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Arthur-Merlin games

MA

L 2 MA if there exists a polynomial-time deterministic TM M ,

polynomials p; q, s.t. 8 string x; jxj = n

if x 2 L then 9z Pry[M(x; y; z) = 1] � 2
3

if x =2 L then 8z Pry[M(x; y; z) = 0] � 2
3

where z 2 f0; 1gq(n) and y 2 f0; 1gp(n)

AM

L 2 AM if there exists a polynomial-time deterministic TM M ,

polynomials p; q, s.t. 8 string x; jxj = n

if x 2 L then Pry[9zM(x; y; z) = 1] � 2
3

if x =2 L then Pry[8zM(x; y; z) = 0] � 2
3

where z 2 f0; 1gq(n) and y 2 f0; 1gp(n)
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Lemma

For every language L in AM and every polynomial q, there is a language

M in NP and a polynomial p such that, for all strings x, the fractions of

strings y of length p(jxj) that satisfy x � y 2M is

at least 1� 2�q(jxj) for x in L, and

at most 2�q(jxj) for x not in L,
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t(n) : polynomially bounded function of n = jxj

AM(t(n)) and MA(t(n)) are the classes of languages accepted by

Arthur-Merlin games of length � t(n).

AM(poly) = MA(poly) = [fAM(nk) : k > 0g form the

Arthur-Merlin hierarchy.

MA(1) = M = NP

AM(1) = A = BPP

AM(2) = AM
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In the quantifier notation

NP = (9=8); co-NP = (8=9)

RP = (9+=8)

BPP = (9+=9+) = (9+8=89+) = (89+=9+8)

MA = (98=89+) � (89=9+8) = AM

�
p
2 = (89=98)

Chrysida (DI) Short Interactive Proofs @ NTUA 2012 5 / 13



Theorem (Collapse Theorem [Babai])

For any polynomially bounded t(n) � 2,

AM(t(n)) = AM(t(n) + 1) = MA(t(n) + 1)

for constant k � 2

AM = AM(k) = MA(k + 1)

NP [ BPP � MA � AM � AM(poly) � PSPACE

Theorem (Speedup Theorem [Babai, Moran])

For any t(n) � 2,

AM(2t(n)) = AM(t(n))

for constant k � 2

AM = AM(k) = MA(k + 1)
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An Arthur-Merlin game is an Interactive Proof system

AM(t(n)) � IP(t(n))

Goldwasser and Sipser showed that

IP(t(n)) � AM(t(n) + 2)

By the Collapse Theorem we have

AM(t(n)) = IP(t(n))
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Lemma

If co-NP is contained in AM, then co-AM is contained in AM.

Proof.

Suppose (8=9) � (89=9+8) then

co-AM = (9+8=89) � (9+89=89+8) � (89+9=9+88) � (89=9+8) = AM
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Theorem ([Boppana, Hastad, Zachos])

If co-NP is contained in AM, then the polynomial-time hierarchy is

contained in AM � �
p
2.

Proof.

�
p
1 = NP � AM

Assume
Pp

k � (89=9+8) then

�
p
k+1 � (99+8=889) � (989=89+8) � (899=9+88) = (89=9+8) = AM
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Corollary ([Boppana, Hastad, Zachos])

If the Graph Isomorphism is NP-complete, then the polynomial-time

hierarchy is contained in AM � �
p
2.

Proof.

Suppose Graph Isomorphism is NP-complete.

Graph Isomorphism 2 co-AM (Goldreich, Micali, Wigderson).

Then NP � co-AM. Equivalently co-NP � AM.

The polynomial-time hierarcy collapses to AM.
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Theorem ([Babai, Moran])

Graph nonisomorphism belongs to AM.

Proof.

Consider only connected graphs. X;Y connected, Z their disjoint union.

#automorphisms: X ! a, Y ! b, Z ! c

1 X and Y isomorphic ) c = 2ab

2 X and Y NOT isomorphic ) c = ab

Check (2) with approx. lower bound for a; b and approx upper bound for c

of 21=3.

Lower bounds exist in result of Theorem: 8L 2 NP, 8" > 0, an

"-approximate lower bound protocol of class MA exists.

Upper bound

d =#(distinct isomorphic copies of Z of its n vertices) = n!=c

So, we need a lower bound for d, that exists due to the Theorem.
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Question

Is Graph Isomorphism NP-complete?

Graph Isomorphism 2 NP

If it is NP-complete then Graph Nonisomorphism is co-NP-complete.

And because Graph Nonisomorphism 2 AM, all co-NP-complete problems

are in AM.

Then co-NP � AM and NP � co-AM.

So, Graph Isomorphism is unlikely to be NP-complete.
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