Probabilistically Checkable Proofs

Haris Angelidakis

MPLA

February 16, 2012

Outline

(1) PCP Theorems
(2) PCP's and Hardness of Approximation

Outline

(1) PCP Theorems

(2) PCP's and Hardness of Approximation

Introduction to PCP's

Question: How easy is to check a proof?
Immediate answer: At least you have to read the whole proof, and try to check every step in it.

Weird question: Can we do better than that? I mean, can we ignore most part of the proof??

Even weirder answer: Yes! Ok, almost yes....:D

Introduction to PCP's

Question: How easy is to check a proof?

Immediate answer: At least you have to read the whole proof, and try to check every step in it.

Weird question: Can we do better than that? I mean, can we ignore most part of the proof??

Even weirder answer: Yes!

Ok, almost yes....:D

Introduction to PCP's

Question: How easy is to check a proof?

Immediate answer: At least you have to read the whole proof, and try to check every step in it.

Weird question: Can we do better than that? I mean, can we ignore most part of the proof??

Even weirder answer: Yes!

Ok, almost yes....:D

Introduction to PCP's

Question: How easy is to check a proof?

Immediate answer: At least you have to read the whole proof, and try to check every step in it.

Weird question: Can we do better than that? I mean, can we ignore most part of the proof??

Even weirder answer: Yes!

Ok, almost yes....:D

Introduction to PCP's

Question: How easy is to check a proof?

Immediate answer: At least you have to read the whole proof, and try to check every step in it.

Weird question: Can we do better than that? I mean, can we ignore most part of the proof??

Even weirder answer: Yes!

Ok, almost yes....:D

The PCP Idea

So, we want to check a proof faster than usual. How is this done?

- We first rewrite the proof in a certain format, the PCP format.
- We then check randomly a constant number of its bits:
- A correct proof always convinces us.
- A false proof will convince us with probability $\leq 1 / 2$.

Detail: The rewriting is completely mechanical and does not greatly increase its size. But, it requires proofs to be written in a formal axiomatic system (such as ZF Set Theory)

The PCP Idea

So, we want to check a proof faster than usual. How is this done?

- We first rewrite the proof in a certain format, the PCP format.
- We then check randomly a constant number of its bits:
- A correct proof always convinces us.
- A false proof will convince us with probability $\leq 1 / 2$.

Detail: The rewriting is completely mechanical and does not greatly increase its size. But, it requires proofs to be written in a formal axiomatic system (such as ZF Set Theory)

The PCP Idea

So, we want to check a proof faster than usual. How is this done?

- We first rewrite the proof in a certain format, the PCP format.
- We then check randomly a constant number of its bits:
- A correct proof always convinces us.
- A false proof will convince us with probability $\leq 1 / 2$

Detail: The rewriting is completely mechanical and does not greatly increase its size. But, it requires proofs to be written in a formal axiomatic system (such as ZF Set Theory)

The PCP Idea

So, we want to check a proof faster than usual. How is this done?

- We first rewrite the proof in a certain format, the PCP format.
- We then check randomly a constant number of its bits:
- A correct proof always convinces us.
- A false proof will convince us with probability $\leq 1 / 2$

Detail: The rewriting is completely mechanical and does not greatly increase its size. But, it requires proofs to be written in a formal axiomatic system (such as ZF Set Theory)

The PCP Idea

So, we want to check a proof faster than usual. How is this done?

- We first rewrite the proof in a certain format, the PCP format.
- We then check randomly a constant number of its bits:
- A correct proof always convinces us.
- A false proof will convince us with probability $\leq 1 / 2$.

Detail: The rewriting is completely mechanical and does not greatly increase its size. But, it requires proofs to be written in a formal axiomatic system (such as ZF Set Theory)

The PCP Idea

So, we want to check a proof faster than usual. How is this done?

- We first rewrite the proof in a certain format, the PCP format.
- We then check randomly a constant number of its bits:
- A correct proof always convinces us.
- A false proof will convince us with probability $\leq 1 / 2$.

Detail: The rewriting is completely mechanical and does not greatly increase its size. But, it requires proofs to be written in a formal axiomatic system (such as ZF Set Theory).

The surprising main idea

- In general, a mathematical proof is invalid if it has even a single error somewhere, which can be very difficult to detect.
- What PCP theorems tell us is that there is a mechanical way to rewrite the proof so that the error is almost everywhere!

The surprising main idea

- In general, a mathematical proof is invalid if it has even a single error somewhere, which can be very difficult to detect.
- What PCP theorems tell us is that there is a mechanical way to rewrite the proof so that the error is almost everywhere!

The surprising main idea

- In general, a mathematical proof is invalid if it has even a single error somewhere, which can be very difficult to detect.
- What PCP theorems tell us is that there is a mechanical way to rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:
Initial Proof
Cosers)

The surprising main idea

- In general, a mathematical proof is invalid if it has even a single error somewhere, which can be very difficult to detect.
- What PCP theorems tell us is that there is a mechanical way to rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:

Initial Proof
?

PCP transformation

The surprising main idea

- In general, a mathematical proof is invalid if it has even a single error somewhere, which can be very difficult to detect.
- What PCP theorems tell us is that there is a mechanical way to rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:

PCP transformation
PCP Format

Towards a new definition of NP

Note: From now on, we shall refer to languages $L \subseteq\{0,1\}^{*}$.

Definition (NP classic definition)

$N P=\cup_{k \in \mathbb{N}} \operatorname{NTIME}\left(n^{k}\right)$

Definition (NP "yes"-certificate definition)
A language L is in NP if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a deterministic polynomial-time TM M (called the verifier of L) such that for every $x \in\{0,1\}$

$$
x \in L \Leftrightarrow \exists u \in\{0,1\}^{p(|x|)} \text { such that } M(x, u)=1 .
$$

If $x \in L$ and $u \in\{0,1\}^{p(|x|)}$ satisfy $M(x, u)=1$, then we call u a certificate for x (with respect to the language L and machine M)

Towards a new definition of NP

Note: From now on, we shall refer to languages $L \subseteq\{0,1\}^{*}$.

Definition (NP classic definition)

$N P=\cup_{k \in \mathbb{N}} N T I M E\left(n^{k}\right)$

Definition (NP "yes"-certificate definition)

A language L is in NP if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a deterministic polynomial-time TM M (called the verifier of L) such that for every $x \in\{0,1\}$

$$
x \in L \Leftrightarrow \exists u \in\{0,1\}^{p(|x|)} \text { such that } M(x, u)=1 .
$$

 certificate for x (with respect to the language L and machine M)

Towards a new definition of NP

Note: From now on, we shall refer to languages $L \subseteq\{0,1\}^{*}$.

Definition (NP classic definition)

$N P=\cup_{k \in \mathbb{N}} \operatorname{NTIME}\left(n^{k}\right)$

Definition (NP "yes"-certificate definition)

A language L is in NP if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a deterministic polynomial-time TM M (called the verifier of L) such that for every $x \in\{0,1\}^{*}$,

$$
x \in L \Leftrightarrow \exists u \in\{0,1\}^{p(|x|)} \text { such that } M(x, u)=1
$$

If $x \in L$ and $u \in\{0,1\}^{p(|x|)}$ satisfy $M(x, u)=1$, then we call u a certificate for x (with respect to the language L and machine M).

Towards a new definition of $N P$

- Informally, NP is the complexity class of problems for which it is easy to check that a solution is correct.
- In contrast, finding solutions to NP problems is widely believed to be hard
- Consider for example the problem 3-SAT. Given a 3-CNF Boolean formula, it is notoriously difficult to come up with a satisfying assignment, whereas given a proposed assignment it is trivial to plug in the values and verify its correctness. Such an assignment is an NP-proof for the satisfiability of the formula

Towards a new definition of $N P$

- Informally, NP is the complexity class of problems for which it is easy to check that a solution is correct.
- In contrast, finding solutions to NP problems is widely believed to be hard.
- Consider for example the problem 3-SAT. Given a 3-CNF Boolean formula, it is notoriously difficult to come up with a satisfying assignment, whereas given a proposed assignment it is trivial to plug in the values and verify its correctness. Such an assignment is an NP-proof for the satisfiability of the formula.

Towards a new definition of $N P$

- Informally, NP is the complexity class of problems for which it is easy to check that a solution is correct.
- In contrast, finding solutions to NP problems is widely believed to be hard.
- Consider for example the problem 3-SAT. Given a 3-CNF Boolean formula, it is notoriously difficult to come up with a satisfying assignment, whereas given a proposed assignment it is trivial to plug in the values and verify its correctness. Such an assignment is an $N P$-proof for the satisfiability of the formula.

Towards a new definition of $N P$

Some comments

- What is a mathematical proof? Anything that can be verified by a rigorous procedure, i.e., an algorithm.
- A theorem $=$ a problem.
- A proof $=$ a solution.

Towards a new definition of $N P$

Some comments

- What is a mathematical proof? Anything that can be verified by a rigorous procedure, i.e., an algorithm.
- A theorem $=$ a problem.
- A proof $=$ a solution.

Towards a new definition of $N P$

Some comments

- What is a mathematical proof? Anything that can be verified by a rigorous procedure, i.e., an algorithm.
- A theorem $=$ a problem.
- A proof $=$ a solution.

Towards a new definition of $N P$

Some comments

- What is a mathematical proof? Anything that can be verified by a rigorous procedure, i.e., an algorithm.
- A theorem $=$ a problem.
- A proof $=$ a solution.

Towards a new definition of NP

Definition (NP alternative definition)

An alternative way to define NP is as the class of all languages $L \subseteq\{0,1\}^{*}$ that have efficient proof systems: proof systems in which there is a polynomial-time algorithm that verifies correctness of the statement $x \in L$ with assistance of a proof.

- One problem with the usual proof systems (i.e. the "yes"-certificates for $N P$) is that these proofs are very sensitive to error. A false theorem can be "proven" by a proof that consists of only one erroneous step. Similarly, a 3-SAT formula ϕ can be unsatisfiable, yet have an assignment that satisfies all clauses but one. In these cases, the verifier must check every single proof step / clause in order to make sure that the proof is correct.

Towards a new definition of NP

Definition (NP alternative definition)

An alternative way to define NP is as the class of all languages $L \subseteq\{0,1\}^{*}$ that have efficient proof systems: proof systems in which there is a polynomial-time algorithm that verifies correctness of the statement $x \in L$ with assistance of a proof.

- One problem with the usual proof systems (i.e. the "yes"-certificates for $N P$) is that these proofs are very sensitive to error.
> theorem can be "proven" by a proof that consists of only one
> erroneous step. Similarly, a 3-SAT formula ϕ can be unsatisfiable, yet have an assignment that satisfies all clauses but one. In these cases, the verifier must check every single proof step / clause in order to make sure that the proof is correct.

Towards a new definition of NP

Definition (NP alternative definition)

An alternative way to define NP is as the class of all languages $L \subseteq\{0,1\}^{*}$ that have efficient proof systems: proof systems in which there is a polynomial-time algorithm that verifies correctness of the statement $x \in L$ with assistance of a proof.

- One problem with the usual proof systems (i.e. the "yes"-certificates for $N P$) is that these proofs are very sensitive to error. A false theorem can be "proven" by a proof that consists of only one erroneous step. Similarly, a 3-SAT formula ϕ can be unsatisfiable, yet have an assignment that satisfies all clauses but one. In these cases, the verifier must check every single proof step / clause in order to make sure that the proof is correct.

Towards a new definition of $N P$

- In contrast, the PCP theorem gives each set in NP an alternative proof system, in which proofs are robust.
- In this system a proof for a false statement is guaranteed to have many errors.
- As a result, a verifier can randomly read only a few bits from the proof and decide, with high probability of success, whether the proof is valid or not.

Towards a new definition of $N P$

- In contrast, the PCP theorem gives each set in NP an alternative proof system, in which proofs are robust.
- In this system a proof for a false statement is guaranteed to have many errors.
- As a result, a verifier can randomly read only a few bits from the proof and decide, with high probability of success, whether the proof is valid or not.

Towards a new definition of $N P$

- In contrast, the PCP theorem gives each set in NP an alternative proof system, in which proofs are robust.
- In this system a proof for a false statement is guaranteed to have many errors.
- As a result, a verifier can randomly read only a few bits from the proof and decide, with high probability of success, whether the proof is valid or not.

Towards a new definition of NP

Definition (NP revisited - The NP verifier)

$L \in N P$ iff there exists a poly-time TM V (the verifier) such that:

$$
\begin{aligned}
& x \in L \Rightarrow \exists \pi \text { such that } V^{\pi}(x)=1, \\
& x \notin L \Rightarrow \forall \pi, V^{\pi}(x)=0 .
\end{aligned}
$$

(π is a proof)

Towards a new definition of NP

Definition (The PCP verifier)

Let L be a language and $q, r: \mathbb{N} \rightarrow \mathbb{N}$. We say that L has an $(r(n), q(n))$-PCP verifier if there's a polynomial-time probabilistic algorithm V satisfying:

- Efficiency On input $x \in\{0,1\}^{n}$ and given random access to a string $\pi \in\{0,1\}^{*}$ of length at most $q(n) 2^{r(n)}$ (the proof), V uses at most $r(n)$ random coins and makes at most $q(n)$ nonadaptive queries to locations of π. Then it outputs " 1 " (for "accept") or "0" (for 'reject"). We let $V^{\pi}(x)$ denote the random variable representing V's output on input x and with random access to π.
- Completeness: $x \in L \Rightarrow \exists \pi \in\{0,1\}^{*}$ such that $\operatorname{Pr}\left[V^{\pi}(x)=1\right]=1$. (We call this string π the correct proof for x.)
- Soundness: $x \notin L \Rightarrow \forall \pi \in\{0,1\}^{*}, \operatorname{Pr}\left[V^{\pi}(x)=1\right] \leq 1 / 2$. We say that a language L is in $P C P[r(n), a(n)]$ if there are some constants $c, d>0$ such that L has a $(\operatorname{cr}(n), d q(n))-P C P$ verifier.

Towards a new definition of NP

Definition (The PCP verifier)

Let L be a language and $q, r: \mathbb{N} \rightarrow \mathbb{N}$. We say that L has an $(r(n), q(n))$-PCP verifier if there's a polynomial-time probabilistic algorithm V satisfying:

- Efficiency: On input $x \in\{0,1\}^{n}$ and given random access to a string $\pi \in\{0,1\}^{*}$ of length at most $q(n) 2^{r(n)}$ (the proof), V uses at most $r(n)$ random coins and makes at most $q(n)$ nonadaptive queries to locations of π. Then it outputs " 1 " (for "accept") or " 0 " (for "reject"). We let $V^{\pi}(x)$ denote the random variable representing V's output on input x and with random access to π.
> - Completeness: $x \in L \Rightarrow \exists \pi \in\{0,1\}^{*}$ such that $\operatorname{Pr}\left[V^{\pi}(x)=1\right]=1$ (We call this string π the correct proof for x.)
> - Soundness: $x \notin L \rightarrow \forall \pi \in\left\{0,1 \chi^{*}, \operatorname{Pr}[1 / \pi(x)-1] \leq 1 / 2\right.$ We say that a language L is in $P C P[r(n), q(n)]$ if there are some constants $c, d>0$ such that L has a $(\operatorname{cr}(n), d q(n))$-PCP verifier.

Towards a new definition of NP

Definition (The PCP verifier)

Let L be a language and $q, r: \mathbb{N} \rightarrow \mathbb{N}$. We say that L has an $(r(n), q(n))$-PCP verifier if there's a polynomial-time probabilistic algorithm V satisfying:

- Efficiency: On input $x \in\{0,1\}^{n}$ and given random access to a string $\pi \in\{0,1\}^{*}$ of length at most $q(n) 2^{r(n)}$ (the proof), V uses at most $r(n)$ random coins and makes at most $q(n)$ nonadaptive queries to locations of π. Then it outputs " 1 " (for "accept") or " 0 " (for "reject"). We let $V^{\pi}(x)$ denote the random variable representing V's output on input x and with random access to π.
- Completeness: $x \in L \Rightarrow \exists \pi \in\{0,1\}^{*}$ such that $\operatorname{Pr}\left[V^{\pi}(x)=1\right]=1$. (We call this string π the correct proof for x.)

We say that a language L is in $P C P[r(n), q(n)]$ if there are some constants $c, d>0$ such that L has a $(c r(n), d q(n))-P C P$ verifier.

Towards a new definition of NP

Definition (The PCP verifier)

Let L be a language and $q, r: \mathbb{N} \rightarrow \mathbb{N}$. We say that L has an $(r(n), q(n))$-PCP verifier if there's a polynomial-time probabilistic algorithm V satisfying:

- Efficiency: On input $x \in\{0,1\}^{n}$ and given random access to a string $\pi \in\{0,1\}^{*}$ of length at most $q(n) 2^{r(n)}$ (the proof), V uses at most $r(n)$ random coins and makes at most $q(n)$ nonadaptive queries to locations of π. Then it outputs " 1 " (for "accept") or " 0 " (for "reject"). We let $V^{\pi}(x)$ denote the random variable representing V's output on input x and with random access to π.
- Completeness: $x \in L \Rightarrow \exists \pi \in\{0,1\}^{*}$ such that $\operatorname{Pr}\left[V^{\pi}(x)=1\right]=1$. (We call this string π the correct proof for x.)
- Soundness: $x \notin L \Rightarrow \forall \pi \in\{0,1\}^{*}, \operatorname{Pr}\left[V^{\pi}(x)=1\right] \leq 1 / 2$.

Towards a new definition of NP

Definition (The PCP verifier)

Let L be a language and $q, r: \mathbb{N} \rightarrow \mathbb{N}$. We say that L has an $(r(n), q(n))$-PCP verifier if there's a polynomial-time probabilistic algorithm V satisfying:

- Efficiency: On input $x \in\{0,1\}^{n}$ and given random access to a string $\pi \in\{0,1\}^{*}$ of length at most $q(n) 2^{r(n)}$ (the proof), V uses at most $r(n)$ random coins and makes at most $q(n)$ nonadaptive queries to locations of π. Then it outputs " 1 " (for "accept") or " 0 " (for "reject"). We let $V^{\pi}(x)$ denote the random variable representing V's output on input x and with random access to π.
- Completeness: $x \in L \Rightarrow \exists \pi \in\{0,1\}^{*}$ such that $\operatorname{Pr}\left[V^{\pi}(x)=1\right]=1$. (We call this string π the correct proof for x.)
- Soundness: $x \notin L \Rightarrow \forall \pi \in\{0,1\}^{*}, \operatorname{Pr}\left[V^{\pi}(x)=1\right] \leq 1 / 2$.

We say that a language L is in $P C P[r(n), q(n)]$ if there are some constants $c, d>0$ such that L has a $(c r(n), d q(n))$-PCP verifier.

The PCP Theorem

Theorem (PCP Theorem - Arora, Lund, Motwani, Sudan, Szegedy, Safra)

$N P=P C P[O(\log n), O(1)]$.

The easy direction of the PCP Theorem

Lemma
 $P C P[O(\log n), O(1)] \subseteq N P$.

Proof.

On board.

The easy direction of the PCP Theorem

Lemma

$P C P[O(\log n), O(1)] \subseteq N P$.

Proof.
 On board...

The hard direction of the PCP Theorem

Lemma

$N P \subseteq P C P[O(\log n), O(1)]$.

We will definitely not prove this right now, all we can say is that Dinur's approach is based on finding gap-introducing reductions.

Gap-introducing reductions and NP-completeness (1 / 2)

Theorem

If there is a gap-introducing reduction for some problem L in NP, then $L \in P C P[O(\log n), O(1)]$. In particular, if L is $N P$-complete then the $P C P$ theorem holds.

Proof.
 Suppose $L \in N P$, and there is a reduction to a $3 C N F$ formula ϕ_{x} with m clauses and with the following properties:

$x \in L \Rightarrow \phi_{x}$ is satisfiable
$x \notin L \Rightarrow$ no assignment satisfies more than $\left(1-\epsilon_{1}\right) m$ clauses of ϕ We now describe how to construct a verifier V, given a proof w.

Gap-introducing reductions and NP-completeness (1 / 2)

Theorem

If there is a gap-introducing reduction for some problem L in NP, then $L \in P C P[O(\log n), O(1)]$. In particular, if L is $N P$-complete then the $P C P$ theorem holds.

Proof.

Suppose $L \in N P$, and there is a reduction to a 3CNF formula ϕ_{x} with m clauses and with the following properties:
$x \in L \Rightarrow \phi_{x}$ is satisfiable
$x \notin L \Rightarrow$ no assignment satisfies more than $\left(1-\epsilon_{1}\right) m$ clauses of ϕ_{x}.
We now describe how to construct a verifier V, given a proof w.

Gap-introducing reductions and NP-completeness (2 / 2)

Proof (Continued).

- V picks $O\left(\frac{1}{\epsilon_{1}}\right)$ clauses of ϕ_{x} at random, and checks if w satisfies them all.
- $O\left(\frac{1}{\epsilon_{1}} \log m\right)=O(\log |x|)$ random bits used.
- Number of bits read by the verifier: $O\left(\frac{1}{\epsilon_{1}}\right)=O(1)$
$x \in L \Rightarrow \phi_{x}$ is satisfiable
$\Rightarrow \exists w$ such that $V^{w}(x)$ always accept.
$x \notin L \Rightarrow \forall w$ a fraction ϵ_{1} of clauses of ϕ_{x} are unsatisfied by w $\Rightarrow \forall w V^{w}(x)$ rejects with probability $\geq \frac{1}{2}$ (the probability that it doesn't reject is $\leq\left(1-\epsilon_{1}\right)^{1 / \epsilon_{1}} \leq 1 / 2$)

Gap-introducing reductions and NP-completeness (2 / 2)

Proof (Continued).

- V picks $O\left(\frac{1}{\epsilon_{1}}\right)$ clauses of ϕ_{x} at random, and checks if w satisfies them all.
- $O\left(\frac{1}{\epsilon_{1}} \log m\right)=O(\log |x|)$ random bits used.
- Number of bits read by the verifier: $O\left(\frac{1}{\epsilon_{1}}\right)=O(1)$.
$x \in L \Rightarrow \phi_{x}$ is satisfiable
$\Rightarrow \exists w$ such that $V^{w}(x)$ always accept.
$x \notin L \Rightarrow \forall w$ a fraction ϵ_{1} of clauses of ϕ_{x} are unsatisfied by w
$\Rightarrow V^{\prime} W V^{\prime \prime \prime}(x)$ rejects with probability $\geq \frac{1}{2}$
(the probability that it doesn't reject is $\left.\leq\left(1-\epsilon_{1}\right)^{1 / \epsilon_{1}} \leq 1 / 2\right)$

Gap-introducing reductions and NP-completeness (2 / 2)

Proof (Continued).

- V picks $O\left(\frac{1}{\epsilon_{1}}\right)$ clauses of ϕ_{x} at random, and checks if w satisfies them all.
- $O\left(\frac{1}{\epsilon_{1}} \log m\right)=O(\log |x|)$ random bits used.
- Number of bits read by the verifier: $O\left(\frac{1}{\epsilon_{1}}\right)=O(1)$.
$x \in L \Rightarrow \phi_{x}$ is satisfiable
$\Rightarrow \exists w$ such that $V^{w}(x)$ always accept.
$x \notin L \Rightarrow V W$ a fraction ϵ_{1} of clauses of ϕ_{x} are unsatisfied by w $\Rightarrow \forall w V^{w}(x)$ rejects with probability $\geq \frac{1}{2}$
(the probability that it doesn't reject is $\left.<\left(1-\epsilon_{1}\right)^{1 / \epsilon_{1}} \leq 1 / 2\right)$

Gap-introducing reductions and NP-completeness (2 / 2)

Proof (Continued).

- V picks $O\left(\frac{1}{\epsilon_{1}}\right)$ clauses of ϕ_{x} at random, and checks if w satisfies them all.
- $O\left(\frac{1}{\epsilon_{1}} \log m\right)=O(\log |x|)$ random bits used.
- Number of bits read by the verifier: $O\left(\frac{1}{\epsilon_{1}}\right)=O(1)$.
$x \in L \Rightarrow \phi_{x}$ is satisfiable
$\Rightarrow \exists w$ such that $V^{w}(x)$ always accept.
$\begin{aligned} x \notin L & \Rightarrow \forall w \text { a fraction } \epsilon_{1} \text { of clauses of } \phi_{x} \text { are uns } \\ & \Rightarrow \forall w V^{w}(x) \text { rejects with probability } \geq \frac{1}{2}\end{aligned}$
(the probability that it doesn't reject is $\leq\left(1-\epsilon_{1}\right)^{1 / \epsilon_{1}} \leq 1 / 2$)

Gap-introducing reductions and NP-completeness (2 / 2)

Proof (Continued).

- V picks $O\left(\frac{1}{\epsilon_{1}}\right)$ clauses of ϕ_{x} at random, and checks if w satisfies them all.
- $O\left(\frac{1}{\epsilon_{1}} \log m\right)=O(\log |x|)$ random bits used.
- Number of bits read by the verifier: $O\left(\frac{1}{\epsilon_{1}}\right)=O(1)$.
$x \in L \Rightarrow \phi_{x}$ is satisfiable
$\Rightarrow \exists w$ such that $V^{w}(x)$ always accept.
$x \notin L \Rightarrow \forall w$ a fraction ϵ_{1} of clauses of ϕ_{x} are unsatisfied by w $\Rightarrow \forall w V^{w}(x)$ rejects with probability $\geq \frac{1}{2}$
(the probability that it doesn't reject is $\leq\left(1-\epsilon_{1}\right)^{1 / \epsilon_{1}} \leq 1 / 2$)

Outline

(1) PCP Theorems

(2) PCP's and Hardness of Approximation

How can we get inapproximability results

- In general, standard $N P$-hardness proofs are not powerful enough to give inapproximability results.
- In order to get such a result, we will need stronger reductions, the gap-introducing reductions we have already mentioned.

How can we get inapproximability results

- In general, standard $N P$-hardness proofs are not powerful enough to give inapproximability results.
- In order to get such a result, we will need stronger reductions, the gap-introducing reductions we have already mentioned.

Approximability of Max3SAT

Theorem

The PCP theorem implies that there is an $\epsilon_{1}>0$ such that there is no polynomial $\left(1-\epsilon_{1}\right)$-approximation algorithm for Max3SAT, unless $P=N P$.

Proof.

On board...

Optimal PCP constructions for MaxSAT

Theorem (Håstad)

For every $\epsilon>0, N P=P C P_{1-\epsilon, \frac{1}{2}+\epsilon}[O(\log n), 3]$. Furthermore, the verifier behaves as follows: it uses its randomness to pick three entries i, j, k in the proof w and a bit b, and it accepts iff $w_{i} \oplus w_{j} \oplus w_{k}=b$.

Consequences

- Through a reduction from 3SAT to MaxE3LIN-2, we get that MaxE3LIN-2 cannot be approximated within a factor better than 2, unless $P=N P$.
- Furthermore. Max3SAT cannot be approximated withn a factor better than $8 / 7$, unless $P=N P$.
- Finally, MaxCUT has an approximability bound of $17 / 16$.

Optimal PCP constructions for MaxSAT

Theorem (Håstad)

For every $\epsilon>0, N P=P C P_{1-\epsilon, \frac{1}{2}+\epsilon}[O(\log n), 3]$. Furthermore, the verifier behaves as follows: it uses its randomness to pick three entries i, j, k in the proof w and a bit b, and it accepts iff $w_{i} \oplus w_{j} \oplus w_{k}=b$.

Consequences

- Through a reduction from 3SAT to MaxE3LIN-2, we get that MaxE3LIN-2 cannot be approximated within a factor better than 2, unless $P=N P$.
- Furthermore, Max3SAT cannot be approximated withn a factor better than $8 / 7$, unless $P=N P$.
- Finally, MaxCIIT has an approximability bound of $17 / 16$

Optimal PCP constructions for MaxSAT

Theorem (Håstad)

For every $\epsilon>0, N P=P C P_{1-\epsilon, \frac{1}{2}+\epsilon}[O(\log n), 3]$. Furthermore, the verifier behaves as follows: it uses its randomness to pick three entries i, j, k in the proof w and a bit b, and it accepts iff $w_{i} \oplus w_{j} \oplus w_{k}=b$.

Consequences

- Through a reduction from 3SAT to MaxE3LIN-2, we get that MaxE3LIN-2 cannot be approximated within a factor better than 2, unless $P=N P$.
- Furthermore, Max3SAT cannot be approximated withn a factor better than $8 / 7$, unless $P=N P$.
- Finally, MaxCUT has an approximability bound of 17/16.

Optimal PCP constructions for MaxSAT

Theorem (Håstad)

For every $\epsilon>0, N P=P C P_{1-\epsilon, \frac{1}{2}+\epsilon}[O(\log n), 3]$. Furthermore, the verifier behaves as follows: it uses its randomness to pick three entries i, j, k in the proof w and a bit b, and it accepts iff $w_{i} \oplus w_{j} \oplus w_{k}=b$.

Consequences

- Through a reduction from 3SAT to MaxE3LIN-2, we get that MaxE3LIN-2 cannot be approximated within a factor better than 2, unless $P=N P$.
- Furthermore, Max3SAT cannot be approximated withn a factor better than $8 / 7$, unless $P=N P$.
- Finally, MaxCUT has an approximability bound of $17 / 16$.

Improvement on Håstad's Theorem

Theorem (Guruswami, Lewin, Sudan, Trevisan 98)

$$
N P=P C P_{1, \frac{1}{2}+\epsilon}[O(\log n), 3], \forall \epsilon>0
$$

Proof of Optimality of the above result

Theorem (Karloff, Zwick 97)

\square

Improvement on Håstad's Theorem

Theorem (Guruswami, Lewin, Sudan, Trevisan 98)
 $N P=P C P_{1, \frac{1}{2}+\epsilon}[O(\log n), 3], \forall \epsilon>0$

Proof of Optimality of the above result

> Theorem (Karloff, Zwick 97)
> $P=P C P_{1, \frac{1}{2}}[O(\log n), 3]$

Vertex Cover and Independent Set (1 / 2)

Problem (Vertex Cover)

Given an undirected graph $G=(V, E)$, a vertex cover is a set $C \subseteq V$ such that every edge $(u, v) \in E$ has one endpoint in C. We want to find the Minimum Vertex Cover.

Problem (Independent Set)

Given an undirected graph $G=(V, E)$, an independent set is a set $S \subseteq V$ such that for every $u, v \in S$ we have $(u, v) \notin E$. We want to find the Maximum Independent Set.

- Observe that a set C is a vertex cover iff $V \backslash C$ is an independent set.
- Thus, the two problems are actually the "same"
- However, in terms of approximability, they are very different

Vertex Cover and Independent Set (1 / 2)

Problem (Vertex Cover)

Given an undirected graph $G=(V, E)$, a vertex cover is a set $C \subseteq V$ such that every edge $(u, v) \in E$ has one endpoint in C. We want to find the Minimum Vertex Cover.

Problem (Independent Set)

Given an undirected graph $G=(V, E)$, an independent set is a set $S \subseteq V$ such that for every $u, v \in S$ we have $(u, v) \notin E$. We want to find the Maximum Independent Set.
> - Observe that a set C is a vertex cover iff $V \backslash C$ is an independent set.
> - Thus, the two problems are actually the "same"
> - However, in terms of approximability, they are very different

Vertex Cover and Independent Set (1 / 2)

Problem (Vertex Cover)

Given an undirected graph $G=(V, E)$, a vertex cover is a set $C \subseteq V$ such that every edge $(u, v) \in E$ has one endpoint in C. We want to find the Minimum Vertex Cover.

Problem (Independent Set)

Given an undirected graph $G=(V, E)$, an independent set is a set $S \subseteq V$ such that for every $u, v \in S$ we have $(u, v) \notin E$. We want to find the Maximum Independent Set.

- Observe that a set C is a vertex cover iff $V \backslash C$ is an independent set.
- Thus, the two problems are actually the "same"
- However, in terms of approximability, they are very different

Vertex Cover and Independent Set (1 / 2)

Problem (Vertex Cover)

Given an undirected graph $G=(V, E)$, a vertex cover is a set $C \subseteq V$ such that every edge $(u, v) \in E$ has one endpoint in C. We want to find the Minimum Vertex Cover.

Problem (Independent Set)

Given an undirected graph $G=(V, E)$, an independent set is a set $S \subseteq V$ such that for every $u, v \in S$ we have $(u, v) \notin E$. We want to find the Maximum Independent Set.

- Observe that a set C is a vertex cover iff $V \backslash C$ is an independent set.
- Thus, the two problems are actually the "same".
- However, in terms of approximability, they are very different

Vertex Cover and Independent Set (1 / 2)

Problem (Vertex Cover)

Given an undirected graph $G=(V, E)$, a vertex cover is a set $C \subseteq V$ such that every edge $(u, v) \in E$ has one endpoint in C. We want to find the Minimum Vertex Cover.

Problem (Independent Set)

Given an undirected graph $G=(V, E)$, an independent set is a set $S \subseteq V$ such that for every $u, v \in S$ we have $(u, v) \notin E$. We want to find the Maximum Independent Set.

- Observe that a set C is a vertex cover iff $V \backslash C$ is an independent set.
- Thus, the two problems are actually the "same".
- However, in terms of approximability, they are very different.

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

- A simple algorithm (just find a maximal matching and take both endpoints) gives a 2-approximation for VC.
- It has been proved (Dinur and Safra) that VC is NP-hard to approximate within a factor of 1.3606
- Assuming the Unique Games Conjecture, we get a tight 2 -o(1) inapproximability for VC (Khot and Regev)

Independent Set

- Assuming TPP $\neq N P$, for every $\epsilon>0$ there is no $n^{1-\epsilon}$-approximation algorithm for Independent Set.
- If a graph $G=(V, E)$ has maximum degree d, then a maximal independent set contains at least $|V| /(d+1)$ vertices, and so is a $(d+1)$-approximate solution.
- This can be improved to an $O(d \log \log d / \log d)$-approximation.
- It has been proved that no $\left(d / 2^{O(\sqrt{\log d)}) \text {-approximation algorithm }}\right.$

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

- A simple algorithm (just find a maximal matching and take both endpoints) gives a 2-approximation for VC.
- It has been proved (Dinur and Safra) that VC is NP-hard to approximate within a factor of 1.3606 .
- Assuming the Unique Games Conjecture, we get a tight $2-o(1)$ inapproximability for VC (Khot and Regev).

Independent Set

- Assuming $Z P P \neq N P$, for every $\epsilon>0$ there is no $n^{1-\epsilon}$-approximation algorithm for Independent Set.
- If a graph $G=(V, E)$ has maximum degree d, then a maximal independent set contains at least $|V| /(d+1)$ vertices, and so is a $(d+1)$-approximate solution.
- This can be improved to an $O(a \log \log d / \log d)$-approximation.
- It has been proved that no $\left(d / 2^{O(\sqrt{\log d)}) \text {-approximation algorithm }}\right.$

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

- A simple algorithm (just find a maximal matching and take both endpoints) gives a 2-approximation for VC.
- It has been proved (Dinur and Safra) that VC is NP-hard to approximate within a factor of 1.3606 .
- Assuming the Unique Games Conjecture, we get a tight $2-o(1)$ inapproximability for VC (Khot and Regev).

Independent Set

- Assuming $Z P P \neq N P$, for every $\epsilon>0$ there is no $n^{1-\epsilon}$-approximation
algorithm for Independent Set.
- If a graph $G=(V, E)$ has maximum degree d, then a maximal
independent set contains at least $|V| /(d+1)$ vertices, and so is a $(d+1)$-approximate solution.
- This can be improved to an $O(d \log \log d / \log d)$-approximation.
- It has been proved that no $\left(d / 2^{O(\sqrt{\log d)}) \text {-approximation algorithm }}\right.$

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

- A simple algorithm (just find a maximal matching and take both endpoints) gives a 2-approximation for VC.
- It has been proved (Dinur and Safra) that VC is NP-hard to approximate within a factor of 1.3606 .
- Assuming the Unique Games Conjecture, we get a tight $2-o(1)$ inapproximability for VC (Khot and Regev).

Independent Set

- Assuming $Z P P \neq N P$, for every $\epsilon>0$ there is no $n^{1-\epsilon}$-approximation algorithm for Independent Set.
- If a graph $G=(V, E)$ has maximum degree d, then a maximal independent set contains at least $|V| /(d+1)$ vertices, and so is a $(d+1)$-approximate solution.
- This can be improved to an $O(d \log \log d / \log d)$-approximation. - It has been proved that no $\left(d / 2^{O(\sqrt{\log d})}\right)$-approximation algorithm

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

- A simple algorithm (just find a maximal matching and take both endpoints) gives a 2-approximation for VC.
- It has been proved (Dinur and Safra) that VC is NP-hard to approximate within a factor of 1.3606 .
- Assuming the Unique Games Conjecture, we get a tight $2-o(1)$ inapproximability for VC (Khot and Regev).

Independent Set

- Assuming $Z P P \neq N P$, for every $\epsilon>0$ there is no $n^{1-\epsilon}$-approximation algorithm for Independent Set.
- If a graph $G=(V, E)$ has maximum degree d, then a maximal independent set contains at least $|V| /(d+1)$ vertices, and so is a $(d+1)$-approximate solution.

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

- A simple algorithm (just find a maximal matching and take both endpoints) gives a 2-approximation for VC.
- It has been proved (Dinur and Safra) that VC is NP-hard to approximate within a factor of 1.3606 .
- Assuming the Unique Games Conjecture, we get a tight $2-o(1)$ inapproximability for VC (Khot and Regev).

Independent Set

- Assuming $Z P P \neq N P$, for every $\epsilon>0$ there is no $n^{1-\epsilon}$-approximation algorithm for Independent Set.
- If a graph $G=(V, E)$ has maximum degree d, then a maximal independent set contains at least $|V| /(d+1)$ vertices, and so is a $(d+1)$-approximate solution.
- This can be improved to an $O(d \log \log d / \log d)$-approximation.

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

- A simple algorithm (just find a maximal matching and take both endpoints) gives a 2-approximation for VC.
- It has been proved (Dinur and Safra) that VC is NP-hard to approximate within a factor of 1.3606 .
- Assuming the Unique Games Conjecture, we get a tight $2-o(1)$ inapproximability for VC (Khot and Regev).

Independent Set

- Assuming $Z P P \neq N P$, for every $\epsilon>0$ there is no $n^{1-\epsilon}$-approximation algorithm for Independent Set.
- If a graph $G=(V, E)$ has maximum degree d, then a maximal independent set contains at least $|V| /(d+1)$ vertices, and so is a $(d+1)$-approximate solution.
- This can be improved to an $O(d \log \log d / \log d)$-approximation.
- It has been proved that no $\left(d / 2^{O(\sqrt{\log d})}\right)$-approximation algorithm exists unless $P=N P$.

Bibliography

(1) How NP Got a New Definition: A Survey of Probabilistically Checkable Proofs.
Sanjeev Arora. ICM, 2002.
(2) Computational Complexity.

Sanjeev Arora, Boaz Barak. Cambridge University Press, 2009.
(3) Probabilistically Checkable Proofs.

Andreas Galanis. ECE - NTUA thesis, 2009.
(9) Probabilistically Checkable Proofs and Codes. Irit Dinur. ICM, 2010.
(5) Inapproximability of Combinatorial Optimization Problems.

Luca Trevisan. ECCC, 2010.

THANK YOU!

