Short Interactive Proofs

based on the papers

Does co-NP have short interactive proofs?
[Boppana, Håstad, Zachos; 1987] Information Processing Letters

Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes [L. Babai, S. Moran; (1988)] J. of Computer and System Sciences

presentation by

Chrysida Galanaki

Arthur-Merlin games

MA

$L \in$ MA if there exists a polynomial-time deterministic TM M, polynomials p, q, s.t. \forall string $x,|x|=n$

- if $x \in L$ then $\exists z \operatorname{Pr}_{y}[M(x, y, z)=1] \geq \frac{2}{3}$
- if $x \notin L$ then $\forall z \operatorname{Pr}_{y}[M(x, y, z)=0] \geq \frac{2}{3}$
where $z \in\{0,1\}^{q(n)}$ and $y \in\{0,1\}^{p(n)}$

AM

$L \in \mathrm{AM}$ if there exists a polynomial-time deterministic TM M, polynomials p, q, s.t. \forall string $x,|x|=n$

- if $x \in L$ then $\operatorname{Pr}_{y}[\exists z M(x, y, z)=1] \geq \frac{2}{3}$
- if $x \notin L$ then $\operatorname{Pr}_{y}[\forall z M(x, y, z)=0] \geq \frac{2}{3}$
where $z \in\{0,1\}^{q(n)}$ and $y \in\{0,1\}^{p(n)}$

Lemma

For every language L in AM and every polynomial q, there is a language M in NP and a polynomial p such that, for all strings x, the fractions of strings y of length $p(|x|)$ that satisfy $x \circ y \in M$ is

- at least $1-2^{-q(|x|)}$ for x in L, and
- at most $2^{-q(|x|)}$ for x not in L,
$\mathrm{t}(\mathrm{n})$: polynomially bounded function of $n=|x|$
- $\mathrm{AM}(t(n))$ and $\mathrm{MA}(t(n))$ are the classes of languages accepted by Arthur-Merlin games of length $\leq t(n)$.
- $\mathrm{AM}($ poly $)=\mathrm{MA}($ poly $)=\cup\left\{\operatorname{AM}\left(n^{k}\right): k>0\right\}$ form the Arthur-Merlin hierarchy.
- $\mathrm{MA}(1)=M=\mathrm{NP}$
- $\operatorname{AM}(1)=A=\mathrm{BPP}$
- $\operatorname{AM}(2)=A M$

In the quantifier notation

- $\mathrm{NP}=(\exists / \forall), \mathrm{co}-\mathrm{NP}=(\forall / \exists)$
- $\mathrm{RP}=\left(\exists^{+} / \forall\right)$
- BPP $=\left(\exists^{+} / \exists^{+}\right)=\left(\exists^{+} \forall / \forall \exists^{+}\right)=\left(\forall \exists^{+} / \exists^{+} \forall\right)$
- $\mathrm{MA}=\left(\exists \forall / \forall \exists^{+}\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)=\mathrm{AM}$
- $\Pi_{2}^{p}=(\forall \exists / \exists \forall)$

Theorem (Collapse Theorem [Babai])

For any polynomially bounded $t(n) \leq 2$,

$$
\mathrm{AM}(t(n))=\mathrm{AM}(t(n)+1)=\mathrm{MA}(t(n)+1)
$$

for constant $k \geq 2$

$$
\mathrm{AM}=\mathrm{AM}(k)=\mathrm{MA}(k+1)
$$

$\mathrm{NP} \cup \mathrm{BPP} \subseteq \mathrm{MA} \subseteq \mathrm{AM} \subseteq \mathrm{AM}($ poly $) \subseteq \mathrm{PSPACE}$

Theorem (Speedup Theorem [Babai, Moran])

For any $t(n) \leq 2$,

$$
\operatorname{AM}(2 t(n))=\mathrm{AM}(t(n))
$$

for constant $k \geq 2$

$$
\mathrm{AM}=\mathrm{AM}(k)=\mathrm{MA}(k+1)
$$

An Arthur-Merlin game is an Interactive Proof system

$$
\operatorname{AM}(t(n)) \subseteq \operatorname{IP}(t(n))
$$

Goldwasser and Sipser showed that

$$
\mathrm{IP}(t(n)) \subseteq \mathrm{AM}(t(n)+2)
$$

By the Collapse Theorem we have

$$
\mathrm{AM}(t(n))=\operatorname{IP}(t(n))
$$

Lemma

If co-NP is contained in AM , then co-AM is contained in AM .

Proof.

Suppose $(\forall / \exists) \subseteq\left(\forall \exists / \exists^{+} \forall\right)$ then

$$
\mathrm{co-AM}=\left(\exists^{+} \forall / \forall \exists\right) \subseteq\left(\exists^{+} \forall \exists / \forall \exists^{+} \forall\right) \subseteq\left(\forall \exists^{+} \exists / \exists^{+} \forall \forall\right) \subseteq\left(\forall \exists / \exists^{+} \forall\right)=\mathrm{AM}
$$

Theorem ([Boppana, Hastad, Zachos])

If co-NP is contained in AM, then the polynomial-time hierarchy is contained in $\mathrm{AM} \subseteq \Pi_{2}^{p}$.

Proof.

$\Sigma_{1}^{p}=\mathrm{NP} \subseteq \mathrm{AM}$
Assume $\sum_{k}^{p} \subseteq\left(\forall \exists / \exists^{+} \forall\right)$ then

$$
\Sigma_{k+1}^{p} \subseteq\left(\exists \exists^{+} \forall / \forall \forall \exists\right) \subseteq\left(\exists \forall \exists / \forall \exists^{+} \forall\right) \subseteq\left(\forall \exists \exists / \exists^{+} \forall \forall\right)=\left(\forall \exists / \exists^{+} \forall\right)=\mathrm{AM}
$$

Corollary ([Boppana, Hastad, Zachos])

If the Graph Isomorphism is NP-complete, then the polynomial-time hierarchy is contained in $\mathrm{AM} \subseteq \Pi_{2}^{p}$.

Proof.

Suppose Graph Isomorphism is NP-complete.
Graph Isomorphism \in co-AM (Goldreich, Micali, Wigderson). Then NP \subseteq co-AM. Equivalently co-NP \subseteq AM.
The polynomial-time hierarcy collapses to AM.

Theorem ([Babai, Moran])

Graph nonisomorphism belongs to AM.

Proof.

Consider only connected graphs. X, Y connected, Z their disjoint union. \#automorphisms: $X \rightarrow a, Y \rightarrow b, Z \rightarrow c$
(1) X and $Y \quad$ isomorphic $\Rightarrow c=2 a b$
(2) X and Y NOT isomorphic $\Rightarrow c=a b$

Check (2) with approx. lower bound for a, b and approx upper bound for c of $2^{1 / 3}$.

- Lower bounds exist in result of Theorem: $\forall L \in N P, \forall \varepsilon>0$, an ε-approximate lower bound protocol of class MA exists.
- Upper bound
$d=\#($ distinct isomorphic copies of Z of its n vertices $)=n!/ c$ So, we need a lower bound for d, that exists due to the Theorem.

Question

Is Graph Isomorphism NP-complete?
Graph Isomorphism \in NP
If it is NP-complete then Graph Nonisomorphism is co-NP-complete.
And because Graph Nonisomorphism \in AM, all co-NP-complete problems are in AM.
Then co-NP $\subseteq \mathrm{AM}$ and $\mathrm{NP} \subseteq$ co-AM.
So, Graph Isomorphism is unlikely to be NP-complete.

References

- L. Babai, S. Moran, Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes, J. of Computer and System Sciences, (1988)
- L. Babai, Trading Group Theory for Randomness, ACM SToC, (1985)
- R. Boppana, J. Hastad, S.Zachos, Does coNP have short interactive proofs?, Information Processing Letters, (1987)
- S. Goldwasser, M. Sipser, Private coins versus public coins in interactive proof systems, ACM SToC, (1986)

