Randomized Computation

Antonis Antonopoulos

CoReLab - NTUA
January 2012

Warmup: Randomized Quicksort

Deterministic Quicksort

Input: A list L of integers;
If $\mathrm{n} \leq 1$ then return L .
Else \{

- let $i=1$;
- let L_{1} be the sublist of L whose elements are $<a_{i}$;
- let L_{1} be the sublist of L whose elements are $=a_{i}$;
- let L_{1} be the sublist of L whose elements are $>a_{i}$;
- Recursively Quicksort L_{1} and L_{3};
- return $\mathrm{L}=\mathrm{L}_{1} \mathrm{~L}_{2} \mathrm{~L}_{3}$;

Warmup: Randomized Quicksort

Randomized Quicksort

Input: A list L of integers;
If $\mathrm{n} \leq 1$ then return L .
Else \{

- choose a random integer i, $1 \leq i \leq n$;
- let L_{1} be the sublist of L whose elements are $<a_{i}$;
- let L_{1} be the sublist of L whose elements are $=a_{i}$;
- let L_{1} be the sublist of L whose elements are $>a_{i}$;
- Recursively Quicksort L_{1} and L_{3};
- return $\mathrm{L}=\mathrm{L}_{1} \mathrm{~L}_{2} \mathrm{~L}_{3}$;

Warmup: Randomized Quicksort

- Let T_{d} the max number of comparisons for the Deterministic Quicksort:

$$
\begin{gathered}
T_{d} \geq T_{d}(n-1)+\mathcal{O}(n) \\
\Downarrow \\
T_{d}(n)=\Omega\left(n^{2}\right)
\end{gathered}
$$

Warmup: Randomized Quicksort

- Let T_{d} the max number of comparisons for the Deterministic Quicksort:

$$
\begin{gathered}
T_{d} \geq T_{d}(n-1)+\mathcal{O}(n) \\
\Downarrow \\
T_{d}(n)=\Omega\left(n^{2}\right)
\end{gathered}
$$

- Let T_{r} the expected number of comparisons for the Randomized Quicksort:

$$
\begin{gathered}
T_{r} \geq \frac{1}{n} \sum_{j=0}^{n-1}\left[T_{r}(j)-T_{r}(n-1-j)\right]+\mathcal{O}(n) \\
\Downarrow
\end{gathered}
$$

$$
T_{r}(n)=\mathcal{O}(n \log n)
$$

Warmup: Polynomial Identity Testing

(1) Two polynomials are equal if they have the same coefficients for corresponding powers of their variable.
2 A polynomial is identically zero if all its coefficients are equal to the additive identity element.
3 How we can test if a polynomial is identically zero?

Warmup: Polynomial Identity Testing

1 Two polynomials are equal if they have the same coefficients for corresponding powers of their variable.
2 A polynomial is identically zero if all its coefficients are equal to the additive identity element.
3 How we can test if a polynomial is identically zero?
4 We can choose uniformly at random r_{1}, \ldots, r_{n} from a set $S \subseteq \mathbb{F}$.
${ }_{5}$ We are wrong with a probability at most:

Theorem (Schwartz-Zippel Lemma)

Let $Q\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be a multivariate polynomial of total degree d. Fix any finite set $S \subseteq \mathbb{F}$, and let r_{1}, \ldots, r_{n} be chosen indepedently and uniformly at random from S. Then:

$$
\operatorname{Pr}\left[Q\left(r_{1}, \ldots, r_{n}\right)=0 \mid Q\left(x_{1}, \ldots, x_{n}\right) \neq 0\right] \leq \frac{d}{|S|}
$$

Warmup: Polynomial Identity Testing

Proof:

(By Induction on n)

- For $n=1: \operatorname{Pr}[Q(r)=0 \mid Q(x) \neq 0] \leq d /|S|$
- For n :

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{k} Q_{i}\left(x_{2}, \ldots, x_{n}\right)
$$

where $k \leq d$ is the smallest exponent of x_{1} in Q.
$\operatorname{deg}\left(Q_{k}\right) \leq d-k \Rightarrow \operatorname{Pr}\left[Q_{k}\left(r_{2}, \ldots, r_{n}\right)\right] \leq(d-k) /|S|$
Suppose that $Q_{k}\left(r_{1}, \ldots, r_{n}\right) \neq 0$. Then:

$$
q\left(x_{1}\right)=Q\left(x_{1}, r_{2}, \ldots, r_{n}\right)=\sum_{i=0}^{k} x_{1}^{i} Q_{i}\left(r_{2}, \ldots, r_{n}\right)
$$

$\operatorname{deg}\left(q\left(x_{1}\right)\right)=k$, and $q\left(x_{1}\right) \neq 0$!

Warmup: Polynomial Identity Testing

Proof (cont'd):
The base case now implies that:

$$
\operatorname{Pr}\left[q\left(r_{1}\right)=Q\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq k /|S|
$$

Thus, we have shown the following two equalities:

$$
\begin{gathered}
\operatorname{Pr}\left[Q_{k}\left(r_{2}, \ldots, r_{n}\right)=0\right] \leq \frac{d-k}{|S|} \\
\operatorname{Pr}\left[Q_{k}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0 \mid Q_{k}\left(r_{2}, \ldots, r_{n}\right) \neq 0\right] \leq \frac{k}{|S|}
\end{gathered}
$$

Using the following identity: $\operatorname{Pr}\left[\mathcal{E}_{1}\right] \leq \operatorname{Pr}\left[\mathcal{E}_{1} \mid \overline{\mathcal{E}}_{2}\right]+\operatorname{Pr}\left[\mathcal{E}_{2}\right]$ we obtain that the requested probability is no more than the sum of the above, which proves our theorem! \square

Probabilistic Turing Machines

- A Probabilistic Turing Machine is a TM as we know it, but with access to a "random source", that is an extra (read-only) tape containing random-bits!
- Randomization on:
- Output (one or two-sided)
- Running Time

Definition (Probabilistic Turing Machines)

A Probabilistic Turing Machine is a TM with two transition functions δ_{0}, δ_{1}. On input x, we choose in each step with probability $1 / 2$ to apply the transition function δ_{0} or δ_{1}, indepedently of all previous choices.

- We denote by $M(x)$ the random variable corresponding to the output of M at the end of the process.
- For a function $T: \mathbb{N} \rightarrow \mathbb{N}$, we say that M runs in $T(|x|)$-time if it halts on x within $T(|x|)$ steps (regardless of the random choices it makes).

BPP Class

Definition (BPP Class)

For $T: \mathbb{N} \rightarrow \mathbb{N}$, let $\operatorname{BPTIME}(T(n))$ the class of languages L such that there exists a PTM which halts in $\mathcal{O}(T(|x|))$ time on input x, and $\operatorname{Pr}[M(x)=L(x)] \geq 2 / 3$.
We define:

$$
\operatorname{BPP}=\bigcup_{c \in \mathbb{N}} \operatorname{BPTIME}\left(n^{c}\right)
$$

- The class BPP represents our notion of efficient (randomized) computation!
- We can also define BPP using certificates:

BPP Class

Definition (Alternative Definition of BPP)

A language $L \in$ BPP if there exists a poly-time TM M and a polynomial $p \in \operatorname{poly}(n)$, such that for every $x \in\{0,1\}^{*}$:

$$
\operatorname{Pr}_{r \in\{0,1\}^{p(n)}}[M(x, r)=L(x)] \geq \frac{2}{3}
$$

- $\mathbf{P} \subseteq B P P$
- BPP $\subseteq E X P$
- The "P vs BPP" question.

Quantifier Characterizations

- Proper formalism (Zachos et al.):

Definition (Majority Quantifier)

Let $R:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ be a predicate, and ε a rational number, such that $\varepsilon \in\left(0, \frac{1}{2}\right)$. We denote by $\left(\exists^{+} y,|y|=k\right) R(x, y)$ the following predicate:
"There exist at least $\left(\frac{1}{2}+\varepsilon\right) \cdot 2^{k}$ strings y of length m for which $R(x, y)$ holds."

We call \exists^{+}the overwhelming majority quantifier.

- \exists_{r}^{+}means that the fraction r of the possible certificates of a certain length satisfy the predicate for the certain input.

Quantifier Characterizations

Definition

We denote as $\mathcal{C}=\left(Q_{1} / Q_{2}\right)$, where $Q_{1}, Q_{2} \in\left\{\exists, \forall, \exists^{+}\right\}$, the class \mathcal{C} of languages L satisfying:

- $x \in L \Rightarrow Q_{1} y R(x, y)$
- $x \notin L \Rightarrow Q_{2} y \neg R(x, y)$
- $\mathbf{P}=(\forall / \forall)$
- NP $=(\exists / \forall)$
- coNP $=(\forall / \exists)$
- $\mathbf{B P P}=\left(\exists^{+} / \exists^{+}\right)=\operatorname{coBPP}$

RP Class

- In the same way, we can define classes that contain problems with one-sided error:

Definition
The class RTIME $(T(n))$ contains every language L for which there exists a PTM M running in $\mathcal{O}(T(|x|))$ time such that:

- $x \in L \Rightarrow \operatorname{Pr}[M(x)=1] \geq \frac{2}{3}$
- $x \notin L \Rightarrow \operatorname{Pr}[M(x)=0]=1$

We define

$$
\mathbf{R P}=\bigcup_{c \in \mathbb{N}} \mathbf{R T I M E}\left(n^{c}\right)
$$

- Similarly we define the class coRP.

RP Class

- $\mathbf{R P} \subseteq \mathbf{N P}$, since every accepting "branch" is a certificate! - $\mathbf{R P} \subseteq \mathbf{B P P}, c o \mathbf{R P} \subseteq \mathbf{B P P}$
- $\mathbf{R P}=\left(\exists^{+} / \forall\right)$

RP Class

- $\mathbf{R P} \subseteq \mathbf{N P}$, since every accepting "branch" is a certificate! - $\mathbf{R P} \subseteq \mathbf{B P P}, c o \mathbf{R P} \subseteq \mathbf{B P P}$
- $\mathbf{R P}=\left(\exists^{+} / \forall\right) \subseteq(\exists / \forall)=\mathbf{N P}$

RP Class

- $\mathbf{R P} \subseteq \mathbf{N P}$, since every accepting "branch" is a certificate! - $\mathbf{R P} \subseteq \mathbf{B P P}, c o \mathbf{R P} \subseteq \mathbf{B P P}$
- $\mathbf{R P}=(\exists+/ \forall) \subseteq(\exists / \forall)=\mathbf{N P}$
- coRP $=\left(\forall / \exists^{+}\right) \subseteq(\forall / \exists)=\operatorname{coNP}$

RP Class

- $\mathbf{R P} \subseteq \mathbf{N P}$, since every accepting "branch" is a certificate! - $\mathbf{R P} \subseteq \mathbf{B P P}, c o \mathbf{R P} \subseteq \mathbf{B P P}$
- $\mathbf{R P}=(\exists+/ \forall) \subseteq(\exists / \forall)=\mathbf{N P}$
- coRP $=\left(\forall / \exists^{+}\right) \subseteq(\forall / \exists)=\operatorname{coNP}$

Theorem (Decisive Characterization of BPP)

$$
\mathbf{B P P}=\left(\exists^{+} / \exists^{+}\right)=\left(\exists^{+} \forall / \forall \exists^{+}\right)=\left(\forall \exists^{+} / \exists^{+} \forall\right)
$$

ZPP Class

- And now something completely different:
- What is the random variable was the running time and not the output?

ZPP Class

- And now something completely different:
- What is the random variable was the running time and not the output?
- We say that M has expected running time $T(n)$ if the expectation $\mathbf{E}\left[T_{M(x)}\right]$ is at most $T(|x|)$ for every $x \in\{0,1\}^{*}$.
($T_{M(x)}$ is the running time of M on input x, and it is a random variable!)

Definition

The class ZPTIME $(T(n))$ contains all languages L for which there exists a machine M that runs in an expected time $\mathcal{O}(T(|x|))$ such that for every input $x \in\{0,1\}^{*}$, whenever M halts on x, the output $M(x)$ it produces is exactly $L(x)$. We define:

$$
\mathbf{Z P P}=\bigcup_{c \in \mathbb{N}} \mathbf{Z T I M E}\left(n^{c}\right)
$$

ZPP Class

- The output of a ZPP machine is always correct!
- The problem is that we aren't sure about the running time.
- We can easily see that $\mathbf{Z P P}=\mathbf{R P} \cap$ coRP.
- The next Hasse diagram summarizes the previous inclusions: (Recall that $\Delta \Sigma_{2}^{p}=\Sigma_{2}^{p} \cap \Pi_{2}^{p}=\mathbf{N P}{ }^{N P} \cap \operatorname{coNP}{ }^{N P}$)

PSPACE

PSPACE

Error Reduction for BPP

Theorem (Error Reduction for BPP)
Let $L \subseteq\{0,1\}^{*}$ be a language and suppose that there exists a poly-time PTM M such that for every $x \in\{0,1\}^{*}$:

$$
\operatorname{Pr}[M(x)=L(x)] \geq \frac{1}{2}+|x|^{-c}
$$

Then, for every constant $d>0, \exists$ poly-time PTM M^{\prime} such that for every $x \in\{0,1\}^{*}$:

$$
\operatorname{Pr}[M(x)=L(x)] \geq 1-2^{-|x|^{d}}
$$

Proof: The machine M^{\prime} does the following:

- Run $M(x)$ for every input x for $k=8|x|^{2 c+d}$ times, and obtain outputs $y_{1}, y_{2}, \ldots, y_{k} \in\{0,1\}$.
- If the majority of these outputs is 1 , return 1
- Otherwise, return 0.

We define the r.v. X_{i} for every $i \in[k]$ to be 1 if $y_{i}=L(x)$ and 0 otherwise. $X_{1}, X_{2}, \ldots, X_{k}$ are indepedent Boolean r.v.'s, with:

$$
\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right] \geq \frac{1}{2}+|x|^{-c}
$$

Applying a Chernoff Bound we obtain:

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{k} X_{i}-p k\right|>\delta p k\right]<e^{-\frac{\delta^{2}}{4} p k}=e^{-\frac{1}{4|x|^{2 c} \frac{1}{2} \delta|x|^{2 c+d}}} \leq 2^{-|x|^{d}}
$$

Intermission: Chernoff Bounds

- How many samples do we need in order to estimate μ up to an error of $\pm \varepsilon$ with probability at least $1-\delta$?
- Chernoff Bound tells us that this number is $\mathcal{O}\left(\rho / \varepsilon^{2}\right)$, where $\rho=\log (1 / \delta)$.
- The probability that k is $\rho \sqrt{n}$ far from μn decays exponentially with ρ.

Intermission: Chernoff Bounds

$$
\begin{aligned}
& \operatorname{Pr}\left[\sum_{i=1}^{n} x_{i} \geq(1+\delta) \mu\right] \leq\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu} \\
& \operatorname{Pr}\left[\sum_{i=1}^{n} x_{i} \leq(1-\delta) \mu\right] \leq\left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\mu}
\end{aligned}
$$

Other useful form is:

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-\mu\right| \geq c \mu\right] \leq 2 e^{-\min \left\{c^{2} / 4, c / 2\right\} \cdot \mu}
$$

- This probability is bounded by $2^{-\Omega(\mu)}$.

Error Reduction for BPP

- From the above we can obtain the following interesting corollary:

Corollary

For $c>0$, let $\mathbf{B P P}_{1 / 2+n^{-c}}$ denote the class of languages L for which there is a polynomial-time PTM M satisfying $\operatorname{Pr}[M(x)=L(x)] \geq 1 / 2+|x|^{-c}$ for every $x \in\{0,1\}^{*}$. Then:

$$
\mathbf{B P P}_{1 / 2+n^{-c}}=\mathbf{B P P}
$$

- Obviously, $\exists^{+}=\exists_{1 / 2+\varepsilon}^{+}=\exists_{2 / 3}^{+}=\exists_{3 / 4}^{+}=\exists_{0.99}^{+}=\exists_{1-2^{-p(|x|)}}^{+}$

Complete Problems for BPP?

- The defining property of BPTIME machines is semantic!
- We cannot test whether a TM can accept every input string with probability $\geq 2 / 3$ or with $\leq 1 / 3$ (why?)
- In contrast, the defining property of NP is syntactic!
- We have:
- Syntactic Classes
- Semantic Classes
- If finally $\mathbf{P}=\mathbf{B P P}$, then BPP will have complete problems!!

Complete Problems for BPP?

- The defining property of BPTIME machines is semantic!
- We cannot test whether a TM can accept every input string with probability $\geq 2 / 3$ or with $\leq 1 / 3$ (why?)
- In contrast, the defining property of NP is syntactic!
- We have:
- Syntactic Classes
- Semantic Classes
- If finally $\mathbf{P}=\mathbf{B P P}$, then BPP will have complete problems!!
- For the same reason, in semantic classes we cannot prove Hierarchy Theorems using Diagonalization.

The Class PP

Definition

A language $L \in \mathbf{P P}$ if there exists a poly-time TM M and a polynomial $p \in \operatorname{poly}(n)$, such that for every $x \in\{0,1\}^{*}$:

$$
\operatorname{Pr}_{r \in\{0,1\}^{p(n)}}[M(x, r)=L(x)] \geq \frac{1}{2}
$$

- Or, more "syntactically":

Definition

A language $L \in \mathbf{P P}$ if there exists a poly-time TM M and a polynomial $p \in \operatorname{poly}(n)$, such that for every $x \in\{0,1\}^{*}$:

$$
x \in L \Leftrightarrow\left|\left\{y \in\{0,1\}^{p(|x|)}: M(x, y)=1\right\}\right| \geq \frac{1}{2} \cdot 2^{p(|x|)}
$$

The Class PP

- Due to the lack of a gap between the two cases, we cannot amplify the probability with polynomially many repetitions, as in the case of BPP.
- PP is closed under complement.
- A breakthrough result of R. Beigel, N. Reingold and D. Spielman is that PP is closed under intersection!

The Class PP

- Due to the lack of a gap between the two cases, we cannot amplify the probability with polynomially many repetitions, as in the case of BPP.
- PP is closed under complement.
- A breakthrough result of R. Beigel, N. Reingold and D. Spielman is that $\mathbf{P P}$ is closed under intersection!
- The syntactic definition of PP gives the possibility for complete problems:
- Consider the problem MAJSAT:

Given a Boolean Expression, is it true that the majority of the 2^{n} truth assignments to its variables (that is, at least $2^{n-1}+1$ of them) satisfy it?

The Class PP

Theorem
MAJSAT is PP-complete!

- MAJSAT is not likely in NP, since the (obvious) certificate is not very succinct!

The Class PP

Theorem
MAJSAT is PP-complete!

- MAJSAT is not likely in NP, since the (obvious) certificate is not very succinct!

Theorem

$\mathbf{N P} \subseteq \mathbf{P P} \subseteq \mathbf{P S P A C E}$

The Class PP

Theorem
MAJSAT is PP-complete!

- MAJSAT is not likely in NP, since the (obvious) certificate is not very succinct!

Theorem

$\mathbf{N P} \subseteq \mathbf{P P} \subseteq \mathbf{P S P A C E}$

Proof:

It is easy to see that $\mathbf{P P} \subseteq \mathbf{P S P A C E}$:
We can simulate any PP machine by enumerating all strings y of length $p(n)$ and verify whether PP machine accepts. The PSPACE machine accepts if and only if there are more than $2^{p(n)-1}$ such y^{\prime} s (by using a counter).

The Class PP

Proof (cont'd):
Now, for $\mathbf{N P} \subseteq \mathbf{P P}$, let $A \in \mathbf{N P}$. That is, $\exists p \in p o l y(n)$ and a poly-time and balanced predicate R such that:

$$
x \in A \Leftrightarrow(\exists y,|y|=p(|x|)): R(x, y)
$$

Consider the following TM:
M accepts input (x, by), with $|b|=1$ and $|y|=p(|x|)$, if and only if $R(x, y)=1$ or $b=1$.

- If $x \in A$, then \exists at least one y s.t. $R(x, y)$.

Thus, $\operatorname{Pr}[M(x)$ accepts $] \geq 1 / 2+2^{-(p(n)+1)}$.

- If $x \notin A$, then $\operatorname{Pr}[M(x)$ accepts $]=1 / 2$.

Other Results

Theorem
 If $\mathbf{N P} \subseteq \mathbf{B P P}$, then $\mathbf{N P}=\mathbf{R P}$.

Other Results

Theorem
If $\mathbf{N P} \subseteq \mathbf{B P P}$, then $\mathbf{N P}=\mathbf{R P}$.

Proof:

- It suffices to show that if SAT $\in \mathbf{B P P}$, then $S A T \in \mathbf{R P}$.
- Recall that SAT has the self-reducibility property: $\phi\left(x_{1}, \ldots, x_{n}\right): \phi \in \operatorname{SAT} \Leftrightarrow\left(\left.\left.\phi\right|_{x_{1}=0} \in \operatorname{SAT} \vee \phi\right|_{x_{1}=1} \in \operatorname{SAT}\right)$.
- SAT \in BPP: \exists PTM M computing SAT with error probability bounded by $2^{-|\phi|}$.
- We can use the self-reducibility of SAT to produce a truth assignment for ϕ as follows:

Other Results

Proof (cont'd):

Input: A Boolean formula ϕ with n variables
If $M(\phi)=0$ then reject ϕ;
For $i=1$ to n
\rightarrow If $M\left(\left.\phi\right|_{x_{1}=\alpha_{1}, \ldots, x_{i-1}=\alpha_{i-1} x_{i}=0}\right)=1$ then let $\alpha_{i}=0$
\rightarrow Elself $M\left(\left.\phi\right|_{x_{1}=\alpha_{1}, \ldots, x_{i-1}=\alpha_{i-1} x_{i}=1}\right)=1$ then let $\alpha_{i}=1$
\rightarrow Else reject ϕ and halt;
If $\left.\phi\right|_{x_{1}=\alpha_{1}, \ldots, x_{n}=\alpha_{n}}=1$ then accept F
Else reject F

Other Results

Proof (cont'd):

Input: A Boolean formula ϕ with n variables
If $M(\phi)=0$ then reject ϕ;
For $i=1$ to n
\rightarrow If $M\left(\left.\phi\right|_{x_{1}=\alpha_{1}, \ldots, x_{i-1}=\alpha_{i-1} x_{i}=0}\right)=1$ then let $\alpha_{i}=0$
\rightarrow Elself $M\left(\left.\phi\right|_{x_{1}=\alpha_{1}, \ldots, x_{i-1}=\alpha_{i-1} x_{i}=1}\right)=1$ then let $\alpha_{i}=1$
\rightarrow Else reject ϕ and halt;
If $\left.\phi\right|_{x_{1}=\alpha_{1}, \ldots, x_{n}=\alpha_{n}}=1$ then accept F
Else reject F

- Note that M_{1} accepts ϕ only if a t.a. $t\left(x_{i}\right)=\alpha_{i}$ is found.
- Therefore, M_{1} never makes mistakes if $\phi \notin$ SAT.
- If $\phi \in \operatorname{SAT}$, then M rejects ϕ on each iteration of the loop w.p. $2^{-|\phi|}$.
- So, $\operatorname{Pr}\left[M_{1}\right.$ accepting $\left.x\right]=\left(1-2^{-|\phi|}\right)^{n}$, which is greater than $1 / 2$ if $|\phi| \geq n>1$. \square

Relativized Results

Theorem

Relative to a random oracle $A, \mathbf{P}^{A}=\mathbf{B P} \mathbf{P}^{A}$. That is,

$$
\mathbf{P r}_{A}\left[\mathbf{P}^{A}=\mathbf{B P} \mathbf{P}^{A}\right]=1
$$

Also,

- $\mathbf{B P P}^{A} \subsetneq \mathbf{N P}^{A}$, relative to a random oracle A.
- There exists an A such that: $\mathbf{P}^{A} \neq \mathbf{R P}^{A}$.
- There exists an A such that: $\mathbf{R P}^{A} \neq c o \mathbf{R P}^{A}$
- There exists an A such that: $\mathbf{R P}^{A} \neq \mathbf{N} \mathbf{P}^{A}$.

Relativized Results

Theorem

Relative to a random oracle $A, \mathbf{P}^{A}=\mathbf{B P} \mathbf{P}^{A}$. That is,

$$
\mathbf{P r}_{A}\left[\mathbf{P}^{A}=\mathbf{B P P}^{A}\right]=1
$$

Also,

- $\mathbf{B P P}{ }^{A} \subsetneq \mathbf{N P}^{A}$, relative to a random oracle A.
- There exists an A such that: $\mathbf{P}^{A} \neq \mathbf{R P}^{A}$.
- There exists an A such that: $\mathbf{R P}^{A} \neq c o \mathbf{R} \mathbf{P}^{A}$
- There exists an A such that: $\mathbf{R P}^{A} \neq \mathbf{N P}^{A}$.

Corollary
There exists an A such that:

$$
\mathbf{P}^{A} \neq \mathbf{R P}^{A} \neq \mathbf{N P}^{A} \nsubseteq \mathbf{B P} \mathbf{P}^{A}
$$

Further Reading

R. Sanjeev Arora and Boaz Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009
Ping Zhu Du, Ker-l Ko Theory of Computational Complexity, John Wiley \& Sons Inc, 2000
Rajeev Motwani, Prabhakar Raghavan Randomized Algorithms, Cambridge University Press, 1995
Christos Papadimitriou, Computational Complexity, Addison Wesley, 1994.
E. S. Zachos, Probabilistic quantifiers, adversaries, and complexity classes: an overview. In Proc. of the conference on Structure in complexity theory, pages 383-400, New York, NY, USA, 1986. Springer-Verlag New York, Inc.
S. Zachos and H. Heller, A decisive characterization of BPP. Information and Control, 69(1-3):125-135, 1986

Thank You!

