
Probabilistically Checkable Proofs

Haris Angelidakis

MPLA

February 16, 2012

Outline

1 PCP Theorems

2 PCP’s and Hardness of Approximation

Haris Angelidakis (MPLA) PCP’s February 16, 2012 2 / 27

Outline

1 PCP Theorems

2 PCP’s and Hardness of Approximation

Haris Angelidakis (MPLA) PCP’s February 16, 2012 3 / 27

Introduction to PCP’s

Question: How easy is to check a proof?

Immediate answer: At least you have to read the whole proof, and try to
check every step in it.

Weird question: Can we do better than that? I mean, can we ignore
most part of the proof??

Even weirder answer: Yes!

Ok, almost yes....:D

Haris Angelidakis (MPLA) PCP’s February 16, 2012 4 / 27

Introduction to PCP’s

Question: How easy is to check a proof?

Immediate answer: At least you have to read the whole proof, and try to
check every step in it.

Weird question: Can we do better than that? I mean, can we ignore
most part of the proof??

Even weirder answer: Yes!

Ok, almost yes....:D

Haris Angelidakis (MPLA) PCP’s February 16, 2012 4 / 27

Introduction to PCP’s

Question: How easy is to check a proof?

Immediate answer: At least you have to read the whole proof, and try to
check every step in it.

Weird question: Can we do better than that? I mean, can we ignore
most part of the proof??

Even weirder answer: Yes!

Ok, almost yes....:D

Haris Angelidakis (MPLA) PCP’s February 16, 2012 4 / 27

Introduction to PCP’s

Question: How easy is to check a proof?

Immediate answer: At least you have to read the whole proof, and try to
check every step in it.

Weird question: Can we do better than that? I mean, can we ignore
most part of the proof??

Even weirder answer: Yes!

Ok, almost yes....:D

Haris Angelidakis (MPLA) PCP’s February 16, 2012 4 / 27

Introduction to PCP’s

Question: How easy is to check a proof?

Immediate answer: At least you have to read the whole proof, and try to
check every step in it.

Weird question: Can we do better than that? I mean, can we ignore
most part of the proof??

Even weirder answer: Yes!

Ok, almost yes....:D

Haris Angelidakis (MPLA) PCP’s February 16, 2012 4 / 27

The PCP Idea

So, we want to check a proof faster than usual. How is this done?

We first rewrite the proof in a certain format, the PCP format.

We then check randomly a constant number of its bits:

A correct proof always convinces us.
A false proof will convince us with probability ≤ 1/2.

Detail: The rewriting is completely mechanical and does not greatly
increase its size. But, it requires proofs to be written in a formal
axiomatic system (such as ZF Set Theory).

Haris Angelidakis (MPLA) PCP’s February 16, 2012 5 / 27

The PCP Idea

So, we want to check a proof faster than usual. How is this done?

We first rewrite the proof in a certain format, the PCP format.

We then check randomly a constant number of its bits:

A correct proof always convinces us.
A false proof will convince us with probability ≤ 1/2.

Detail: The rewriting is completely mechanical and does not greatly
increase its size. But, it requires proofs to be written in a formal
axiomatic system (such as ZF Set Theory).

Haris Angelidakis (MPLA) PCP’s February 16, 2012 5 / 27

The PCP Idea

So, we want to check a proof faster than usual. How is this done?

We first rewrite the proof in a certain format, the PCP format.

We then check randomly a constant number of its bits:

A correct proof always convinces us.
A false proof will convince us with probability ≤ 1/2.

Detail: The rewriting is completely mechanical and does not greatly
increase its size. But, it requires proofs to be written in a formal
axiomatic system (such as ZF Set Theory).

Haris Angelidakis (MPLA) PCP’s February 16, 2012 5 / 27

The PCP Idea

So, we want to check a proof faster than usual. How is this done?

We first rewrite the proof in a certain format, the PCP format.

We then check randomly a constant number of its bits:

A correct proof always convinces us.
A false proof will convince us with probability ≤ 1/2.

Detail: The rewriting is completely mechanical and does not greatly
increase its size. But, it requires proofs to be written in a formal
axiomatic system (such as ZF Set Theory).

Haris Angelidakis (MPLA) PCP’s February 16, 2012 5 / 27

The PCP Idea

So, we want to check a proof faster than usual. How is this done?

We first rewrite the proof in a certain format, the PCP format.

We then check randomly a constant number of its bits:

A correct proof always convinces us.
A false proof will convince us with probability ≤ 1/2.

Detail: The rewriting is completely mechanical and does not greatly
increase its size. But, it requires proofs to be written in a formal
axiomatic system (such as ZF Set Theory).

Haris Angelidakis (MPLA) PCP’s February 16, 2012 5 / 27

The PCP Idea

So, we want to check a proof faster than usual. How is this done?

We first rewrite the proof in a certain format, the PCP format.

We then check randomly a constant number of its bits:

A correct proof always convinces us.
A false proof will convince us with probability ≤ 1/2.

Detail: The rewriting is completely mechanical and does not greatly
increase its size. But, it requires proofs to be written in a formal
axiomatic system (such as ZF Set Theory).

Haris Angelidakis (MPLA) PCP’s February 16, 2012 5 / 27

The surprising main idea

In general, a mathematical proof is invalid if it has even a single error
somewhere, which can be very difficult to detect.

What PCP theorems tell us is that there is a mechanical way to
rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:
Initial Proof

PCP transformation PCP Format

Haris Angelidakis (MPLA) PCP’s February 16, 2012 6 / 27

The surprising main idea

In general, a mathematical proof is invalid if it has even a single error
somewhere, which can be very difficult to detect.

What PCP theorems tell us is that there is a mechanical way to
rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:
Initial Proof

PCP transformation PCP Format

Haris Angelidakis (MPLA) PCP’s February 16, 2012 6 / 27

The surprising main idea

In general, a mathematical proof is invalid if it has even a single error
somewhere, which can be very difficult to detect.

What PCP theorems tell us is that there is a mechanical way to
rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:

Initial Proof

PCP transformation PCP Format

Haris Angelidakis (MPLA) PCP’s February 16, 2012 6 / 27

The surprising main idea

In general, a mathematical proof is invalid if it has even a single error
somewhere, which can be very difficult to detect.

What PCP theorems tell us is that there is a mechanical way to
rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:

Initial Proof PCP transformation

PCP Format

Haris Angelidakis (MPLA) PCP’s February 16, 2012 6 / 27

The surprising main idea

In general, a mathematical proof is invalid if it has even a single error
somewhere, which can be very difficult to detect.

What PCP theorems tell us is that there is a mechanical way to
rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:

Initial Proof PCP transformation PCP Format

Haris Angelidakis (MPLA) PCP’s February 16, 2012 6 / 27

Towards a new definition of NP

Note: From now on, we shall refer to languages L ⊆ {0, 1}∗.

Definition (NP classic definition)

NP = ∪k∈NNTIME (nk)

Definition (NP “yes”-certificate definition)

A language L is in NP if there exists a polynomial p : N→ N and a
deterministic polynomial-time TM M (called the verifier of L) such that
for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x |) such that M(x , u) = 1.

If x ∈ L and u ∈ {0, 1}p(|x |) satisfy M(x , u) = 1, then we call u a
certificate for x (with respect to the language L and machine M).

Haris Angelidakis (MPLA) PCP’s February 16, 2012 7 / 27

Towards a new definition of NP

Note: From now on, we shall refer to languages L ⊆ {0, 1}∗.

Definition (NP classic definition)

NP = ∪k∈NNTIME (nk)

Definition (NP “yes”-certificate definition)

A language L is in NP if there exists a polynomial p : N→ N and a
deterministic polynomial-time TM M (called the verifier of L) such that
for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x |) such that M(x , u) = 1.

If x ∈ L and u ∈ {0, 1}p(|x |) satisfy M(x , u) = 1, then we call u a
certificate for x (with respect to the language L and machine M).

Haris Angelidakis (MPLA) PCP’s February 16, 2012 7 / 27

Towards a new definition of NP

Note: From now on, we shall refer to languages L ⊆ {0, 1}∗.

Definition (NP classic definition)

NP = ∪k∈NNTIME (nk)

Definition (NP “yes”-certificate definition)

A language L is in NP if there exists a polynomial p : N→ N and a
deterministic polynomial-time TM M (called the verifier of L) such that
for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x |) such that M(x , u) = 1.

If x ∈ L and u ∈ {0, 1}p(|x |) satisfy M(x , u) = 1, then we call u a
certificate for x (with respect to the language L and machine M).

Haris Angelidakis (MPLA) PCP’s February 16, 2012 7 / 27

Towards a new definition of NP

Informally, NP is the complexity class of problems for which it is easy
to check that a solution is correct.

In contrast, finding solutions to NP problems is widely believed to be
hard.

Consider for example the problem 3-SAT. Given a 3-CNF Boolean
formula, it is notoriously difficult to come up with a satisfying
assignment, whereas given a proposed assignment it is trivial to plug
in the values and verify its correctness. Such an assignment is an
NP-proof for the satisfiability of the formula.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 8 / 27

Towards a new definition of NP

Informally, NP is the complexity class of problems for which it is easy
to check that a solution is correct.

In contrast, finding solutions to NP problems is widely believed to be
hard.

Consider for example the problem 3-SAT. Given a 3-CNF Boolean
formula, it is notoriously difficult to come up with a satisfying
assignment, whereas given a proposed assignment it is trivial to plug
in the values and verify its correctness. Such an assignment is an
NP-proof for the satisfiability of the formula.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 8 / 27

Towards a new definition of NP

Informally, NP is the complexity class of problems for which it is easy
to check that a solution is correct.

In contrast, finding solutions to NP problems is widely believed to be
hard.

Consider for example the problem 3-SAT. Given a 3-CNF Boolean
formula, it is notoriously difficult to come up with a satisfying
assignment, whereas given a proposed assignment it is trivial to plug
in the values and verify its correctness. Such an assignment is an
NP-proof for the satisfiability of the formula.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 8 / 27

Towards a new definition of NP

Some comments

What is a mathematical proof? Anything that can be verified by a
rigorous procedure, i.e., an algorithm.

A theorem = a problem.

A proof = a solution.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 9 / 27

Towards a new definition of NP

Some comments

What is a mathematical proof? Anything that can be verified by a
rigorous procedure, i.e., an algorithm.

A theorem = a problem.

A proof = a solution.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 9 / 27

Towards a new definition of NP

Some comments

What is a mathematical proof? Anything that can be verified by a
rigorous procedure, i.e., an algorithm.

A theorem = a problem.

A proof = a solution.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 9 / 27

Towards a new definition of NP

Some comments

What is a mathematical proof? Anything that can be verified by a
rigorous procedure, i.e., an algorithm.

A theorem = a problem.

A proof = a solution.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 9 / 27

Towards a new definition of NP

Definition (NP alternative definition)

An alternative way to define NP is as the class of all languages
L ⊆ {0, 1}∗ that have efficient proof systems: proof systems in which
there is a polynomial-time algorithm that verifies correctness of the
statement x ∈ L with assistance of a proof.

One problem with the usual proof systems (i.e. the “yes”-certificates
for NP) is that these proofs are very sensitive to error. A false
theorem can be “proven” by a proof that consists of only one
erroneous step. Similarly, a 3-SAT formula φ can be unsatisfiable, yet
have an assignment that satisfies all clauses but one. In these cases,
the verifier must check every single proof step / clause in order to
make sure that the proof is correct.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 10 / 27

Towards a new definition of NP

Definition (NP alternative definition)

An alternative way to define NP is as the class of all languages
L ⊆ {0, 1}∗ that have efficient proof systems: proof systems in which
there is a polynomial-time algorithm that verifies correctness of the
statement x ∈ L with assistance of a proof.

One problem with the usual proof systems (i.e. the “yes”-certificates
for NP) is that these proofs are very sensitive to error. A false
theorem can be “proven” by a proof that consists of only one
erroneous step. Similarly, a 3-SAT formula φ can be unsatisfiable, yet
have an assignment that satisfies all clauses but one. In these cases,
the verifier must check every single proof step / clause in order to
make sure that the proof is correct.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 10 / 27

Towards a new definition of NP

Definition (NP alternative definition)

An alternative way to define NP is as the class of all languages
L ⊆ {0, 1}∗ that have efficient proof systems: proof systems in which
there is a polynomial-time algorithm that verifies correctness of the
statement x ∈ L with assistance of a proof.

One problem with the usual proof systems (i.e. the “yes”-certificates
for NP) is that these proofs are very sensitive to error. A false
theorem can be “proven” by a proof that consists of only one
erroneous step. Similarly, a 3-SAT formula φ can be unsatisfiable, yet
have an assignment that satisfies all clauses but one. In these cases,
the verifier must check every single proof step / clause in order to
make sure that the proof is correct.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 10 / 27

Towards a new definition of NP

In contrast, the PCP theorem gives each set in NP an alternative
proof system, in which proofs are robust.

In this system a proof for a false statement is guaranteed to have
many errors.

As a result, a verifier can randomly read only a few bits from the
proof and decide, with high probability of success, whether the proof
is valid or not.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 11 / 27

Towards a new definition of NP

In contrast, the PCP theorem gives each set in NP an alternative
proof system, in which proofs are robust.

In this system a proof for a false statement is guaranteed to have
many errors.

As a result, a verifier can randomly read only a few bits from the
proof and decide, with high probability of success, whether the proof
is valid or not.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 11 / 27

Towards a new definition of NP

In contrast, the PCP theorem gives each set in NP an alternative
proof system, in which proofs are robust.

In this system a proof for a false statement is guaranteed to have
many errors.

As a result, a verifier can randomly read only a few bits from the
proof and decide, with high probability of success, whether the proof
is valid or not.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 11 / 27

Towards a new definition of NP

Definition (NP revisited - The NP verifier)

L ∈ NP iff there exists a poly-time TM V (the verifier) such that:

x ∈ L⇒ ∃π such that V π(x) = 1,

x /∈ L⇒ ∀π, V π(x) = 0.

(π is a proof)

Haris Angelidakis (MPLA) PCP’s February 16, 2012 12 / 27

Towards a new definition of NP

Definition (The PCP verifier)

Let L be a language and q, r : N→ N. We say that L has an
(r(n), q(n))-PCP verifier if there’s a polynomial-time probabilistic
algorithm V satisfying:

Efficiency: On input x ∈ {0, 1}n and given random access to a string
π ∈ {0, 1}∗ of length at most q(n)2r(n) (the proof), V uses at most
r(n) random coins and makes at most q(n) nonadaptive queries to
locations of π. Then it outputs “1” (for “accept”) or “0” (for
“reject”). We let V π(x) denote the random variable representing V’s
output on input x and with random access to π.

Completeness: x ∈ L⇒ ∃π ∈ {0, 1}∗ such that Pr [V π(x) = 1] = 1.
(We call this string π the correct proof for x .)

Soundness: x /∈ L⇒ ∀π ∈ {0, 1}∗,Pr [V π(x) = 1] ≤ 1/2.

We say that a language L is in PCP[r(n), q(n)] if there are some constants
c , d > 0 such that L has a (cr(n), dq(n))-PCP verifier.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 13 / 27

Towards a new definition of NP

Definition (The PCP verifier)

Let L be a language and q, r : N→ N. We say that L has an
(r(n), q(n))-PCP verifier if there’s a polynomial-time probabilistic
algorithm V satisfying:

Efficiency: On input x ∈ {0, 1}n and given random access to a string
π ∈ {0, 1}∗ of length at most q(n)2r(n) (the proof), V uses at most
r(n) random coins and makes at most q(n) nonadaptive queries to
locations of π. Then it outputs “1” (for “accept”) or “0” (for
“reject”). We let V π(x) denote the random variable representing V’s
output on input x and with random access to π.

Completeness: x ∈ L⇒ ∃π ∈ {0, 1}∗ such that Pr [V π(x) = 1] = 1.
(We call this string π the correct proof for x .)

Soundness: x /∈ L⇒ ∀π ∈ {0, 1}∗,Pr [V π(x) = 1] ≤ 1/2.

We say that a language L is in PCP[r(n), q(n)] if there are some constants
c , d > 0 such that L has a (cr(n), dq(n))-PCP verifier.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 13 / 27

Towards a new definition of NP

Definition (The PCP verifier)

Let L be a language and q, r : N→ N. We say that L has an
(r(n), q(n))-PCP verifier if there’s a polynomial-time probabilistic
algorithm V satisfying:

Efficiency: On input x ∈ {0, 1}n and given random access to a string
π ∈ {0, 1}∗ of length at most q(n)2r(n) (the proof), V uses at most
r(n) random coins and makes at most q(n) nonadaptive queries to
locations of π. Then it outputs “1” (for “accept”) or “0” (for
“reject”). We let V π(x) denote the random variable representing V’s
output on input x and with random access to π.

Completeness: x ∈ L⇒ ∃π ∈ {0, 1}∗ such that Pr [V π(x) = 1] = 1.
(We call this string π the correct proof for x .)

Soundness: x /∈ L⇒ ∀π ∈ {0, 1}∗,Pr [V π(x) = 1] ≤ 1/2.

We say that a language L is in PCP[r(n), q(n)] if there are some constants
c , d > 0 such that L has a (cr(n), dq(n))-PCP verifier.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 13 / 27

Towards a new definition of NP

Definition (The PCP verifier)

Let L be a language and q, r : N→ N. We say that L has an
(r(n), q(n))-PCP verifier if there’s a polynomial-time probabilistic
algorithm V satisfying:

Efficiency: On input x ∈ {0, 1}n and given random access to a string
π ∈ {0, 1}∗ of length at most q(n)2r(n) (the proof), V uses at most
r(n) random coins and makes at most q(n) nonadaptive queries to
locations of π. Then it outputs “1” (for “accept”) or “0” (for
“reject”). We let V π(x) denote the random variable representing V’s
output on input x and with random access to π.

Completeness: x ∈ L⇒ ∃π ∈ {0, 1}∗ such that Pr [V π(x) = 1] = 1.
(We call this string π the correct proof for x .)

Soundness: x /∈ L⇒ ∀π ∈ {0, 1}∗,Pr [V π(x) = 1] ≤ 1/2.

We say that a language L is in PCP[r(n), q(n)] if there are some constants
c , d > 0 such that L has a (cr(n), dq(n))-PCP verifier.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 13 / 27

Towards a new definition of NP

Definition (The PCP verifier)

Let L be a language and q, r : N→ N. We say that L has an
(r(n), q(n))-PCP verifier if there’s a polynomial-time probabilistic
algorithm V satisfying:

Efficiency: On input x ∈ {0, 1}n and given random access to a string
π ∈ {0, 1}∗ of length at most q(n)2r(n) (the proof), V uses at most
r(n) random coins and makes at most q(n) nonadaptive queries to
locations of π. Then it outputs “1” (for “accept”) or “0” (for
“reject”). We let V π(x) denote the random variable representing V’s
output on input x and with random access to π.

Completeness: x ∈ L⇒ ∃π ∈ {0, 1}∗ such that Pr [V π(x) = 1] = 1.
(We call this string π the correct proof for x .)

Soundness: x /∈ L⇒ ∀π ∈ {0, 1}∗,Pr [V π(x) = 1] ≤ 1/2.

We say that a language L is in PCP[r(n), q(n)] if there are some constants
c , d > 0 such that L has a (cr(n), dq(n))-PCP verifier.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 13 / 27

The PCP Theorem

Theorem (PCP Theorem - Arora, Lund, Motwani, Sudan, Szegedy,
Safra)

NP = PCP[O(log n),O(1)].

Haris Angelidakis (MPLA) PCP’s February 16, 2012 14 / 27

The easy direction of the PCP Theorem

Lemma

PCP[O(log n),O(1)] ⊆ NP.

Proof.

On board...

Haris Angelidakis (MPLA) PCP’s February 16, 2012 15 / 27

The easy direction of the PCP Theorem

Lemma

PCP[O(log n),O(1)] ⊆ NP.

Proof.

On board...

Haris Angelidakis (MPLA) PCP’s February 16, 2012 15 / 27

The hard direction of the PCP Theorem

Lemma

NP ⊆ PCP[O(log n),O(1)].

We will definitely not prove this right now, all we can say is that Dinur’s
approach is based on finding gap-introducing reductions.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 16 / 27

Gap-introducing reductions and NP-completeness (1 / 2)

Theorem

If there is a gap-introducing reduction for some problem L in NP, then
L ∈ PCP[O(log n),O(1)]. In particular, if L is NP-complete then the PCP
theorem holds.

Proof.

Suppose L ∈ NP, and there is a reduction to a 3CNF formula φx with m
clauses and with the following properties:

x ∈ L⇒ φx is satisfiable

x /∈ L⇒ no assignment satisfies more than (1− ε1)m clauses of φx .

We now describe how to construct a verifier V , given a proof w .

Haris Angelidakis (MPLA) PCP’s February 16, 2012 17 / 27

Gap-introducing reductions and NP-completeness (1 / 2)

Theorem

If there is a gap-introducing reduction for some problem L in NP, then
L ∈ PCP[O(log n),O(1)]. In particular, if L is NP-complete then the PCP
theorem holds.

Proof.

Suppose L ∈ NP, and there is a reduction to a 3CNF formula φx with m
clauses and with the following properties:

x ∈ L⇒ φx is satisfiable

x /∈ L⇒ no assignment satisfies more than (1− ε1)m clauses of φx .

We now describe how to construct a verifier V , given a proof w .

Haris Angelidakis (MPLA) PCP’s February 16, 2012 17 / 27

Gap-introducing reductions and NP-completeness (2 / 2)

Proof (Continued).

V picks O
(
1
ε1

)
clauses of φx at random, and checks if w satisfies

them all.

O
(
1
ε1

log m
)

= O(log |x |) random bits used.

Number of bits read by the verifier: O
(
1
ε1

) = O(1).

x ∈ L⇒ φx is satisfiable

⇒ ∃w such that V w (x) always accept.

x /∈ L⇒ ∀w a fraction ε1 of clauses of φx are unsatisfied by w

⇒ ∀w V w (x) rejects with probability ≥ 1

2

(the probability that it doesn’t reject is ≤ (1− ε1)1/ε1 ≤ 1/2)

Haris Angelidakis (MPLA) PCP’s February 16, 2012 18 / 27

Gap-introducing reductions and NP-completeness (2 / 2)

Proof (Continued).

V picks O
(
1
ε1

)
clauses of φx at random, and checks if w satisfies

them all.

O
(
1
ε1

log m
)

= O(log |x |) random bits used.

Number of bits read by the verifier: O
(
1
ε1

) = O(1).

x ∈ L⇒ φx is satisfiable

⇒ ∃w such that V w (x) always accept.

x /∈ L⇒ ∀w a fraction ε1 of clauses of φx are unsatisfied by w

⇒ ∀w V w (x) rejects with probability ≥ 1

2

(the probability that it doesn’t reject is ≤ (1− ε1)1/ε1 ≤ 1/2)

Haris Angelidakis (MPLA) PCP’s February 16, 2012 18 / 27

Gap-introducing reductions and NP-completeness (2 / 2)

Proof (Continued).

V picks O
(
1
ε1

)
clauses of φx at random, and checks if w satisfies

them all.

O
(
1
ε1

log m
)

= O(log |x |) random bits used.

Number of bits read by the verifier: O
(
1
ε1

) = O(1).

x ∈ L⇒ φx is satisfiable

⇒ ∃w such that V w (x) always accept.

x /∈ L⇒ ∀w a fraction ε1 of clauses of φx are unsatisfied by w

⇒ ∀w V w (x) rejects with probability ≥ 1

2

(the probability that it doesn’t reject is ≤ (1− ε1)1/ε1 ≤ 1/2)

Haris Angelidakis (MPLA) PCP’s February 16, 2012 18 / 27

Gap-introducing reductions and NP-completeness (2 / 2)

Proof (Continued).

V picks O
(
1
ε1

)
clauses of φx at random, and checks if w satisfies

them all.

O
(
1
ε1

log m
)

= O(log |x |) random bits used.

Number of bits read by the verifier: O
(
1
ε1

) = O(1).

x ∈ L⇒ φx is satisfiable

⇒ ∃w such that V w (x) always accept.

x /∈ L⇒ ∀w a fraction ε1 of clauses of φx are unsatisfied by w

⇒ ∀w V w (x) rejects with probability ≥ 1

2

(the probability that it doesn’t reject is ≤ (1− ε1)1/ε1 ≤ 1/2)

Haris Angelidakis (MPLA) PCP’s February 16, 2012 18 / 27

Gap-introducing reductions and NP-completeness (2 / 2)

Proof (Continued).

V picks O
(
1
ε1

)
clauses of φx at random, and checks if w satisfies

them all.

O
(
1
ε1

log m
)

= O(log |x |) random bits used.

Number of bits read by the verifier: O
(
1
ε1

) = O(1).

x ∈ L⇒ φx is satisfiable

⇒ ∃w such that V w (x) always accept.

x /∈ L⇒ ∀w a fraction ε1 of clauses of φx are unsatisfied by w

⇒ ∀w V w (x) rejects with probability ≥ 1

2

(the probability that it doesn’t reject is ≤ (1− ε1)1/ε1 ≤ 1/2)

Haris Angelidakis (MPLA) PCP’s February 16, 2012 18 / 27

Outline

1 PCP Theorems

2 PCP’s and Hardness of Approximation

Haris Angelidakis (MPLA) PCP’s February 16, 2012 19 / 27

How can we get inapproximability results

In general, standard NP-hardness proofs are not powerful enough to
give inapproximability results.

In order to get such a result, we will need stronger reductions, the
gap-introducing reductions we have already mentioned.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 20 / 27

How can we get inapproximability results

In general, standard NP-hardness proofs are not powerful enough to
give inapproximability results.

In order to get such a result, we will need stronger reductions, the
gap-introducing reductions we have already mentioned.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 20 / 27

Approximability of Max3SAT

Theorem

The PCP theorem implies that there is an ε1 > 0 such that there is no
polynomial (1− ε1)-approximation algorithm for Max3SAT, unless
P = NP.

Proof.

On board...

Haris Angelidakis (MPLA) PCP’s February 16, 2012 21 / 27

Optimal PCP constructions for MaxSAT

Theorem (Håstad)

For every ε > 0, NP = PCP1−ε, 1
2
+ε[O(log n), 3]. Furthermore, the verifier

behaves as follows: it uses its randomness to pick three entries i , j , k in the
proof w and a bit b, and it accepts iff wi ⊕ wj ⊕ wk = b.

Consequences

Through a reduction from 3SAT to MaxE3LIN-2, we get that
MaxE3LIN-2 cannot be approximated within a factor better than 2,
unless P = NP.

Furthermore, Max3SAT cannot be approximated withn a factor better
than 8/7, unless P = NP.

Finally, MaxCUT has an approximability bound of 17/16.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 22 / 27

Optimal PCP constructions for MaxSAT

Theorem (Håstad)

For every ε > 0, NP = PCP1−ε, 1
2
+ε[O(log n), 3]. Furthermore, the verifier

behaves as follows: it uses its randomness to pick three entries i , j , k in the
proof w and a bit b, and it accepts iff wi ⊕ wj ⊕ wk = b.

Consequences

Through a reduction from 3SAT to MaxE3LIN-2, we get that
MaxE3LIN-2 cannot be approximated within a factor better than 2,
unless P = NP.

Furthermore, Max3SAT cannot be approximated withn a factor better
than 8/7, unless P = NP.

Finally, MaxCUT has an approximability bound of 17/16.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 22 / 27

Optimal PCP constructions for MaxSAT

Theorem (Håstad)

For every ε > 0, NP = PCP1−ε, 1
2
+ε[O(log n), 3]. Furthermore, the verifier

behaves as follows: it uses its randomness to pick three entries i , j , k in the
proof w and a bit b, and it accepts iff wi ⊕ wj ⊕ wk = b.

Consequences

Through a reduction from 3SAT to MaxE3LIN-2, we get that
MaxE3LIN-2 cannot be approximated within a factor better than 2,
unless P = NP.

Furthermore, Max3SAT cannot be approximated withn a factor better
than 8/7, unless P = NP.

Finally, MaxCUT has an approximability bound of 17/16.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 22 / 27

Optimal PCP constructions for MaxSAT

Theorem (Håstad)

For every ε > 0, NP = PCP1−ε, 1
2
+ε[O(log n), 3]. Furthermore, the verifier

behaves as follows: it uses its randomness to pick three entries i , j , k in the
proof w and a bit b, and it accepts iff wi ⊕ wj ⊕ wk = b.

Consequences

Through a reduction from 3SAT to MaxE3LIN-2, we get that
MaxE3LIN-2 cannot be approximated within a factor better than 2,
unless P = NP.

Furthermore, Max3SAT cannot be approximated withn a factor better
than 8/7, unless P = NP.

Finally, MaxCUT has an approximability bound of 17/16.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 22 / 27

Improvement on Håstad’s Theorem

Theorem (Guruswami, Lewin, Sudan, Trevisan 98)

NP = PCP1, 1
2
+ε[O(log n), 3], ∀ε > 0

Proof of Optimality of the above result

Theorem (Karloff, Zwick 97)

P = PCP1, 1
2
[O(log n), 3]

Haris Angelidakis (MPLA) PCP’s February 16, 2012 23 / 27

Improvement on Håstad’s Theorem

Theorem (Guruswami, Lewin, Sudan, Trevisan 98)

NP = PCP1, 1
2
+ε[O(log n), 3], ∀ε > 0

Proof of Optimality of the above result

Theorem (Karloff, Zwick 97)

P = PCP1, 1
2
[O(log n), 3]

Haris Angelidakis (MPLA) PCP’s February 16, 2012 23 / 27

Vertex Cover and Independent Set (1 / 2)

Problem (Vertex Cover)

Given an undirected graph G = (V ,E), a vertex cover is a set C ⊆ V such
that every edge (u, v) ∈ E has one endpoint in C . We want to find the
Minimum Vertex Cover.

Problem (Independent Set)

Given an undirected graph G = (V ,E), an independent set is a set S ⊆ V
such that for every u, v ∈ S we have (u, v) /∈ E . We want to find the
Maximum Independent Set.

Observe that a set C is a vertex cover iff V \ C is an independent set.

Thus, the two problems are actually the “same”.

However, in terms of approximability, they are very different.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 24 / 27

Vertex Cover and Independent Set (1 / 2)

Problem (Vertex Cover)

Given an undirected graph G = (V ,E), a vertex cover is a set C ⊆ V such
that every edge (u, v) ∈ E has one endpoint in C . We want to find the
Minimum Vertex Cover.

Problem (Independent Set)

Given an undirected graph G = (V ,E), an independent set is a set S ⊆ V
such that for every u, v ∈ S we have (u, v) /∈ E . We want to find the
Maximum Independent Set.

Observe that a set C is a vertex cover iff V \ C is an independent set.

Thus, the two problems are actually the “same”.

However, in terms of approximability, they are very different.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 24 / 27

Vertex Cover and Independent Set (1 / 2)

Problem (Vertex Cover)

Given an undirected graph G = (V ,E), a vertex cover is a set C ⊆ V such
that every edge (u, v) ∈ E has one endpoint in C . We want to find the
Minimum Vertex Cover.

Problem (Independent Set)

Given an undirected graph G = (V ,E), an independent set is a set S ⊆ V
such that for every u, v ∈ S we have (u, v) /∈ E . We want to find the
Maximum Independent Set.

Observe that a set C is a vertex cover iff V \ C is an independent set.

Thus, the two problems are actually the “same”.

However, in terms of approximability, they are very different.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 24 / 27

Vertex Cover and Independent Set (1 / 2)

Problem (Vertex Cover)

Given an undirected graph G = (V ,E), a vertex cover is a set C ⊆ V such
that every edge (u, v) ∈ E has one endpoint in C . We want to find the
Minimum Vertex Cover.

Problem (Independent Set)

Given an undirected graph G = (V ,E), an independent set is a set S ⊆ V
such that for every u, v ∈ S we have (u, v) /∈ E . We want to find the
Maximum Independent Set.

Observe that a set C is a vertex cover iff V \ C is an independent set.

Thus, the two problems are actually the “same”.

However, in terms of approximability, they are very different.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 24 / 27

Vertex Cover and Independent Set (1 / 2)

Problem (Vertex Cover)

Given an undirected graph G = (V ,E), a vertex cover is a set C ⊆ V such
that every edge (u, v) ∈ E has one endpoint in C . We want to find the
Minimum Vertex Cover.

Problem (Independent Set)

Given an undirected graph G = (V ,E), an independent set is a set S ⊆ V
such that for every u, v ∈ S we have (u, v) /∈ E . We want to find the
Maximum Independent Set.

Observe that a set C is a vertex cover iff V \ C is an independent set.

Thus, the two problems are actually the “same”.

However, in terms of approximability, they are very different.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 24 / 27

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

A simple algorithm (just find a maximal matching and take both
endpoints) gives a 2-approximation for VC.
It has been proved (Dinur and Safra) that VC is NP-hard to
approximate within a factor of 1.3606.
Assuming the Unique Games Conjecture, we get a tight 2− o(1)
inapproximability for VC (Khot and Regev).

Independent Set

Assuming ZPP 6= NP, for every ε > 0 there is no n1−ε-approximation
algorithm for Independent Set.
If a graph G = (V ,E) has maximum degree d , then a maximal
independent set contains at least |V |/(d + 1) vertices, and so is a
(d + 1)-approximate solution.
This can be improved to an O(d log log d/ log d)-approximation.
It has been proved that no (d/2O(

√
log d))-approximation algorithm

exists unless P = NP.
Haris Angelidakis (MPLA) PCP’s February 16, 2012 25 / 27

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

A simple algorithm (just find a maximal matching and take both
endpoints) gives a 2-approximation for VC.
It has been proved (Dinur and Safra) that VC is NP-hard to
approximate within a factor of 1.3606.
Assuming the Unique Games Conjecture, we get a tight 2− o(1)
inapproximability for VC (Khot and Regev).

Independent Set

Assuming ZPP 6= NP, for every ε > 0 there is no n1−ε-approximation
algorithm for Independent Set.
If a graph G = (V ,E) has maximum degree d , then a maximal
independent set contains at least |V |/(d + 1) vertices, and so is a
(d + 1)-approximate solution.
This can be improved to an O(d log log d/ log d)-approximation.
It has been proved that no (d/2O(

√
log d))-approximation algorithm

exists unless P = NP.
Haris Angelidakis (MPLA) PCP’s February 16, 2012 25 / 27

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

A simple algorithm (just find a maximal matching and take both
endpoints) gives a 2-approximation for VC.
It has been proved (Dinur and Safra) that VC is NP-hard to
approximate within a factor of 1.3606.
Assuming the Unique Games Conjecture, we get a tight 2− o(1)
inapproximability for VC (Khot and Regev).

Independent Set

Assuming ZPP 6= NP, for every ε > 0 there is no n1−ε-approximation
algorithm for Independent Set.
If a graph G = (V ,E) has maximum degree d , then a maximal
independent set contains at least |V |/(d + 1) vertices, and so is a
(d + 1)-approximate solution.
This can be improved to an O(d log log d/ log d)-approximation.
It has been proved that no (d/2O(

√
log d))-approximation algorithm

exists unless P = NP.
Haris Angelidakis (MPLA) PCP’s February 16, 2012 25 / 27

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

A simple algorithm (just find a maximal matching and take both
endpoints) gives a 2-approximation for VC.
It has been proved (Dinur and Safra) that VC is NP-hard to
approximate within a factor of 1.3606.
Assuming the Unique Games Conjecture, we get a tight 2− o(1)
inapproximability for VC (Khot and Regev).

Independent Set

Assuming ZPP 6= NP, for every ε > 0 there is no n1−ε-approximation
algorithm for Independent Set.
If a graph G = (V ,E) has maximum degree d , then a maximal
independent set contains at least |V |/(d + 1) vertices, and so is a
(d + 1)-approximate solution.
This can be improved to an O(d log log d/ log d)-approximation.
It has been proved that no (d/2O(

√
log d))-approximation algorithm

exists unless P = NP.
Haris Angelidakis (MPLA) PCP’s February 16, 2012 25 / 27

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

A simple algorithm (just find a maximal matching and take both
endpoints) gives a 2-approximation for VC.
It has been proved (Dinur and Safra) that VC is NP-hard to
approximate within a factor of 1.3606.
Assuming the Unique Games Conjecture, we get a tight 2− o(1)
inapproximability for VC (Khot and Regev).

Independent Set

Assuming ZPP 6= NP, for every ε > 0 there is no n1−ε-approximation
algorithm for Independent Set.
If a graph G = (V ,E) has maximum degree d , then a maximal
independent set contains at least |V |/(d + 1) vertices, and so is a
(d + 1)-approximate solution.
This can be improved to an O(d log log d/ log d)-approximation.
It has been proved that no (d/2O(

√
log d))-approximation algorithm

exists unless P = NP.
Haris Angelidakis (MPLA) PCP’s February 16, 2012 25 / 27

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

A simple algorithm (just find a maximal matching and take both
endpoints) gives a 2-approximation for VC.
It has been proved (Dinur and Safra) that VC is NP-hard to
approximate within a factor of 1.3606.
Assuming the Unique Games Conjecture, we get a tight 2− o(1)
inapproximability for VC (Khot and Regev).

Independent Set

Assuming ZPP 6= NP, for every ε > 0 there is no n1−ε-approximation
algorithm for Independent Set.
If a graph G = (V ,E) has maximum degree d , then a maximal
independent set contains at least |V |/(d + 1) vertices, and so is a
(d + 1)-approximate solution.
This can be improved to an O(d log log d/ log d)-approximation.
It has been proved that no (d/2O(

√
log d))-approximation algorithm

exists unless P = NP.
Haris Angelidakis (MPLA) PCP’s February 16, 2012 25 / 27

Vertex Cover and Independent Set (2 / 2)

Vertex Cover

A simple algorithm (just find a maximal matching and take both
endpoints) gives a 2-approximation for VC.
It has been proved (Dinur and Safra) that VC is NP-hard to
approximate within a factor of 1.3606.
Assuming the Unique Games Conjecture, we get a tight 2− o(1)
inapproximability for VC (Khot and Regev).

Independent Set

Assuming ZPP 6= NP, for every ε > 0 there is no n1−ε-approximation
algorithm for Independent Set.
If a graph G = (V ,E) has maximum degree d , then a maximal
independent set contains at least |V |/(d + 1) vertices, and so is a
(d + 1)-approximate solution.
This can be improved to an O(d log log d/ log d)-approximation.
It has been proved that no (d/2O(

√
log d))-approximation algorithm

exists unless P = NP.
Haris Angelidakis (MPLA) PCP’s February 16, 2012 25 / 27

Bibliography

1 How NP Got a New Definition: A Survey of Probabilistically
Checkable Proofs.
Sanjeev Arora. ICM, 2002.

2 Computational Complexity.
Sanjeev Arora, Boaz Barak. Cambridge University Press, 2009.

3 Probabilistically Checkable Proofs.
Andreas Galanis. ECE - NTUA thesis, 2009.

4 Probabilistically Checkable Proofs and Codes.
Irit Dinur. ICM, 2010.

5 Inapproximability of Combinatorial Optimization Problems.
Luca Trevisan. ECCC, 2010.

Haris Angelidakis (MPLA) PCP’s February 16, 2012 26 / 27

THANK YOU!

Haris Angelidakis (MPLA) PCP’s February 16, 2012 27 / 27

	PCP Theorems
	PCP's and Hardness of Approximation
	Appendix

