Zero-knowledge Proofs

Yiannis Tselekounis

February 23, 2012

Yiannis Tselekounis ()

Zero-knowledge Proofs

< ∃ → February 23, 2012 1 / 18

э

Basic concepts

- An efficient method of communicating a proof (interactively).
- Interactive proofs: The Prover and the Verifier exchange messages regarding a Theorem *T*.
- The Prover wants to convince the Verifier that T is True.
- e.g. for Hamiltonian graph the proof might be the Hamiltonian tour.
- What if we don't want to release so much knowledge?
- Computational complexity measure of knowledge.
- Language classification according to the amount of additional knowledge.
- Zero-knowledge :)

Interactive proof-systems

Interactive pair of Turing machines (A,B):

- i. A and B share the same input tape,
- ii. B's write-only communication tape is A's read-only tape and vice versa.

Interactive proofs are "easier" than NP-proofs.

Definition 1

Let $L \subseteq \{0,1\}^*$ be a language and (P, Vr) an IPTM, where P (prover) has infinite power and Vr (verifier) is polynomial time. (P, Vr) is an interactive proof-system for L if

- i. Completeness: for all $x \in L$, is we supply (P, Vr) with x, Vr halts and accepts with probability at least $1 \frac{1}{n^k}$, for each k and n sufficiently large (n = |x|).
- ii. Validity: for all $x \notin L$, and all ITMs P, Vr accepts with probability at most $\frac{1}{n^k}$, for each k and n sufficiently large.

Example 1 (QR)

- Let $\mathbb{Z}_m^* = \{x \mid 1 \le x \le m, (x, m) = 1\}$. An element $\alpha \in \mathbb{Z}_m^*$ is a quadratic residue if $\alpha = x^2 \mod m$ for some $x \in \mathbb{Z}_m^*$.
- Let $L = \{(m, x) \mid x \in \mathbb{Z}_m^* \text{ is a quadratic nonresidue}\}.$
- The prover (*P*) computes the factorization of *m* and sends it to the verifier (*Vr*).
- Interactive proof-system:
 - i. Vr chooses $r_i \in \mathbb{Z}_m^*$, for $1 \le i \le n$, randomly, n = |m|.
 - ii. For each *i*, she flips a coin:
 - heads $\rightarrow t_i = r_i^2 \mod m$,
 - tails $\rightarrow t_i = x \cdot r_i^2 \mod m$,
 - iii. Vr sends t_1, \ldots, t_n to P.
 - iv. *P* using his power, finds which of the t_i are quadratic residues, i.e. *P* finds *Vr*'s coin tosses.

Example 2 (Graph non-isomorphism)

- G(Vr, E) and H(V, F) are isomorphic $\leftrightarrow \exists \pi \in Perm(V)$ s.t. $(u, v) \in E$ iff $(\pi(u), \pi(v)) \in F$.
- Construct a random isomorphic H(V, F) copy of G(V, E): $\pi \in_R Perm(V)$ and $F = \{(\pi(u), \pi(v)) : (u, v) \in E\}$. Interactive proof-system for input $G_1(V, E_1), G_2(V, E_2)$:
 - i. Vr: chooses $\alpha_i \in_R \{1,2\}, 1 \le i \le n$. Sends $H_i(V, F_i)$ s.t. H_i is a random isomorphic copy of G_{α_i} .
 - ii. *P*: sends $\beta_i \in \{1, 2\}$ s.t. $H_i(V, F_i)$ is isomorphic to $G_{\beta_i}(V, E_{\beta_i})$.
 - iii. Vr: if $\alpha_i = \beta_i$ accepts, else rejects.

- Question: Which communications convey knowledge?
- Answer: Those that transmit the output of an unfeasible computation.
- Question: How much knowledge should be communicated to prove theorem *T*?
- Answer: Enough to verify that T is true. Usually, much more (recall the preceding examples).
- We want to measure the additional knowledge that is being sent from the prover to the verifier.

Knowledge Complexity (Formally)

Definition 2

Let (P, Vr) be an IPTM, I the set of its inputs and $f : \mathbb{N} \to \mathbb{N}$, non decreasing. A communicates at most f(n) bits of knowledge to Vr if there exists PPT machine M, such that for all PPT algorithms D, the ensembles $M[\cdot]$ and $(P, Vr)[\cdot]$ are at most $p = 1 - \frac{1}{2^{f(n)}}$ distinguishable, i.e.

$$|\Pr[D(M[x]) = 1] - \Pr[D((P, Vr)[x]) = 1]|$$

We say that P communicates at-most f(n) bits of knowledge if for all polynomial-time ITM's Vr', P communicates at most f(n) bits of knowledge to Vr'.

IP is the class of languages that possess an interactive proof system.

Knowledge Complexity (Cont.)

Definition 3

Let L be a language, (P, Vr) an interactive proof-system for L and $f : \mathbb{N} \to \mathbb{N}$ non decreasing. L has knowledge complexity f(n) if, when restricting the inputs of (P, Vr) to the strings in L, P communicates at most f(n) bits of knowledge (we denote this by $L \in KC(f(n))$).

- We concentrate only on the "yes-instances". If *x* ∈ *L*, *Vr* is convinced with overwhelming probability.
- Vr possesses the text of the entire computation.
- This text verifies that x ∈ L and does not contain more than f(n) bits of additional knowledge.
- If L ∈ KC(0), then the text of the entire computation is irrelevant for any other purpose.

- Every language in P, RP, BPP.
- Let $n = p_1^{h_1} \cdots p_k^{h_k}$. Then $n \in BL$ if the number of different p_i s congruent to 3 mod 4 is even.
- $L = \{(y, m) \mid y \text{ is a quadratic non-residue } \mod m\}.$

Question

Is the interactive proof system for graph non-isomorphism zero-knowledge?

< 一型

Question

Is the interactive proof system for graph non-isomorphism zero-knowledge?

Answer

No: the verifier may use the prover in order to test to which of G_1 , G_2 is a third graph G_3 isomorphic.

Question

Is the interactive proof system for graph non-isomorphism zero-knowledge?

Answer

No: the verifier may use the prover in order to test to which of G_1 , G_2 is a third graph G_3 isomorphic.

Solution

Let the verifier first prove to the prover that he knows an isomorphism between his query H and one of the input graphs.

11 / 18

Zero-knowledge for Graph isomorphism

Interactive proof-system for input $G_1(V, E_1)$, $G_2(V, E_2)$ (one round):

- i. P: chooses $\pi \in_R Perm(V)$ and sends H(V, F) (for G_1). Recall that $(\pi(u), \pi(v)) \in F$ iff $(u, v) \in E_1$.
- ii. Vr: sends $\alpha \in_R \{1, 2\}$.
- iii. P: if $\alpha \notin \{1,2\}$ then halt, if $\alpha = 1$ then send π , else send $\pi \phi^{-1}$. ϕ denotes the isomorphism between G_1 , G_2 .
- iv. Vr: if the received permutation is not an isomorphism between G_{α} and H then reject, else continue.
 - The above system is an IP system for GI. The previous steps are executed n times (n = |V|).
 - Zero-knowledge: Vr can generate random isomorphic copies of G_1 , G_2 by himself.
 - Do we achieve zero-knowledge if Vr deviates from the protocol?

Zero-knowledge for Graph isomorphism (Cont.)

Theorem 1

The previous protocol consitutes a zero-knowledge interactive proof system for Graph Isomorphism.

3

A B + A B +

Definition 4

We consider a secure encryption scheme as a PPT algorithm f, that on input x and internal coin tosses r, outputs an encryption f(x, r).

Interactive proof-system for input G(V, E) (one round):

- i. *P*: chooses $\pi \in_R Perm(\{1,2,3\})$ and random r_v 's. Computes $R_v = f(\pi(\phi(v)), r_v)$ for all $v \in V$ and sends R_1, \ldots, R_n to Vr.
- ii. Vr: sends $e \in_R E$ to P.
- iii. P: If $e \in E$, send $(\pi(\phi(u), r_u))$, $(\pi(\phi(v), r_v))$ to Vr. If $e \notin E$ stop.
- iv. Vr: If $R_u = f(\pi(\phi(u)), r_u)$, $R_v = f(\pi(\phi(v)), r_v)$, $\pi(\phi(u))$, $\pi(\phi(v)) \in \{1, 2, 3\}$, then continue, else reject and stop.

The previous steps are executed m^2 times (m = |E|).

14 / 18

イロト 不得 とうせい かほとう ほ

Zero-knowledge for Graph 3-Colorability (Cont.)

Theorem 2

If $f(\cdot, \cdot)$ is a secure probabilistic encryption, then the above protocol is a zero-knowledge interactive proof system for 3-colourability.

・ 同 ト ・ ヨ ト ・ ヨ ト

Further Results

Theorem 3

If $f(\cdot, \cdot)$ is a secure probabilistic encryption, then every NP language has a zero-knowledge interactive proof system.

Theorem 4

If there exists a secure probabilistic encryption, then every language in NP has a zero-knowledge interactive proof system in which the prover is a probabilistic polynomial-time machine that gets an NP proof as auxiliary input.

Theorem 5

If there exists a secure probabilistic encryption, then for every fixed k, every language in IP(k) has zero-knowledge proof systems.

イロト 不得 トイヨト イヨト 二日

- S Goldwasser, S Micali, and C Rackoff. 1985. The knowledge complexity of interactive proof-systems. In Proceedings of the seventeenth annual ACM symposium on Theory of computing (STOC '85). ACM, New York, NY, USA, 291-304.
- Oded Goldreich, Silvio Micali, and Avi Wigderson. 1986. Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. In Proceedings of the 27th Annual Symposium on Foundations of Computer Science (SFCS '86). IEEE Computer Society, Washington, DC, USA, 174-187.

Thank you!

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >