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Basic concepts

An efficient method of communicating a proof (interactively).

Interactive proofs: The Prover and the Verifier exchange messages
regarding a Theorem T .

The Prover wants to convince the Verifier that T is True.

e.g. for Hamiltonian graph the proof might be the Hamiltonian tour.

What if we don’t want to release so much knowledge?

Computational complexity measure of knowledge.

Language classification according to the amount of additional
knowledge.

Zero-knowledge :)
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Interactive proof-systems

Interactive pair of Turing machines (A,B):

i. A and B share the same input tape,

ii. B’s write-only communication tape is A’s read-only tape and vice
versa.

Interactive proofs are ”easier” than NP-proofs.
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Formally

Definition 1

Let L ⊆ {0, 1}∗ be a language and (P,Vr) an IPTM, where P (prover) has
infinite power and Vr (verifier) is polynomial time. (P,Vr) is an
interactive proof-system for L if

i. Completeness: for all x ∈ L, is we supply (P,Vr) with x, Vr halts and
accepts with probability at least 1− 1

nk
, for each k and n sufficiently

large (n = |x |).

ii. Validity: for all x /∈ L, and all ITMs P, Vr accepts with probability at
most 1

nk
, for each k and n sufficiently large.
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Example 1 (QR)

Let Z∗m = {x | 1 ≤ x ≤ m, (x ,m) = 1}. An element α ∈ Z∗m is a
quadratic residue if α = x2 mod m for some x ∈ Z∗m.

Let L = {(m, x) | x ∈ Z∗m is a quadratic nonresidue}.
The prover (P) computes the factorization of m and sends it to the
verifier (Vr).

Interactive proof-system:

i. Vr chooses ri ∈ Z∗
m, for 1 ≤ i ≤ n, randomly, n = |m|.

ii. For each i , she flips a coin:
- heads → ti = r2i mod m,
- tails → ti = x · r2i mod m,

iii. Vr sends t1, . . . , tn to P.
iv. P using his power, finds which of the ti are quadratic residues, i.e. P

finds Vr ’s coin tosses.
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Example 2 (Graph non-isomorphism)

G (Vr ,E ) and H(V ,F ) are isomorphic ↔ ∃π ∈ Perm(V ) s.t.
(u, v) ∈ E iff (π(u), π(v)) ∈ F .

Construct a random isomorphic H(V ,F ) copy of G (V ,E ):
π ∈R Perm(V ) and F = {(π(u), π(v)) : (u, v) ∈ E}.
Interactive proof-system for input G1(V ,E1), G2(V ,E2):

i. Vr : chooses αi ∈R {1, 2}, 1 ≤ i ≤ n. Sends Hi (V ,Fi ) s.t. Hi is a
random isomorphic copy of Gαi .

ii. P: sends βi ∈ {1, 2} s.t. Hi (V ,Fi ) is isomorphic to Gβi (V ,Eβi ).
iii. Vr : if αi = βi accepts, else rejects.
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Knowledge Complexity

Question: Which communications convey knowledge?

Answer: Those that transmit the output of an unfeasible
computation.

Question: How much knowledge should be communicated to prove
theorem T ?

Answer: Enough to verify that T is true. Usually, much more (recall
the preceding examples).

We want to measure the additional knowledge that is being sent from
the prover to the verifier.
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Knowledge Complexity (Formally)

Definition 2

Let (P,Vr) be an IPTM, I the set of its inputs and f : N→ N, non
decreasing. A communicates at most f (n) bits of knowledge to Vr if there
exists PPT machine M, such that for all PPT algorithms D, the
ensembles M[·] and (P,Vr)[·] are at most p = 1− 1

2f (n)
distinguishable, i.e.

|Pr[D(M[x ]) = 1]− Pr[D((P,Vr)[x ]) = 1]| < p +
1

|x |k
.

We say that P communicates at-most f (n) bits of knowledge if for all
polynomial-time ITM’s Vr ′, P communicates at most f (n) bits of
knowledge to Vr ′.

IP is the class of languages that possess an interactive proof system.
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Knowledge Complexity (Cont.)

Definition 3

Let L be a language, (P,Vr) an interactive proof-system for L and
f : N→ N non decreasing. L has knowledge complexity f (n) if, when
restricting the inputs of (P,Vr) to the strings in L, P communicates at
most f (n) bits of knowledge (we denote this by L ∈ KC (f (n))).

We concentrate only on the ”yes-instances”. If x ∈ L, Vr is convinced
with overwhelming probability.

Vr possesses the text of the entire computation.

This text verifies that x ∈ L and does not contain more than f (n) bits
of additional knowledge.

If L ∈ KC (0), then the text of the entire computation is irrelevant for
any other purpose.
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Languages in KC(0)

Every language in P, RP, BPP.

Let n = ph1
1 · · · p

hk
k . Then n ∈ BL if the number of different pi s

congruent to 3 mod 4 is even.

L = {(y ,m) | y is a quadratic non-residue mod m}.
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Graph non-isomorphism

Question

Is the interactive proof system for graph non-isomorphism zero-knowledge?

Answer

No: the verifier may use the prover in order to test to which of G1, G2 is a
third graph G3 isomorphic.

Solution

Let the verifier first prove to the prover that he knows an isomorphism
between his query H and one of the input graphs.
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Zero-knowledge for Graph isomorphism

Interactive proof-system for input G1(V ,E1), G2(V ,E2) (one round):

i. P: chooses π ∈R Perm(V ) and sends H(V ,F ) (for G1).
Recall that (π(u), π(v)) ∈ F iff (u, v) ∈ E1.

ii. Vr : sends α ∈R {1, 2}.
iii. P: if α /∈ {1, 2} then halt, if α = 1 then send π, else send πφ−1.

φ denotes the isomorphism between G1, G2.

iv. Vr : if the received permutation is not an isomorphism between Gα and
H then reject, else continue.

The above system is an IP system for GI . The previous steps are
executed n times (n = |V |).

Zero-knowledge: Vr can generate random isomorphic copies of G1, G2

by himself.

Do we achieve zero-knowledge if Vr deviates from the protocol?
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Zero-knowledge for Graph isomorphism (Cont.)

Theorem 1

The previous protocol consitutes a zero-knowledge interactive proof system
for Graph Isomorphism.
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Zero-knowledge for Graph 3-Colorability

Definition 4

We consider a secure encryption scheme as a PPT algorithm f , that on
input x and internal coin tosses r , outputs an encryption f (x , r).

Interactive proof-system for input G (V ,E ) (one round):

i. P: chooses π ∈R Perm({1, 2, 3}) and random rv ’s. Computes
Rv = f (π(φ(v)), rv ) for all v ∈ V and sends R1, . . . ,Rn to Vr .

ii. Vr : sends e ∈R E to P.

iii. P: If e ∈ E , send (π(φ(u), ru)), (π(φ(v), rv )) to Vr . If e /∈ E stop.

iv. Vr : If Ru = f (π(φ(u)), ru), Rv = f (π(φ(v)), rv ), π(φ(u)),
π(φ(v)) ∈ {1, 2, 3}, then continue, else reject and stop.

The previous steps are executed m2 times (m = |E |).
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Zero-knowledge for Graph 3-Colorability (Cont.)

Theorem 2

If f (·, ·) is a secure probabilistic encryption, then the above protocol is a
zero-knowledge interactive proof system for 3-colourability.
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Further Results

Theorem 3

If f (·, ·) is a secure probabilistic encryption, then every NP language has a
zero-knowledge interactive proof system.

Theorem 4

If there exists a secure probabilistic encryption, then every language in NP
has a zero-knowledge interactive proof system in which the prover is a
probabilistic polynomial-time machine that gets an NP proof as auxiliary
input.

Theorem 5

If there exists a secure probabilistic encryption, then for every fixed k,
every language in IP(k) has zero-knowledge proof systems.
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Thank you!
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