Interactive Proof Systems

IPs, AMs \& PCPs

Antonis Antonopoulos

Theoretical Computer Science II: Structural Complexity
Computation and Reasoning Laboratory National Technical University of Athens

March 2012
(1) Interactive Proofs

- Introduction
- The class IP
(2) Arthur-Merlin Games
- Definitions
- Basic Properties
(3) Arithmetization \& The power of IPs
- Introduction
- Shamir's Theorem
- Other Arithmetization Results
(4) PCPs
- Definitions

Introduction

"Maybe Fermat had a proof! But an important party was certainly missing to make the proof complete: the verifier. Each time rumor gets around that a student somewhere proved $\mathbf{P}=\mathbf{N P}$, people ask "Has Karp seen the proof?" (they hardly even ask the student's name). Perhaps the verifier is most important that the prover." (from [BM88])

- The notion of a mathematical proof is related to the certificate definition of NP.
- We enrich this scenario by introducing interaction in the basic scheme:
The person (or TM) who verifies the proof asks the person who provides the proof a series of "queries", before he is convinced, and if he is, he provide the certificate.

Introduction

Introduction

- The first person will be called Verifier, and the second Prover.
- In our model of computation, Prover and Verifier are interacting Turing Machines.
- We will categorize the various proof systems created by using:
- various TMs (nondeterministic, probabilistic etc)
- the information exchanged (private/public coins etc)
- the number of TMs (IPs, MIPs,...)

Warmup: Interactive Proofs with deterministic Verifier

Definition (Deterministic Proof Systems)

We say that a language L has a k-round deterministic interactive proof system if there is a deterministic Turing Machine V that on input $x, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}$ runs in time polynomial in $|x|$, and can have a k-round interaction with any TM P such that:

- $x \in L \Rightarrow \exists P:\langle V, P\rangle(x)=1$ (Completeness)
- $x \notin L \Rightarrow \forall P:\langle V, P\rangle(x)=0$ (Soundness)

The class dIP contains all languages that have a k-round deterministic interactive proof system, where p is polynomial in the input length.

- $\langle V, P\rangle(x)$ denotes the output of V at the end of the interaction with P on input x, and α_{i} the exchanged strings.
- The above definition does not place limits on the computational power of the Prover!

Warmup: Interactive Proofs with deterministic Verifier

- But...

Theorem

$\mathbf{d I P}=\mathbf{N P}$

Proof: Trivially, NP \subseteq dIP.

Let $L \in \mathbf{d I P}$:

- A certificate is a transcript $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ causing V to accept, i.e. $V\left(x, \alpha_{1}, \ldots, \alpha_{k}\right)=1$.
- We can efficiently check if $V(x)=\alpha_{1}, V\left(x, \alpha_{1}, \alpha_{2}\right)=\alpha_{3}$ etc...
- If $x \in L$ such a transcript exists!
- Conversely, if a transcript exists, we can define define a proper P to satisfy: $P\left(x, \alpha_{1}\right)=\alpha_{2}, P\left(x, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\alpha_{4}$ etc., so that $\langle V, P\rangle(x)=1$, so $x \in L$.
- So $L \in \mathbf{N P}$!

Probabilistic Verifier: The Class IP

- We saw that if the verifier is a simple deterministic TM, then the interactive proof system is described precisely by the class NP.
- Now, we let the verifier be probabilistic, i.e. the verifier's queries will be computed using a probabilistic TM:

Definition (Goldwasser-Micali-Rackoff)

For an integer $k \geq 1$ (that may depend on the input length), a language L is in IP k] if there is a probabilistic polynomial-time T.M. V that can have a k-round interaction with a T.M. P such that:

- $x \in L \Rightarrow \exists P: \operatorname{Pr}[\langle V, P\rangle(x)=1] \geq \frac{2}{3}$ (Completeness)
- $x \notin L \Rightarrow \forall P: \operatorname{Pr}[\langle V, P\rangle(x)=1] \leq \frac{1}{3}$ (Soundness)

Probabilistic Verifier: The Class IP

Definition

We also define:

$$
\mathbf{I P}=\bigcup_{c \in \mathbb{N}} \mathbf{I P}\left[n^{c}\right]
$$

- The "output" $\langle V, P\rangle(x)$ is a random variable.
- We'll see that IP is a very large class! ($\supseteq \mathbf{P H}$)
- As usual, we can replace the completeness parameter $2 / 3$ with $1-2^{-n^{s}}$ and the soundness parameter $1 / 3$ by $2^{-n^{s}}$, without changing the class for any fixed constant $s>0$.
- We can also replace the completeness constant $2 / 3$ with 1 (perfect completeness), without changing the class, but replacing the soundness constant $1 / 3$ with 0 , is equivalent with a deterministic verifier, so class IP collapses to NP.

Interactive Proof for Graph Non-Isomorphism

Definition

Two graphs G_{1} and G_{2} are isomorphic, if there exists a permutation π of the labels of the nodes of G_{1}, such that $\pi\left(G_{1}\right)=G_{2}$. If G_{1} and G_{2} are isomorphic, we write $G_{1} \cong G_{2}$.

- GI: Given two graphs G_{1}, G_{2}, decide if they are isomorphic.
- GNI: Given two graphs G_{1}, G_{2}, decide if they are not isomorphic.
- Obviously, GI \in NP and GNI \in coNP.
- This proof system relies on the Verifier's access to a private random source which cannot be seen by the Prover, so we confirm the crucial role the private coins play.

Interactive Proof for Graph Non-Isomorphism

Verifier: Picks $i \in\{1,2\}$ uniformly at random.
Then, it permutes randomly the vertices of G_{i} to get a new graph H. Is sends H to the Prover. Prover: Identifies which of G_{1}, G_{2} was used to produce H. Let G_{j} be the graph. Sends j to V.
Verifier: Accept if $i=j$. Reject otherwise.

Interactive Proof for Graph Non-Isomorphism

> Verifier: Picks $i \in\{1,2\}$ uniformly at random.
> Then, it permutes randomly the vertices of G_{i} to get a new graph H. Is sends H to the Prover.
> Prover: Identifies which of G_{1}, G_{2} was used to produce H.
> Let G_{j} be the graph. Sends j to V.
> Verifier: Accept if $i=j$. Reject otherwise.

- If $G_{1} \nsubseteq G_{2}$, then the powerfull prover can (nondeterministivally) guess which one of the two graphs is isomprphic to H, and so the Verifier accepts with probability 1.
- If $G_{1} \cong G_{2}$, the prover can't distinguish the two graphs, since a random permutation of G_{1} looks exactly like a random permutation of G_{2}. So, the best he can do is guess randomly one, and the Verifier accepts with probability (at most) $1 / 2$, which can be reduced by additional repetitions.
(1) Interactive Proofs
- Introduction
- The class IP
(2) Arthur-Merlin Games
- Definitions
- Basic Properties
(3) Arithmetization \& The power of IPs
- Introduction
- Shamir's Theorem
- Other Arithmetization Results

4 PCPs

- Definitions

Babai's Arthur-Merlin Games

Definition (Extended (FGMSZ89))

An Arhur-Merlin Game is a pair of interactive TMs A and M, and a predicate R such that:

- On input x, exactly $2 q(|x|)$ messages of length $m(|x|)$ are exchanged, $q, m \in \operatorname{poly}(|x|)$.
- A goes first, and at iteration $1 \leq i \leq q(|x|)$ chooses u.a.r. a string r_{i} of length $m(|x|)$.
- M's reply in the $i^{t h}$ iteration is $y_{i}=M\left(x, r_{1}, \ldots, r_{i}\right)(M$'s strategy).
- For every M^{\prime}, a conversation between A and M^{\prime} on input x is $r_{1} y_{1} r_{2} y_{2} \cdots r_{q(|x|)} y_{q(|x|)}$.
- The set of all conversations is denoted by $\operatorname{CON} V_{x}^{M^{\prime}}$, $\left|\operatorname{CON} V_{X}^{M^{\prime}}\right|=2^{q(|x|) m(|x|)}$.

Babai's Arthur-Merlin Games

Definition (cont'd)

- The predicate R maps the input x and a conversation to a Boolean value.
- The set of accepting conversations is denoted by $A C C_{x}^{R, M}$, and is the set:
$\left\{r_{1} \cdots r_{q} \mid \exists y_{1} \cdots y_{q}\right.$ s.t. $\left.r_{1} y_{1} \cdots r_{q} y_{q} \in \operatorname{CON}_{x}^{M} \wedge R\left(r_{1} y_{1} \cdots r_{q} y_{q}\right)=1\right\}$
- A language L has an Arthur-Merlin proof system if:
- There exists a strategy for M, such that for all $x \in L$: $\frac{A C C_{x}^{R, M}}{C O N V_{x}^{M}} \geq \frac{2}{3}$ (Completeness)
- For every strategy for M, and for every $x \notin L: \frac{A C C_{, ~ R}^{R, M}}{C O V_{x}^{M}} \leq \frac{1}{3}$ (Soundness)

Definitions

Definitions

- So, with respect to the previous IP definition:

Definition

For every k, the complexity class $\mathbf{A M}[k]$ is defined as a subset to IP $[k]$ obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages.
We denote $\mathbf{A M} \equiv \mathbf{A M}[2]$.

Definitions

- So, with respect to the previous IP definition:

Definition

For every k, the complexity class $\mathbf{A M}[k]$ is defined as a subset to IP $[k]$ obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages.
We denote $\mathbf{A M} \equiv \mathbf{A M}[2]$.

- Merlin \rightarrow Prover
- Arthur \rightarrow Verifier

Definitions

- So, with respect to the previous IP definition:

Definition

For every k, the complexity class $\mathbf{A M}[k]$ is defined as a subset to IP [k] obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages.
We denote $\mathbf{A M} \equiv \mathbf{A M}[2]$.

- Merlin \rightarrow Prover
- Arthur \rightarrow Verifier
- Also, the class MA consists of all languages L, where there's an interactive proof for L in which the prover first sending a message, and then the verifier is "tossing coins" and computing its decision by doing a deterministic polynomial-time computation involving the input, the message and the random output.

Basic Properties

Public vs. Private Coins

Theorem

GNI $\in \mathbf{A M}[2]$

Theorem

For every $p \in \operatorname{poly}(n)$:

$$
\mathbf{I P}(p(n))=\mathbf{A M}(p(n)+2)
$$

- So,

$$
\mathbf{I P}[p o l y]=\mathbf{A} \mathbf{M}[p o l y]
$$

Properties of Arthur-Merlin Games

- $\mathrm{MA} \subseteq \mathrm{AM}$
- $\mathbf{M A}[1]=\mathbf{N P}, \mathbf{A M}[1]=\mathbf{B P P}$
- AM could be intuitively approached as the probabilistic version of NP (usually denoted as $\mathbf{A M}=\mathcal{B P}$. NP).
- $\mathbf{A M} \subseteq \Pi_{2}^{p}$ and $\mathbf{M A} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$.
- $N P^{B P P} \subseteq M A, M A^{B P P}=M A, A M^{B P P}=A M$ and $\mathbf{A M}^{\Delta \Sigma_{1}^{p}}=\mathbf{A} \mathbf{M}^{\mathbf{N P} \cap c o N P}=\mathbf{A M}$
- If we consider the complexity classes $\mathbf{A M}[k]$ (the languages that have Arthur-Merlin proof systems of a bounded number of rounds, they form an hierarchy:

$$
\mathbf{A M}[0] \subseteq \mathbf{A M}[1] \subseteq \cdots \subseteq \mathbf{A M}[k] \subseteq \mathbf{A} \mathbf{M}[k+1] \subseteq \cdots
$$

- Are these inclusions proper ? ? ?

Basic Properties

Properties of Arthur-Merlin Games

Properties of Arthur-Merlin Games

- Proper formalism (Zachos et al.):

Definition (Majority Quantifier)

Let $R:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ be a predicate, and ε a rational number, such that $\varepsilon \in\left(0, \frac{1}{2}\right)$. We denote by $\left(\exists^{+} y,|y|=k\right) R(x, y)$ the following predicate:
"There exist at least $\left(\frac{1}{2}+\varepsilon\right) \cdot 2^{k}$ strings y of length m for which $R(x, y)$ holds."

We call \exists^{+}the overwhelming majority quantifier.

- \exists_{r}^{+}means that the fraction r of the possible certificates of a certain length satisfy the predicate for the certain input.
- Obviously, $\exists^{+}=\exists_{1 / 2+\varepsilon}^{+}=\exists_{2 / 3}^{+}=\exists_{3 / 4}^{+}=\exists_{0.99}^{+}=\exists_{1-2^{-p(|x|)}}^{+}$

Basic Properties

Properties of Arthur-Merlin Games

Definition

We denote as $\mathcal{C}=\left(Q_{1} / Q_{2}\right)$, where $Q_{1}, Q_{2} \in\left\{\exists, \forall, \exists^{+}\right\}$, the class
\mathcal{C} of languages L satisfying:

- $x \in L \Rightarrow Q_{1} y R(x, y)$
- $x \notin L \Rightarrow Q_{2} y \neg R(x, y)$
- So: $\mathbf{P}=(\forall / \forall), \mathbf{N P}=(\exists / \forall), \operatorname{coNP}=(\forall / \exists)$

$$
\mathbf{B P P}=\left(\exists^{+} / \exists^{+}\right), \mathbf{R P}=\left(\exists^{+} / \forall\right), \operatorname{coRP}=\left(\forall / \exists^{+}\right)
$$

Properties of Arthur-Merlin Games

Definition

We denote as $\mathcal{C}=\left(Q_{1} / Q_{2}\right)$, where $Q_{1}, Q_{2} \in\left\{\exists, \forall, \exists^{+}\right\}$, the class
\mathcal{C} of languages L satisfying:

- $x \in L \Rightarrow Q_{1} y R(x, y)$
- $x \notin L \Rightarrow Q_{2} y \neg R(x, y)$
- So: $\mathbf{P}=(\forall / \forall), \mathbf{N P}=(\exists / \forall), \operatorname{coNP}=(\forall / \exists)$

$$
\mathbf{B P P}=\left(\exists^{+} / \exists^{+}\right), \mathbf{R P}=\left(\exists^{+} / \forall\right), \operatorname{coRP}=\left(\forall / \exists^{+}\right)
$$

Arthur-Merlin Games

$$
\begin{aligned}
& \mathbf{A M}=\mathbf{B P} \cdot \mathbf{N P}=\left(\exists^{+} \exists / \exists^{+} \forall\right) \\
& \mathbf{M A}=\mathbf{N} \cdot \mathbf{B P P}=\left(\exists \exists^{+} / \forall \exists^{+}\right)
\end{aligned}
$$

- Similarly: AMA $=\left(\exists^{+} \exists \exists^{+} / \exists^{+} \forall \exists^{+}\right)$etc.

Properties of Arthur-Merlin Games

Theorem

(1) $\mathbf{M A}=\left(\exists \forall / \forall \exists^{+}\right)$
(1) $\mathbf{A M}=\left(\forall \exists / \exists^{+} \forall\right)$

Proof:

Lemma

- BPP $=\left(\exists^{+} / \exists^{+}\right)=\left(\exists^{+} \forall / \forall \exists^{+}\right)=\left(\forall \exists^{+} / \exists^{+} \forall\right)(1)$ (BPP-Theorem)
- $\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)(2)$
i) $\mathbf{M A}=\mathbf{N} \cdot \mathbf{B P P}=\left(\exists \exists^{+} / \forall \exists^{+}\right) \stackrel{(1)}{=}\left(\exists \exists^{+} \forall / \forall \forall \exists^{+}\right) \subseteq\left(\exists \forall / \forall \exists^{+}\right)$
(the last inclusion holds by quantifier contraction). Also,
$\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\exists \exists^{+} / \forall \exists^{+}\right)=\mathbf{M A}$.
ii) Similarly,
$\mathbf{A M}=\mathbf{B P} \cdot \mathbf{N P}=\left(\exists^{+} \exists / \exists^{+} \forall\right)=\left(\forall \exists^{+} \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$.
Also, $\left(\forall \exists / \exists^{+} \forall\right) \subseteq\left(\exists^{+} \exists / \exists^{+} \forall\right)=\mathbf{A M}$.

Properties of Arthur-Merlin Games

Theorem

(1) $\mathbf{M A}=\left(\exists \forall / \forall \exists^{+}\right)$
(1) $\mathbf{A M}=\left(\forall \exists / \exists^{+} \forall\right)$

Proof:

Lemma

- BPP $=\left(\exists^{+} / \exists^{+}\right)=\left(\exists^{+} \forall / \forall \exists^{+}\right)=\left(\forall \exists^{+} / \exists^{+} \forall\right)(1)$ (BPP-Theorem)
- $\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)(2)$
i) $\mathbf{M A}=\mathbf{N} \cdot \mathbf{B P P}=\left(\exists \exists^{+} / \forall \exists^{+}\right) \stackrel{(1)}{=}\left(\exists \exists^{+} \forall / \forall \forall \exists^{+}\right) \subseteq\left(\exists \forall / \forall \exists^{+}\right)$
(the last inclusion holds by quantifier contraction). Also,
$\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\exists \exists^{+} / \forall \exists^{+}\right)=\mathbf{M A}$.
ii) Similarly,
$\mathbf{A M}=\mathbf{B P} \cdot \mathbf{N P}=\left(\exists^{+} \exists / \exists^{+} \forall\right)=\left(\exists^{+} \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$.
Also, $\left(\forall \exists / \exists^{+} \forall\right) \subseteq\left(\exists^{+} \exists / \exists^{+} \forall\right)=\mathbf{A M}$.

Properties of Arthur-Merlin Games

Theorem

(1) $\mathbf{M A}=\left(\exists \forall / \forall \exists^{+}\right)$
(1) $\mathbf{A M}=\left(\forall \exists / \exists^{+} \forall\right)$

Proof:

Lemma

- BPP $=\left(\exists^{+} / \exists^{+}\right)=\left(\exists^{+} \forall / \forall \exists^{+}\right)=\left(\forall \exists^{+} / \exists^{+} \forall\right)(1)$ (BPP-Theorem)
- $\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)(2)$
i) $\mathbf{M A}=\mathbf{N} \cdot \mathbf{B P P}=\left(\exists \exists^{+} / \forall \exists^{+}\right) \stackrel{(1)}{=}\left(\exists \exists^{+} \forall / \forall \forall \exists^{+}\right) \subseteq\left(\exists \forall / \forall \exists^{+}\right)$
(the last inclusion holds by quantifier contraction). Also,
$\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\exists \exists^{+} / \forall \exists^{+}\right)=\mathbf{M A}$.
ii) Similarly,
$\mathbf{A M}=\mathbf{B P} \cdot \mathbf{N P}=\left(\exists^{+} \exists / \exists^{+} \forall\right)=\left(\exists^{+} \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$.
Also, $\left(\forall \exists / \exists^{+} \forall\right) \subseteq\left(\exists^{+} \exists / \exists^{+} \forall\right)=\mathbf{A M}$.

Properties of Arthur-Merlin Games

Theorem

(1) $\mathbf{M A}=\left(\exists \forall / \forall \exists^{+}\right)$
(1) $\mathbf{A M}=\left(\forall \exists / \exists^{+} \forall\right)$

Proof:

Lemma

- BPP $=\left(\exists^{+} / \exists^{+}\right)=\left(\exists^{+} \forall / \forall \exists^{+}\right)=\left(\forall \exists^{+} / \exists^{+} \forall\right)(1)$ (BPP-Theorem)
- $\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)(2)$
i) $\mathbf{M A}=\mathbf{N} \cdot \mathbf{B P P}=\left(\exists \exists^{+} / \forall \exists^{+}\right) \stackrel{(1)}{=}\left(\exists \exists^{+} \forall / \forall \forall \exists^{+}\right) \subseteq\left(\exists \forall / \forall \exists^{+}\right)$
(the last inclusion holds by quantifier contraction). Also,
$\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\exists \exists^{+} / \forall \exists^{+}\right)=\mathbf{M A}$.
ii) Similarly,
$\mathbf{A M}=\mathbf{B P} \cdot \mathbf{N P}=\left(\exists^{+} \exists / \exists^{+} \forall\right)=\left(\forall \exists^{+} \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$.
Also, $\left(\forall \exists / \exists^{+} \forall\right) \subseteq\left(\exists^{+} \exists / \exists^{+} \forall\right)=\mathbf{A M}$.

Basic Properties

Properties of Arthur-Merlin Games

Theorem

$\mathbf{M A} \subseteq \mathbf{A M}$

Proof:

Obvious from (2): $(\exists \forall / \forall \exists+) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$. \square

Theorem

(1) $\mathrm{AM} \subseteq \Pi_{2}^{p}$
(1) $\mathrm{MA} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$

Proof:

i) $\mathbf{A M}=\left(\forall \exists / \exists^{+} \forall\right) \subseteq(\forall \exists / \exists \forall)=\Pi_{2}^{p}$
ii) $\mathbf{M A}=(\exists \forall / \forall \exists+) \subseteq(\exists \forall / \forall \exists)=\Sigma_{2}^{p}$, and
$\mathbf{M A} \subseteq \mathbf{A M} \Rightarrow \mathbf{M A} \subseteq \Pi_{2}^{p}$. So, $\mathbf{M A} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p} . \square$

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For $t(n) \geq 2$:

$$
\mathbf{A M}[2 t(n)]=\mathbf{A} \mathbf{M}[t(n)]
$$

- The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every $k \geq 2$:

$$
\mathbf{A M}=\mathbf{A} \mathbf{M}[k]=\mathbf{M} \mathbf{A}[k+1]
$$

Example

MAM $=\left(\exists \exists^{+} \exists / \forall \exists^{+} \forall\right) \stackrel{(1)}{\subseteq}\left(\exists \exists^{+} \forall \exists / \forall \forall \exists^{+} \forall\right) \subseteq\left(\exists \forall \exists / \forall \exists^{+} \forall\right) \stackrel{(2)}{\subseteq}$ $\subseteq\left(\forall \exists \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)=\mathbf{A M}$

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For $t(n) \geq 2$:

$$
\mathbf{A M}[2 t(n)]=\mathbf{A} \mathbf{M}[t(n)]
$$

- The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every $k \geq 2$:

$$
\mathbf{A M}=\mathbf{A} \mathbf{M}[k]=\mathbf{M} \mathbf{A}[k+1]
$$

Example

MAM $=\left(\exists \exists^{+} \exists / \forall \exists^{+} \forall\right) \stackrel{(1)}{\subseteq}\left(\exists \exists^{+} \forall \exists / \forall \forall \exists^{+} \forall\right) \subseteq\left(\exists \forall \exists / \forall \exists^{+} \forall\right) \stackrel{(2)}{\subseteq}$ $\subseteq\left(\forall \exists \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)=\mathbf{A M}$

Basic Properties

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For $t(n) \geq 2$:

$$
\mathbf{A M}[2 t(n)]=\mathbf{A} \mathbf{M}[t(n)]
$$

- The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every $k \geq 2$:

$$
\mathbf{A M}=\mathbf{A} \mathbf{M}[k]=\mathbf{M} \mathbf{A}[k+1]
$$

Example

MAM $=\left(\exists \exists^{+} \exists / \forall \exists^{+} \forall\right) \stackrel{(1)}{\subseteq}\left(\exists \exists^{+} \forall \exists / \forall \forall \exists^{+} \forall\right) \subseteq\left(\exists \forall \exists / \forall \exists^{+} \forall\right) \stackrel{(2)}{\subseteq}$ $\subseteq\left(\forall \exists \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)=\mathbf{A M}$

Basic Properties

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For $t(n) \geq 2$:

$$
\mathbf{A M}[2 t(n)]=\mathbf{A} \mathbf{M}[t(n)]
$$

- The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every $k \geq 2$:

$$
\mathbf{A M}=\mathbf{A} \mathbf{M}[k]=\mathbf{M} \mathbf{A}[k+1]
$$

Example

MAM $=\left(\exists \exists^{+} \exists / \forall \exists^{+} \forall\right) \stackrel{(1)}{\subseteq}\left(\exists \exists^{+} \forall \exists / \forall \forall \exists^{+} \forall\right) \subseteq\left(\exists \forall \exists / \forall \exists^{+} \forall\right) \stackrel{(2)}{\subseteq}$ $\subseteq\left(\forall \exists \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)=\mathbf{A M}$

Basic Properties

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For $t(n) \geq 2$:

$$
\mathbf{A M}[2 t(n)]=\mathbf{A} \mathbf{M}[t(n)]
$$

- The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every $k \geq 2$:

$$
\mathbf{A M}=\mathbf{A} \mathbf{M}[k]=\mathbf{M} \mathbf{A}[k+1]
$$

Example

$\mathbf{M A M}=\left(\exists \exists^{+} \exists / \forall \exists^{+} \forall\right) \stackrel{(1)}{\subseteq}\left(\exists \exists^{+} \forall \exists / \forall \forall \exists^{+} \forall\right) \subseteq\left(\exists \forall \exists / \forall \exists^{+} \forall\right) \stackrel{(2)}{\subseteq}$ $\subseteq\left(\forall \exists \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)=\mathbf{A M}$

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For $t(n) \geq 2$:

$$
\mathbf{A M}[2 t(n)]=\mathbf{A} \mathbf{M}[t(n)]
$$

- The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every $k \geq 2$:

$$
\mathbf{A M}=\mathbf{A} \mathbf{M}[k]=\mathbf{M} \mathbf{A}[k+1]
$$

Example

MAM $=\left(\exists \exists^{+} \exists / \forall \exists^{+} \forall\right) \stackrel{(1)}{\subseteq}\left(\exists \exists^{+} \forall \exists / \forall \forall \exists^{+} \forall\right) \subseteq\left(\exists \forall \exists / \forall \exists^{+} \forall\right) \stackrel{(2)}{\subseteq}$ $\subseteq\left(\forall \exists \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)=\mathbf{A M}$

Basic Properties

Properties of Arthur-Merlin Games

Proof:

- The general case is implied by the generalization of BPP-Theorem (1) \& (2):
- $\left(\mathbf{Q}_{1} \exists^{+} \mathbf{Q}_{2} / \mathbf{Q}_{3} \exists^{+} \mathbf{Q}_{4}\right)=\left(\mathbf{Q}_{\mathbf{1}} \exists^{+} \forall \mathbf{Q}_{\mathbf{2}} / \mathbf{Q}_{\mathbf{3}} \forall \exists^{+} \mathbf{Q}_{4}\right)=$ $\left(\mathbf{Q}_{\mathbf{1}} \forall \exists^{+} \mathbf{Q}_{2} / \mathbf{Q}_{3} \exists^{+} \forall \mathbf{Q}_{4}\right)\left(\mathbf{1}^{\prime}\right)$
- $\left(\mathbf{Q}_{\mathbf{1}} \exists \forall \mathbf{Q}_{\mathbf{2}} / \mathbf{Q}_{\mathbf{3}} \forall \exists^{+} \mathbf{Q}_{\mathbf{4}}\right) \subseteq\left(\mathbf{Q}_{\mathbf{1}} \forall \exists \mathbf{Q}_{\mathbf{2}} / \mathbf{Q}_{\mathbf{3}} \exists^{+} \forall \mathbf{Q}_{\mathbf{4}}\right)\left(\mathbf{2}^{\prime}\right)$
- Using the above we can easily see that the Arthur-Merlin Hierarchy collapses at the second level. (Try it!) \square

Basic Properties

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP $\subseteq \mathbf{A M}$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $\mathbf{P H}=\Sigma_{2}^{p}=\mathbf{A M}$.

Proof: Our hypothesis states: $(\forall / \exists) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$
Then:
$\Sigma_{2}^{p}=(\exists \forall / \forall \exists) \stackrel{\text { Hyp. }}{\subseteq}(\exists \forall \exists / \forall \exists+\forall) \stackrel{(2)}{\subseteq}\left(\forall \exists \exists / \exists^{+} \forall \forall\right)=\left(\forall \exists / \exists^{+} \forall\right)=$
$\mathbf{A M} \subseteq(\forall \exists / \exists \forall)=\Pi_{2}^{p} . \square$

Basic Properties

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP $\subseteq \mathbf{A M}$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $\mathbf{P H}=\Sigma_{2}^{p}=\mathbf{A M}$.

Proof: Our hypothesis states: $(\forall / \exists) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$
Then:
$\Sigma_{2}^{p}=(\exists \forall / \forall \exists) \stackrel{\text { Hyp. }}{\subseteq}(\exists \forall \exists / \forall \exists+\forall) \stackrel{(2)}{\subseteq}\left(\forall \exists \exists / \exists^{+} \forall \forall\right)=\left(\forall \exists / \exists^{+} \forall\right)=$
$\mathbf{A M} \subseteq(\forall \exists / \exists \forall)=\Pi_{2}^{p} . \square$

Basic Properties

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP $\subseteq \mathbf{A M}$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $\mathbf{P H}=\Sigma_{2}^{p}=\mathbf{A M}$.

Proof: Our hypothesis states: $(\forall / \exists) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$
Then:
$\Sigma_{2}^{p}=(\exists \forall / \forall \exists) \stackrel{\text { Hyp. }}{\subseteq}(\exists \forall \exists / \forall \exists+\forall) \stackrel{(2)}{\subseteq}\left(\forall \exists \exists / \exists^{+} \forall \forall\right)=\left(\forall \exists / \exists^{+} \forall\right)=$
$\mathbf{A M} \subseteq(\forall \exists / \exists \forall)=\Pi_{2}^{p} . \square$

Basic Properties

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP $\subseteq \mathbf{A M}$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $\mathbf{P H}=\Sigma_{2}^{p}=\mathbf{A M}$.

Proof: Our hypothesis states: $(\forall / \exists) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$
Then:
$\Sigma_{2}^{p}=(\exists \forall / \forall \exists) \stackrel{\text { Hyp. }}{\subseteq}\left(\exists \forall \exists / \forall \exists^{+} \forall\right) \stackrel{(2)}{\subseteq}\left(\forall \exists \exists / \exists^{+} \forall \forall\right)=\left(\forall \exists / \exists^{+} \forall\right)=$
$\mathbf{A M} \subseteq(\forall \exists / \exists \forall)=\Pi_{2}^{p} . \square$

Basic Properties

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP $\subseteq \mathbf{A M}$ (that is, if GI is NP-complete), then the Polynomial Hierarchy collapses at the second level, and $\mathbf{P H}=\Sigma_{2}^{p}=\mathbf{A M}$.

Proof: Our hypothesis states: $(\forall / \exists) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$
Then:
$\Sigma_{2}^{p}=(\exists \forall / \forall \exists) \stackrel{\text { Hyp. }}{\subseteq}(\exists \forall \exists / \forall \exists+\forall) \stackrel{(2)}{\subseteq}\left(\forall \exists \exists / \exists^{+} \forall \forall\right)=\left(\forall \exists / \exists^{+} \forall\right)=$
$\mathbf{A M} \subseteq(\forall \exists / \exists \forall)=\Pi_{2}^{p} . \square$

Measure One Results

- $\mathbf{P}^{A} \neq \mathbf{N P}^{A}$, for almost all oracles A.
- $\mathbf{P}^{A}=\mathbf{B P} \mathbf{P}^{A}$, for almost all oracles A.
- $\mathbf{N P}^{A}=\mathbf{A M}{ }^{A}$, for almost all oracles A.

Definition

$$
\text { almostC }=\left\{L \mid \operatorname{Pr}_{A \in\{0,1\}^{*}}\left[L \in \mathcal{C}^{A}\right]=1\right\}
$$

Theorem

(1) almost $\mathbf{P}=\mathbf{B P P}$ [BG81]
(1) almostNP $=\mathbf{A M}$ [NW94]
(1) almost $\mathbf{P H}=\mathbf{P H}$

Measure One Results

Theorem (Kurtz)

For almost every pair of oracles B, C :
(1) $\mathbf{B P P}=\mathbf{P}^{B} \cap \mathbf{P}^{C}$
(1) almost $\mathbf{N P}=\mathbf{N P}^{B} \cap \mathbf{N P}^{C}$

Indicative Open Questions

- Does exist an oracle separating AM from almostNP?
- Is almostNP contained in some finite level of Polynomial-Time Hierarchy?
- Motivated by [BHZ]: If coNP \subseteq almostNP, does it follow that PH collapses?
(1) Interactive Proofs
- Introduction
- The class IP
(2) Arthur-Merlin Games
- Definitions
- Basic Properties
(3) Arithmetization \& The power of IPs
- Introduction
- Shamir's Theorem
- Other Arithmetization Results
(4) PCPs
- Definitions

The power of Interactive Proofs

- As we saw, Interaction alone does not gives us computational capabilities beyond NP.
- Also, Randomization alone does not give us significant power (we know that BPP $\subseteq \Sigma_{2}^{p}$, and many researchers believe that $\mathbf{P}=\mathbf{B P P}$, which holds under some plausible assumptions).
- How much power could we get by their combination?
- We know that for fixed $k \in \mathbb{N}$, IP $[k]$ collapses to

$$
\mathbf{I P}[k]=\mathbf{A M}=\mathcal{B P} \cdot \mathbf{N P}
$$

a class that is "close" to NP (under similar assumptions, the non-deterministic analogue of \mathbf{P} vs. BPP is NP vs. AM.)

- If we let k be a polynomial in the size of the input, how much more power could we get?

Introduction

The power of Interactive Proofs

- Surprisingly:

Theorem (L.F.K.N. \& Shamir)

$I P=P S P A C E$

The power of Interactive Proofs

Lemma 1

$\mathbf{I P} \subseteq$ PSPACE

Warmup: Interactive Proof for UNSAT

Lemma 2

PSPACE \subseteq IP

- For simplicity, we will construct an Interactive Proof for UNSAT (a coNP-complete problem), showing that:

Theorem

$\operatorname{coNP} \subseteq \mathbf{I P}$

- Let N be a prime.
- We will translate a formula ϕ with m clauses and n variables x_{1}, \ldots, x_{n} to a polynomial p over the field $(\bmod N)$ (where $\left.N>2^{n} \cdot 3^{m}\right)$, in the following way:

Arithmetization

- Arithmetic generalization of a CNF Boolean Formula.

$$
\begin{array}{rll}
\mathrm{T} & \longrightarrow & 1 \\
\mathrm{~F} & \longrightarrow & 0 \\
\neg x & \longrightarrow & 1-x \\
\wedge & \longrightarrow & \times \\
\vee & \longrightarrow & +
\end{array}
$$

Example

$$
\begin{gathered}
\left(x_{3} \vee \neg x_{5} \vee x_{17}\right) \wedge\left(x_{5} \vee x_{9}\right) \wedge\left(\neg x_{3} \vee x_{4}\right) \\
\downarrow \\
\left(x_{3}+\left(1-x_{5}\right)+x_{17}\right) \cdot\left(x_{5}+x_{9}\right) \cdot\left(\left(1-x_{3}\right)+\left(1-x_{4}\right)\right)
\end{gathered}
$$

- Each literal is of degree 1 , so the polynomial p is of degree at most m.
- Also, $0<p<3^{m}$.

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

Verifier
checks proof

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N
$q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right)$

Verifier

checks proof
$\longrightarrow \quad$ checks if $q_{1}(0)+q_{1}(1)=0$

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N
$q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right)$

Verifier

checks proof
$\longrightarrow \quad$ checks if $q_{1}(0)+q_{1}(1)=0$
sends $r_{1} \in\{0, \ldots, N-1\}$

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

$$
q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right) \quad \longrightarrow \quad \text { checks if } q_{1}(0)+q_{1}(1)=0
$$

$q_{2}(x)=\sum p\left(r_{1}, x, x_{3}, \ldots x_{n}\right) \quad \longrightarrow \quad$ checks if $q_{2}(0)+q_{2}(1)=q_{1}\left(r_{1}\right)$
\longleftarrow sends $r_{1} \in\{0, \ldots, N-1\}$

Verifier

checks proof

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

$$
q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right) \quad \longrightarrow \quad \text { checks if } q_{1}(0)+q_{1}(1)=0
$$

\longleftarrow sends $r_{1} \in\{0, \ldots, N-1\}$
$q_{2}(x)=\sum p\left(r_{1}, x, x_{3}, \ldots x_{n}\right) \quad \longrightarrow \quad$ checks if $q_{2}(0)+q_{2}(1)=q_{1}\left(r_{1}\right)$
\longleftarrow sends $r_{2} \in\{0, \ldots, N-1\}$

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

$$
q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right) \quad \longrightarrow \quad \text { checks if } q_{1}(0)+q_{1}(1)=0
$$

$\longleftarrow \quad$ sends $r_{1} \in\{0, \ldots, N-1\}$
$q_{2}(x)=\sum p\left(r_{1}, x, x_{3}, \ldots x_{n}\right) \quad \longrightarrow \quad$ checks if $q_{2}(0)+q_{2}(1)=q_{1}\left(r_{1}\right)$
$\longleftarrow \quad$ sends $r_{2} \in\{0, \ldots, N-1\}$
$q_{n}(x)=p\left(r_{1}, \ldots, r_{n-1}, x\right) \quad \longrightarrow \quad$ checks if $q_{n}(0)+q_{n}(1)=q_{n-1}\left(r_{n-1}\right)$

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

$$
q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right) \quad \longrightarrow \quad \text { checks if } q_{1}(0)+q_{1}(1)=0
$$

$\longleftarrow \quad$ sends $r_{1} \in\{0, \ldots, N-1\}$
$q_{2}(x)=\sum p\left(r_{1}, x, x_{3}, \ldots x_{n}\right) \quad \longrightarrow \quad$ checks if $q_{2}(0)+q_{2}(1)=q_{1}\left(r_{1}\right)$
$\longleftarrow \quad$ sends $r_{2} \in\{0, \ldots, N-1\}$
$q_{n}(x)=p\left(r_{1}, \ldots, r_{n-1}, x\right) \quad \longrightarrow \quad$ checks if $q_{n}(0)+q_{n}(1)=q_{n-1}\left(r_{n-1}\right)$

Shamir's Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

$$
q_{1}(x)=\sum p\left(x, x_{2}, \ldots x_{n}\right) \quad \longrightarrow \quad \text { checks if } q_{1}(0)+q_{1}(1)=0
$$

$\longleftarrow \quad$ sends $r_{1} \in\{0, \ldots, N-1\}$
$q_{2}(x)=\sum p\left(r_{1}, x, x_{3}, \ldots x_{n}\right) \quad \longrightarrow \quad$ checks if $q_{2}(0)+q_{2}(1)=q_{1}\left(r_{1}\right)$
$\longleftarrow \quad$ sends $r_{2} \in\{0, \ldots, N-1\}$
$q_{n}(x)=p\left(r_{1}, \ldots, r_{n-1}, x\right) \quad \longrightarrow \quad$ checks if $q_{n}(0)+q_{n}(1)=q_{n-1}\left(r_{n-1}\right)$
picks $r_{n} \in\{0, \ldots, N-1\}$
checks if $q_{n}\left(r_{n}\right)=p\left(r_{1}, \ldots, r_{n}\right)$

Warmup: Interactive Proof for UNSAT

- If ϕ is unsatisfiable,then

$$
\sum_{x_{1} \in\{0,1\}} \sum_{x_{2} \in\{0,1\}} \cdots \sum_{x_{n} \in\{0,1\}} p\left(x_{1}, \ldots, x_{n}\right) \equiv 0(\bmod N)
$$

and the protocol will succeed.

- Also, the arithmetization can be done in polynomial time, and if we take $N=2^{\mathcal{O}(n+m)}$, then the elements in the field can be represented by $\mathcal{O}(n+m)$ bits, and thus an evaluation of p in any point of $\{0, \ldots, N-1\}$ can be computed in polynomial time.
- We have to show that if ϕ is satisfiable, then the verifier will reject with high probability.
- If ϕ is satisfiable, then

$$
\sum_{x_{1} \in\{0,1\}} \sum_{x_{2} \in\{0,1\}} \cdots \sum_{x_{n} \in\{0,1\}} p\left(x_{1}, \ldots, x_{n}\right) \neq 0(\bmod N)
$$

- So, $p_{1}(01)+p_{1}(1) \neq 0$, so if the prover send p_{1} we 're done.
- If the prover send $q_{1} \neq p_{1}$, then the polynomials will agree on at most m places. So, $\operatorname{Pr}\left[p_{1}\left(r_{1}\right) \neq q_{1}\left(r_{1}\right)\right] \geq 1-\frac{m}{N}$.
- If indeed $p_{1}\left(r_{1}\right) \neq q_{1}\left(r_{1}\right)$ and the prover sends $p_{2}=q_{2}$, then the verifier will reject since $q_{2}(0)+q_{2}(1)=p_{1}\left(r_{1}\right) \neq q_{1}\left(r_{1}\right)$.
- Thus, the prover must send $q_{2} \neq p_{2}$.
- We continue in a similar way: If $q_{i} \neq p_{i}$, then with probability at least $1-\frac{m}{N}, r_{i}$ is such that $q_{i}\left(r_{i}\right) \neq p_{i}\left(r_{i}\right)$.
- Then, the prover must send $q_{i+1} \neq p_{i+1}$ in order for the verifier not to reject.
- At the end, if the verifier has not rejected before the last check, $\operatorname{Pr}\left[p_{n} \neq q_{n}\right] \geq 1-(n-1) \frac{m}{N}$.
- If so, with probability at least $1-\frac{m}{N}$ the verifier will reject since, $q_{n}(x)$ and $p\left(r_{1}, \ldots, r_{n-1}, x\right)$ differ on at least that fraction of points.
- The total probability that the verifier will accept if at most $\frac{n m}{N}$.

Shamir's Theorem

Arithmetization of QBF

$$
\begin{array}{lll}
\exists & \longrightarrow & \sum \\
\forall & \longrightarrow
\end{array}
$$

Example

$$
\begin{gathered}
\forall x_{1} \exists x_{2}\left[\left(x_{1} \wedge x_{2}\right) \vee \exists x_{3}\left(\bar{x}_{2} \wedge x_{3}\right)\right] \\
\downarrow \\
\prod_{x_{1} \in\{0,1\}} \sum_{x_{2} \in\{0,1\}}\left[\left(x_{1} \cdot x_{2}\right)+\sum_{x_{3} \in\{0,1\}}\left(1-x_{2}\right) \cdot x_{3}\right]
\end{gathered}
$$

Theorem

A closed QBF is true if and only if tha value of its arithmetic form is non-zero.

Arithmetization of QBF

- If a QBF is true, its value could be quite large:

Theorem

Let A be a closed QBF of size n. Then, the value of its arithmetic form cannot exceed $\mathcal{O}\left(2^{2^{n}}\right)$.

- Since such numbers cannot be handled by the protocol, we reduce them modulo some -smaller- prime p :

Theorem

Let A be a closed QBF of size n. Then, there exists a prime p of length polynomial in n, such that its arithmetization

$$
A^{\prime} \neq 0(\bmod p) \Leftrightarrow A \text { is true. }
$$

Arithmetization of QBF

- A QBF with all the variables quantified is called closed, and can be evaluated to either True or False.
- An open QBF with $k>0$ free variables can be interpreted as a boolean function $\{0,1\}^{k} \rightarrow\{0,1\}$.
- Now, consider the language of all true quantified boolean formulas:

TQBF $=\{\Phi \mid \Phi$ is a true quantified Boolean formula $\}$

- It is known that TQBF is a PSPACE-complete language!
- So, if we have a interactive proof protocol recognizing TQBF, then we have a protocol for every PSPACE language.

Shamir's Theorem

Protocol for TQBF

- Given a quantified formula

$$
\psi=\forall x_{1} \exists x_{2} \forall x_{3} \cdots \exists x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)
$$

we use arithmetization to construct the polynomial P_{ϕ}. Then, $\psi \in$ TQBF if and only if

$$
\prod_{p_{1} \in\{0,1\}^{*}} \sum_{b_{2} \in\{0,1\}^{*}} \prod_{b_{3} \in\{0,1\}^{*}} \ldots \sum_{b_{n} \in\{0,1\}^{*}} P_{\phi}\left(b_{1}, \ldots, b_{n}\right) \neq 0
$$

PRABs

Definition (PRABs)

A Positive Retarded Arithmetic Program with Binary Substitutions (PRAB) is a sequence $\left\{p_{1}, \ldots, p_{t}\right\}$ of "instructions" such that, for every k, one of the following holds:
(1) p_{k} is constant (0 or 1).
(2) $p_{k}=x_{i}$, for some $i \leq k$.
(3) $p_{k}=1-x_{i}$, for some $i \leq k$.
(4) $p_{k}=p_{i}+p_{j}$, for some $i, j \leq k$.
(6) $p_{k}=p_{i} p_{j}$, for some i, j, such that $i+j \leq k$.
(6) $p_{k}=p_{j}\left(x_{i}=0\right)$ or $p_{j}\left(x_{i}=1\right)$, for some $i, j \leq k$.

- Such a program defines a sequence \tilde{p}_{k} of polynomials in an obvious way!
- We say that P computes \tilde{p}_{t}, the last member of the sequence.

PRABs

- A family P_{1}, P_{2}, \ldots of PRABs is uniform, if, upon input 1^{n}, a polynomial-time deterministic TM computes P_{n}, and the polynomial \tilde{P}_{n} computed only depends on x_{1}, \ldots, x_{n}.

Theorem 1 (Characterization of \#P)

For a function $f:\{0,1\}^{*} \rightarrow \mathbb{Z}^{+}$, the following are equivalent:
(1) $f \in \# \mathbf{P}$
(2) There exists a uniform family of PRABs P_{n}, such that for every $x \in\{0,1\}^{*}$,

$$
f(x)=\tilde{P}_{|x|}(x)
$$

- By $P(x)$ we mean $P\left(x_{1}, \ldots, x_{n}\right)$, where $x=x_{1} x_{2} \cdots x_{n} \in\{0,1\}^{n}$

Reminder: Operators on Complexity Classes

Let \mathbf{C} be an arbitrary complexity class.

- $L \in \mathcal{P}$. \mathbf{C} if there exists $L^{\prime} \in \mathbf{C}$ and $p \in$ poly such that $\forall x \in\{0,1\}^{*}:$
- $x \in L \Rightarrow \exists_{1 / 2} y L^{\prime}(<x, y>)$
- $x \notin L \Rightarrow \exists_{1 / 2} y \neg L^{\prime}(<x, y>)$
- $L \in \mathcal{B P}$. \mathbf{C} if there exists $L^{\prime} \in \mathbf{C}$ and $p \in$ poly such that $\forall x \in\{0,1\}^{*}:$
- $x \in L \Rightarrow \exists^{+} y L^{\prime}(<x, y>)$
- $x \notin L \Rightarrow \exists^{+} y \neg L^{\prime}(<x, y>)$
- $L \in \oplus \cdot \mathbf{C}$ if there exists $L^{\prime} \in \mathbf{C}$ and $p \in$ poly such that $\forall x \in\{0,1\}^{*}$:
- $x \in L \Rightarrow \oplus y L^{\prime}(<x, y>)$
- $x \notin L \Rightarrow \oplus y \neg L^{\prime}(<x, y>)$
where for every certificate $y:|y|=p(|x|)$, and by $\oplus y$ we mean that the number of y 's satisfying the condition is odd.

Theorem 2

For a fuction $f:\{0,1\}^{*} \rightarrow\{0,1\}$. the following are equivalent:
(1) $f \in \mathcal{B P} \cdot \oplus \cdot \mathbf{P}$.
(2) There exists a uniform family of $\operatorname{PRABs} P_{n}$, such that the polynomial \tilde{P}_{n} computed by P_{n} has $n+m(n)$ variables for $m \in \operatorname{poly}(n)$, and $\forall x \in\{0,1\}^{*}$:

$$
f(x)=\tilde{P}_{|x|}(x, r) \quad \bmod 2
$$

for at least $2 / 3$ of the strings $r \in\{0,1\}^{m(|x|)}$.
(The same result holds for $\mathcal{P} \cdot \oplus \cdot \mathbf{P}$.)
Proof: By definition, $f \in \mathcal{B P} \cdot \oplus \cdot \mathbf{P}$ iff
$(\exists g \in \# \mathbf{P})\left(\exists^{+} r \in\{0,1\}^{m(|x|)}\right)\left(\forall x \in\{0,1\}^{*}\right) f(x)=g(x, r) \bmod 2$
The claim is immediate from Theorem 1. Analogously for $\mathcal{P} \cdot \oplus \cdot \mathbf{P}$.

- Based on the previous results, we can also show that:

Theorem 3

$$
\mathcal{P} \cdot \oplus \cdot \mathbf{P} \subseteq \mathbf{P}^{\# \mathbf{P}}
$$

Proof (Toda):

PRABs and Polynomial Hierarchy

- Can we describe the Polynomial Hierarchy by such programs?
- We encode quantified Boolean Formulas with a bounded number of quantifier alternations:

$$
\psi_{i}\left(x_{i+1}, \ldots, x_{d}\right)=\mathbf{Q}_{i} x_{i} \psi_{i-1}\left(x_{i}, \ldots, x_{d}\right)
$$

, where $\mathbf{Q}_{i} \in\{\exists, \forall\}$, and ψ_{0} is a 3 CNF formula.

PRABs and Polynomial Hierarchy

- Can we describe the Polynomial Hierarchy by such programs?
- We encode quantified Boolean Formulas with a bounded number of quantifier alternations:

$$
\psi_{i}\left(x_{i+1}, \ldots, x_{d}\right)=\mathbf{Q}_{i} x_{i} \psi_{i-1}\left(x_{i}, \ldots, x_{d}\right)
$$

, where $\mathbf{Q}_{i} \in\{\exists, \forall\}$, and ψ_{0} is a 3CNF formula.

Theorem 4

Partially quantified Boolean formulas with a bounded number of quantifier alternations can be represented probabilistically by PRABs $\bmod 2$ in the sense that for any ψ_{i}, there exists a PRAB P^{i} such that:

$$
\tilde{P}^{i}\left(x_{i+1}, \ldots, x_{d}, r_{1}, \ldots, r_{i}\right)=\psi_{i}\left(x_{i+1}, \ldots, x_{d}\right)
$$

for all but an arbitrarily exponential small fraction of r_{j} 's, $\left|r_{j}\right| \leq p(n)$ for some $p \in$ poly.

PRABs and Polynomial Hierarchy

- So, finally, we have:
- Theorem 2 \& $4 \Rightarrow \mathbf{P H} \subseteq \mathcal{B P} \cdot \oplus \cdot \mathbf{P}$
- And by using Theorem 3: $\mathcal{P} \cdot \oplus \cdot \mathbf{P} \subseteq \mathbf{P} \# \mathbf{P}$ we obtain an alternative proof of a famous result:

PRABs and Polynomial Hierarchy

- So, finally, we have:
- Theorem 2 \& $4 \Rightarrow \mathbf{P H} \subseteq \mathcal{B P} \cdot \oplus \cdot \mathbf{P}$
- And by using Theorem 3: $\mathcal{P} \cdot \oplus \cdot \mathbf{P} \subseteq \mathbf{P} \# \mathbf{P}$ we obtain an alternative proof of a famous result:

Toda's Theorem

$$
\mathbf{P H} \subseteq \mathbf{P}^{\# \mathbf{P}}
$$

- The "connecting" inclusion $\mathcal{B P} \cdot \oplus \cdot \mathbf{P} \subseteq \mathcal{P} \cdot \oplus \cdot \mathbf{P}$ follows trivially.

Definitions

Epilogue: Probabilstically Checkable Proofs

- But if we put a proof instead of a Prover?

Epilogue: Probabilstically Checkable Proofs

- But if we put a proof instead of a Prover?
- The alleged proof is a string, and the (probabilistic) verification procedure is given direct (oracle) access to the proof.
- The verification procedure can access only few locations in the proof!
- We parameterize these Interactive Proof Systems by two complexity measures:
- Query Complexity
- Randomness Complexity
- The effective proof length of a PCP system is upper-bounded by $q(n) \cdot 2^{r(n)}$ (in the non-adaptive case). (How long can be in the adaptive case?)

PCP Definitions

Definition

PCP Verifiers Let L be a language and $q, r: \mathbb{N} \rightarrow \mathbb{N}$. We say that L has an $(r(n), q(n))-\mathbf{P C P}$ verifier if there is a probabilistic polynomial-time algorithm V (the verifier) satisfying:

- Efficiency: On input $x \in\{0,1\}^{*}$ and given random oracle access to a string $\pi \in\{0,1\}^{*}$ of length at most $q(n) \cdot 2^{r(n)}$ (which we call the proof), V uses at most $r(n)$ random coins and makes at most $q(n)$ non-adaptive queries to locations of π. Then, it accepts or rejects. Let $V^{\pi}(x)$ denote the random variable representing V 's output on input x and with random access to π.
- Completeness: If $x \in L$, then $\exists \pi \in\{0,1\}^{*}: \operatorname{Pr}\left[V^{\pi}(x)=1\right]=1$
- Soundness: If $x \notin L$, then $\forall \pi \in\{0,1\}^{*}: \operatorname{Pr}\left[V^{\pi}(x)=1\right] \leq \frac{1}{2}$

We say that a language L is in $\operatorname{PCP}(r(n), q(n))$ if L has a $(\mathcal{O}(r(n)), \mathcal{O}(q(n)))$-PCP verifier.

Main Results

- Obviously:
$\mathbf{P C P}(0,0)=$?
$\mathbf{P C P}(0$, poly $)=$?
$\mathbf{P C P}($ poly, 0$)=$?

Definitions

Main Results

- Obviously:
$\mathbf{P C P}(0,0)=\mathbf{P}$
$\mathbf{P C P}(0$, poly $)=$?
$\mathbf{P C P}($ poly, 0$)=$?

Definitions

Main Results

- Obviously:
$\mathbf{P C P}(0,0)=\mathbf{P}$
$\mathbf{P C P}(0$, poly $)=\mathbf{N P}$
$\mathbf{P C P}($ poly, 0$)=$?

Definitions

Main Results

- Obviously:
$\mathbf{P C P}(0,0)=\mathbf{P}$
$\mathbf{P C P}(0$, poly $)=\mathbf{N P}$
$\mathbf{P C P}($ poly, 0$)=c o \mathbf{R P}$

Main Results

- Obviously:
$\mathbf{P C P}(0,0)=\mathbf{P}$
$\mathbf{P C P}(0$, poly $)=\mathbf{N P}$
$\mathbf{P C P}($ poly, 0$)=c o \mathbf{R P}$
- A suprising result from Arora, Lund, Motwani, Safra, Sudan, Szegedy states that:

The PCP Theorem

$$
\mathbf{N P}=\mathbf{P C P}(\log n, 1)
$$

Main Results

- The proof is constructive: Transform any NP-witness into an oracle that makes the PCP verifier accept with probability 1.

Proof Overview

- NP $\subseteq \mathbf{P C P}(\log n$, poly $\log n)$
- $\mathbf{N P} \subseteq \mathbf{P C P}($ poly $n, 1)$
- Compose the above two: The "inner verifier" is used for probabilistically verifying the acceptance criteria of the "outer" verifier.

Main Results

- The proof is constructive: Transform any NP-witness into an oracle that makes the PCP verifier accept with probability 1.

Proof Overview

- NP $\subseteq \mathbf{P C P}(\log n$, poly $\log n)$
- NP $\subseteq \mathbf{P C P}($ poly $n, 1)$
- Compose the above two: The "inner verifier" is used for probabilistically verifying the acceptance criteria of the "outer" verifier.
- The composition of the two yields a PCP with:

$$
r(n)=r^{\prime}(n)+r^{\prime \prime}\left(q^{\prime}(n)\right) \text { and } q(n)=q^{\prime \prime}\left(q^{\prime}(n)\right)
$$

Further Reading

围 S. Arora, B. Barak: Computational Complexity: A Modern Approach, Cambridge University Press, 2009
R Oded Goldreich: Computational Complexity: A Conceptual Perspective, Cambridge University Press, 2008
R L. A. Hemaspaandra \& M. Ogihara, The Complexity Theory Companion, Springer, 2002
R. Lrevisan, Lecture Notes in Computational Complexity, 2004, UC Berkeley.
\square S. Goldwasser and M. Sipser, Private coins versus public coins in interactive proof systems, In Proceedings of the eighteenth annual ACM symposium on Theory of computing, STOC '86
(L. Babai \& S. Moran, Arthur-Merlin Games: A randomized proof system, and a hierarchy of complexity classes, J. Comput. Syst. Sci., 36(2):254-276, 1988

Stathis Zachos and Martin Fürer, Probabilistic quantifiers vs. distrustful adversaries, In Foundations of Software Technology and Theoretical Computer Science, volume 287 of Lecture Notes in Computer Science, pages 443-455, Springer Berlin / Heidelberg, 1987.
S. Zachos, Probabilistic quantifiers, adversaries, and complexity classes: an overview, In Proc. of the conference on Structure in complexity theory, pages 383-400, New York, NY, USA, 1986. Springer-Verlag New York, Inc.

图 A. Shamir, IP = PSPACE, J. ACM, 39:869-877, October 1992
L. Babai and L. Fortnow, Arithmetization: A new method in structural complexity theory, Computational Complexity, 1:41-66, 1991
目 S. Arora, How NP got a new definition: a survey of probabilistically checkable proofs, CoRR cs.CC/0304038, 2003

