a basic operation then it is possible to factor
integers in polynomial time



Algebraic Computation Models

The Blum-Shub-Smale Model (cnt’d)

Since the BSS model is more powerful than the ordinary Turing Machine, it
makes sense to also revisit decidability questions.

Definition (Mandelbrot set decision problem)

For complex c, z, let pc(z) = z2 + c. Then the Mandelbrot set is defined as

M ={c ∈ C | the sequence pc(0), pc(pc(0)), pc(pc(pc(0))) . . .

is bounded}

For example, letting c = 1 gives the sequence 0, 1, 2, 5, 26 . . . , which tends to
infinity. As this sequence is unbounded, 1 is not an element of the Mandelbrot
set. On the other hand, c = i gives the sequence
0, i , (−1 + i),−i , (−1 + i),−i , . . . , which is bounded, and so i belongs to the
Mandelbrot set.

Theorem

M is undecidable by a machine over C.



Algebraic Computation Models

Roger Penrose’s criticism of artificial intelligence

Penrose uses a variant of Turing’s halting problem to demonstrate that a
system can be deterministic without being algorithmic: imagine a system
with only 2 states, ON and OFF. If the system’s state is ON if a given
Turing machine halts, and OFF if the Turing machine does not halt, then
the system’s state is completely determined by the Turing machine,
however there is no algorithmic way to determine whether the Turing
machine stops.

He argues that humans have an intuitive grasp of many things that seem

beyond the capacities of the Turing machine model:

the present computer is unable to have intelligence because it is an
algorithmically deterministic system.
the rational processes of the mind are not completely algorithmic
and thus cannot be duplicated by a sufficiently complex computer.

This contrasts with supporters of strong artificial intelligence, who
contend that thought can be simulated algorithmically.

He mentioned the Mandelbrot set as an example. He suggested that such
mathematical objects are beyond the purview of computer science, one
cannot talk about the decidability of such sets.



Algebraic Computation Models

Bibliography

S. Arora and B. Barak, Computational complexity: a modern
approach, Cambridge University Press, 2009.

Salil Vadhan, CS 221: Computational Complexity (Harvard),
Lecture Notes (spring 2010).

R. Penrose, The Emperor’s New Mind, Oxford University Press,
1989.


