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Randomized Algorithms Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Deterministic Quicksort
Input: A list L of integers;

If n ≤ 1 then return L.
Else {

let i = 1;

let L1 be the sublist of L whose elements are < ai;

let L1 be the sublist of L whose elements are = ai;

let L1 be the sublist of L whose elements are > ai;

Recursively Quicksort L1 and L3;

return L = L1L2L3;
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let L1 be the sublist of L whose elements are < ai;
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Randomized Algorithms Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Let Td the max number of comparisons for the Deterministic
Quicksort:

Td ≥ Td(n − 1) +O(n)

⇓

Td(n) = Ω(n2)

Let Tr the expected number of comparisons for the Randomized
Quicksort:

Tr ≥
1

n

n−1∑
j=0

[Tr (j)− Tr (n − 1− j)] +O(n)

⇓

Tr (n) = O(n log n)
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Randomized Algorithms Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

1 Two polynomials are equal if they have the same coefficients for
corresponding powers of their variable.

2 A polynomial is identically zero if all its coefficients are equal to the
additive identity element.

3 How we can test if a polynomial is identically zero?

4 We can choose uniformly at random r1, . . . , rn from a set S ⊆ F.
5 We are wrong with a probability at most:

Theorem (Schwartz-Zippel Lemma)

Let Q(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multivariate polynomial of total
degree d. Fix any finite set S ⊆ F, and let r1, . . . , rn be chosen
indepedently and uniformly at random from S. Then:

Pr[Q(r1, . . . , rn) = 0|Q(x1, . . . , xn) 6= 0] ≤ d

|S |
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Randomized Algorithms Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

Proof:
(By Induction on n)

For n = 1: Pr[Q(r) = 0|Q(x) 6= 0] ≤ d/|S |
For n:

Q(x1, . . . , xn) =
k∑

i=0

Qi (x2, . . . , xn)

where k ≤ d is the smallest exponent of x1 in Q.
deg(Qk) ≤ d − k ⇒ Pr[Qk(r2, . . . , rn)] ≤ (d − k)/|S |
Suppose that Qk(r1, . . . , rn) 6= 0. Then:

q(x1) = Q(x1, r2, . . . , rn) =
k∑

i=0

x i
1Qi (r2, . . . , rn)

deg(q(x1)) = k, and q(x1) 6= 0!
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Randomized Algorithms Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

Proof (cont’d):
The base case now implies that:

Pr[q(r1) = Q(r1, . . . , rn) = 0] ≤ k/|S |

Thus, we have shown the following two equalities:

Pr[Qk(r2, . . . , rn) = 0] ≤ d − k

|S |

Pr[Qk(r1, r2, . . . , rn) = 0|Qk(r2, . . . , rn) 6= 0] ≤ k

|S |

Using the following identity: Pr[E1] ≤ Pr[E1|E2] + Pr[E2] we obtain that
the requested probability is no more than the sum of the above, which
proves our theorem! �
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Randomized Complexity Computational Model

Probabilistic Turing Machines

A Probabilistic Turing Machine is a TM as we know it, but with
access to a “random source”, that is an extra (read-only) tape
containing random-bits!
Randomization on:

Output (one or two-sided)
Running Time

Definition (Probabilistic Turing Machines)

A Probabilistic Turing Machine is a TM with two transition functions
δ0, δ1. On input x , we choose in each step with probability 1/2 to apply
the transition function δ0 or δ1, indepedently of all previous choices.

We denote by M(x) the random variable corresponding to the output
of M at the end of the process.

For a function T : N→ N, we say that M runs in T (|x |)-time if it
halts on x within T (|x |) steps (regardless of the random choices it
makes).
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Randomized Complexity Complexity Classes

BPP Class

Definition (BPP Class)

For T : N→ N, let BPTIME(T (n)) the class of languages L such that
there exists a PTM which halts in O(T (|x |)) time on input x , and
Pr[M(x) = L(x)] ≥ 2/3.
We define:

BPP =
⋃
c∈N

BPTIME(nc)

The class BPP represents our notion of efficient (randomized)
computation!

We can also define BPP using certificates:
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Randomized Complexity Complexity Classes

BPP Class

Definition (Alternative Definition of BPP)

A language L ∈ BPP if there exists a poly-time TM M and a polynomial
p ∈ poly(n), such that for every x ∈ {0, 1}∗:

Prr∈{0,1}p(n) [M(x , r) = L(x)] ≥ 2

3

P ⊆ BPP

BPP ⊆ EXP

The “P vs BPP” question.
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Quantifier Characterizations

Quantifier Characterizations

Proper formalism (Zachos et al.):

Definition (Majority Quantifier)

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a predicate, and ε a rational number,
such that ε ∈

(
0, 1

2

)
. We denote by (∃+y , |y | = k)R(x , y) the following

predicate:

“There exist at least
(

1
2 + ε

)
· 2k strings y of length m for which

R(x , y) holds.”

We call ∃+ the overwhelming majority quantifier.

∃+
r means that the fraction r of the possible certificates of a certain

length satisfy the predicate for the certain input.
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Quantifier Characterizations

Quantifier Characterizations

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃, ∀, ∃+}, the class C of
languages L satisfying:

x ∈ L⇒ Q1y R(x , y)

x /∈ L⇒ Q2y ¬R(x , y)

P = (∀/∀)

NP = (∃/∀)

coNP = (∀/∃)

BPP = (∃+/∃+) = coBPP
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Quantifier Characterizations

RP Class

In the same way, we can define classes that contain problems with
one-sided error:

Definition

The class RTIME(T (n)) contains every language L for which there exists
a PTM M running in O(T (|x |)) time such that:

x ∈ L⇒ Pr[M(x) = 1] ≥ 2
3

x /∈ L⇒ Pr[M(x) = 0] = 1

We define
RP =

⋃
c∈N

RTIME(nc)

Similarly we define the class coRP.
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Quantifier Characterizations

RP Class

RP ⊆ NP, since every accepting “branch” is a certificate!

RP ⊆ BPP, coRP ⊆ BPP

RP = (∃+/∀)

⊆ (∃/∀) = NP

coRP = (∀/∃+) ⊆ (∀/∃) = coNP

Theorem (Decisive Characterization of BPP)

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀)
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Quantifier Characterizations

ZPP Class

And now something completely different:

What is the random variable was the running time and not the
output?

We say that M has expected running time T (n) if the expectation
E[TM(x)] is at most T (|x |) for every x ∈ {0, 1}∗.
(TM(x) is the running time of M on input x , and it is a random variable!)

Definition

The class ZPTIME(T (n)) contains all languages L for which there exists
a machine M that runs in an expected time O(T (|x |)) such that for every
input x ∈ {0, 1}∗, whenever M halts on x , the output M(x) it produces is
exactly L(x). We define:

ZPP =
⋃
c∈N

ZTIME(nc)
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Quantifier Characterizations

ZPP Class

The output of a ZPP machine is always correct!

The problem is that we aren’t sure about the running time.

We can easily see that ZPP = RP ∩ coRP.

The next Hasse diagram summarizes the previous inclusions:
(Recall that ∆Σp

2 = Σp
2 ∩ Πp

2 = NPNP ∩ coNPNP)
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Quantifier Characterizations

PSPACE

∆Σp
2

OO

coNP

99rrrrrrrrrr
NP

ddJJJJJJJJJ

BPP

OO

coRP

88qqqqqqqqqq

OO

RP

eeKKKKKKKKKK

OO

ZPP

ffMMMMMMMMMM

99ssssssssss

P

OO
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Quantifier Characterizations

PSPACE

(∃∀/∀∃) ∩ (∀∃/∃∀)

OO

(∀/∃)

66mmmmmmmmmmmmm
(∃/∀)

hhQQQQQQQQQQQQQ

(∃+/∃+)

OO

(∀/∃+)

66nnnnnnnnnnnn

OO

(∃+/∀)

hhPPPPPPPPPPPP

OO

(∀/∀)

hhQQQQQQQQQQQQQ

66nnnnnnnnnnnnn
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Error Reduction

Error Reduction for BPP

Theorem (Error Reduction for BPP)

Let L ⊆ {0, 1}∗ be a language and suppose that there exists a poly-time
PTM M such that for every x ∈ {0, 1}∗:

Pr[M(x) = L(x)] ≥ 1

2
+ |x |−c

Then, for every constant d > 0, ∃ poly-time PTM M ′ such that for every
x ∈ {0, 1}∗:

Pr[M(x) = L(x)] ≥ 1− 2−|x |
d
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Error Reduction

Proof: The machine M ′ does the following:

Run M(x) for every input x for k = 8|x |2c+d times,
and obtain outputs y1, y2, . . . , yk ∈ {0, 1}.
If the majority of these outputs is 1, return 1

Otherwise, return 0.

We define the r.v. Xi for every i ∈ [k] to be 1 if yi = L(x) and 0 otherwise.
X1,X2, . . . ,Xk are indepedent Boolean r.v.’s, with:

E[Xi ] = Pr[Xi = 1] ≥ 1

2
+ |x |−c

Applying a Chernoff Bound we obtain:

Pr

[
|

k∑
i=1

Xi − pk| > δpk

]
< e−

δ2

4
pk = e

− 1
4|x|2c

1
2

8|x |2c+d

≤ 2−|x |
d

�
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Error Reduction

Intermission: Chernoff Bounds

How many samples do we need in order to estimate µ up to an error
of ±ε with probability at least 1− δ?
Chernoff Bound tells us that this number is O(ρ/ε2), where
ρ = log(1/δ).
The probability that k is ρ

√
n far from µn decays exponentially with

ρ.
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Error Reduction

Intermission: Chernoff Bounds

Pr

[
n∑

i=1

Xi ≥ (1 + δ)µ

]
≤
[

eδ

(1 + δ)1+δ

]µ

Pr

[
n∑

i=1

Xi ≤ (1− δ)µ

]
≤
[

e−δ

(1− δ)1−δ

]µ
Other useful form is:

Pr

[
|

n∑
i=1

Xi − µ| ≥ cµ

]
≤ 2e−min{c2/4,c/2}·µ

This probability is bounded by 2−Ω(µ).
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Error Reduction

Error Reduction for BPP

From the above we can obtain the following interesting corollary:

Corollary

For c > 0, let BPP1/2+n−c denote the class of languages L for which there
is a polynomial-time PTM M satisfying Pr[M(x) = L(x)] ≥ 1/2 + |x |−c
for every x ∈ {0, 1}∗.Then:

BPP1/2+n−c = BPP

Obviously, ∃+ = ∃+
1/2+ε = ∃+

2/3 = ∃+
3/4 = ∃+

0.99 = ∃+
1−2−p(|x|)
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Error Reduction

Complete Problems for BPP?

The defining property of BPTIME machines is semantic!

We cannot test whether a TM can accept every input string with
probability ≥ 2/3 or with ≤ 1/3 (why?)

In contrast, the defining property of NP is syntactic!

We have:

Syntactic Classes
Semantic Classes

If finally P = BPP, then BPP will have complete problems!!

For the same reason, in semantic classes we cannot prove Hierarchy
Theorems using Diagonalization.
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Error Reduction

The Class PP

Definition

A language L ∈ PP if there exists a poly-time TM M and a polynomial
p ∈ poly(n), such that for every x ∈ {0, 1}∗:

Prr∈{0,1}p(n) [M(x , r) = L(x)] ≥ 1

2

Or, more “syntactically”:

Definition

A language L ∈ PP if there exists a poly-time TM M and a polynomial
p ∈ poly(n), such that for every x ∈ {0, 1}∗:

x ∈ L⇔
∣∣∣{y ∈ {0, 1}p(|x |) : M(x , y) = 1

}∣∣∣ ≥ 1

2
· 2p(|x |)
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Error Reduction

The Class PP

Due to the lack of a gap between the two cases, we cannot amplify
the probability with polynomially many repetitions, as in the case of
BPP.

PP is closed under complement.

A breakthrough result of R. Beigel, N. Reingold and D. Spielman is
that PP is closed under intersection!

The syntactic definition of PP gives the possibility for complete
problems:

Consider the problem MAJSAT:
Given a Boolean Expression, is it true that the majority of the 2n

truth assignments to its variables (that is, at least 2n−1 + 1 of them)
satisfy it?
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Error Reduction

The Class PP

Theorem

MAJSAT is PP-complete!

MAJSAT is not likely in NP, since the (obvious) certificate is not very
succinct!

Theorem

NP ⊆ PP ⊆ PSPACE

Proof:
It is easy to see that PP ⊆ PSPACE:
We can simulate any PP machine by enumerating all strings y of length
p(n) and verify whether PP machine accepts. The PSPACE machine
accepts if and only if there are more than 2p(n)−1 such y ’s (by using a
counter).
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Error Reduction

The Class PP

Proof (cont’d):
Now, for NP ⊆ PP, let A ∈ NP. That is, ∃p ∈ poly(n) and a poly-time
and balanced predicate R such that:

x ∈ A ⇔ (∃y , |y | = p(|x |)) : R(x , y)

Consider the following TM:

M accepts input (x , by), with |b| = 1 and |y | = p(|x |), if and
only if R(x , y) = 1 or b = 1.

If x ∈ A, then ∃ at least one y s.t. R(x , y).
Thus, Pr[M(x) accepts] ≥ 1/2 + 2−(p(n)+1).

If x /∈ A, then Pr[M(x) accepts] = 1/2.

�

Antonis Antonopoulos (CoReLab - NTUA) Randomized Computation January 2012 29 / 1



Error Reduction

Other Results

Theorem

If NP ⊆ BPP, then NP = RP.

Proof:

It suffices to show that if SAT ∈ BPP, then SAT ∈ RP.

Recall that SAT has the self-reducibility property:
φ(x1, . . . , xn): φ ∈ SAT⇔ (φ|x1=0 ∈ SAT ∨ φ|x1=1 ∈ SAT).

SAT ∈ BPP: ∃ PTM M computing SAT with error probability
bounded by 2−|φ|.

We can use the self-reducibility of SAT to produce a truth assignment
for φ as follows:
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Error Reduction

Other Results

Proof (cont’d):

Input: A Boolean formula φ with n variables

If M(φ) = 0 then reject φ;
For i = 1 to n
→ If M(φ|x1=α1,...,xi−1=αi−1xi=0) = 1 then let αi = 0
→ ElseIf M(φ|x1=α1,...,xi−1=αi−1xi=1) = 1 then let αi = 1
→ Else reject φ and halt;

If φ|x1=α1,...,xn=αn = 1 then accept F
Else reject F

Note that M1 accepts φ only if a t.a. t(xi ) = αi is found.

Therefore, M1 never makes mistakes if φ /∈ SAT.

If φ ∈ SAT, then M rejects φ on each iteration of the loop w.p. 2−|φ|.

So, Pr[M1 accepting x ] = (1− 2−|φ|)n, which is greater than 1/2 if
|φ| ≥ n > 1. �
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Error Reduction

Relativized Results

Theorem

Relative to a random oracle A, PA = BPPA. That is,

PrA[PA = BPPA] = 1

Also,

BPPA ( NPA, relative to a random oracle A.

There exists an A such that: PA 6= RPA.

There exists an A such that: RPA 6= coRPA

There exists an A such that: RPA 6= NPA.

Corollary

There exists an A such that:

PA 6= RPA 6= NPA * BPPA
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Error Reduction

Further Reading

Sanjeev Arora and Boaz Barak, Computational Complexity: A Modern
Approach, Cambridge University Press, 2009

Ding Zhu Du, Ker-I Ko Theory of Computational Complexity, John Wiley &
Sons Inc, 2000

Rajeev Motwani, Prabhakar Raghavan Randomized Algorithms, Cambridge
University Press, 1995

Christos Papadimitriou, Computational Complexity, Addison Wesley, 1994.

S. Zachos, Probabilistic quantifiers, adversaries, and complexity classes: an
overview. In Proc. of the conference on Structure in complexity theory, pages
383-400, New York, NY, USA, 1986. Springer-Verlag New York, Inc.

S. Zachos and H. Heller, A decisive characterization of BPP. Information and
Control, 69(1-3):125-135, 1986

Thank You!
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