Integer Linear Programming NP-Completeness

Christos Litsas

January 26, 2012

Motivation

Connection with Other Famous NP-Complete Problems

0-1 ILP is NP-Complete

Pseudopolynomial Algorithm

Figure: A, linear, bounded set.

- Maximize some function $f(x_1, x_2)$
- Subject to $\frac{1}{8} \cdot x_1 + x_2 \le 2, \ 3 \cdot x_1 + x_2 \le \frac{15}{2}, \ x_1, x_2 \in \mathbb{N}$

The Problem

Primal Problem

- Maximize c' · x
- Subject to $Ax \leq 0, x \in \mathbb{N}^n$

Questions

- How hard is ILP (any connection with general LP)?
- Are there efficient algorithms that solve at least some special instances of the problem?

The Problem

Integer Programming

Decide whether, for given $m \times n$ integer matrix A and m-vector b, the conditions

$$Ax = b, x \geq O,$$

are satisfied by some $x \in \mathbb{N}$

Connection with Other Famous NP-Complete Problems

Set Cover

- ▶ $A \cdot x \ge ones(n)$ (A: has rows the bit vectors of the sets)
- $\sum x_i \leq b$ (*b*: the budget)
- *x_i* ∈ {0, 1}

Knapsack

▶ $\sum a_i \cdot x_i = B$ (*B*: the budget) ▶ $x_i \in \mathbb{N}$

NP-Complete Instances

Reduction

From 3 SAT:

- ϕ : a formula in CNF.
- introduce a variable x_i for every atomic variable y_i.
- x_i can only be zero (false) or one (true).
- ▶ replace \land by \land , \lor by +, literals y_i by x_i and $\neg y_i$ by $1 x_i$.
- Let Φ : be the arithmetic formula obtained
- The ILP is $\Phi \ge 1$ subject to x_i in $\{0, 1\}$

NP-Complete Instances

Corollary

0-1 ILP is NP-Hard.

NP-Complete Instances

Corollary

0-1 ILP is NP-Hard.

Corollary

0-1 ILP is NP-Complete (since it is NP-Hard but we can check a solution in Poly Time).

Some maths...

Theorem

Let A be an $m \times n$ integer matrix and b an m-vector, both with entries from $\{0, \pm 1, ..., \pm a\}$. Then if Ax = b has a solution $x \in \mathbb{N}^n$, it also has one in $\{0, 1, ..., n(ma)^{2m+1}\}^n$.

Some maths...

Theorem

Let A be an $m \times n$ integer matrix and b an m-vector, both with entries from $\{0, \pm 1, ..., \pm a\}$. Then if Ax = b has a solution $x \in \mathbb{N}^n$, it also has one in $\{0, 1, ..., n(ma)^{2m+1}\}^n$.

Corollary

There is a pseudopolynomial algorithm for solving $m \times n$ integer programs, with fixed m.

Dynamic Programming Algorithm

Algorithm

Solve the $m \times n$ integer program Ax = b by dynamic programming, proceeding in stages. *j*-th stage: compute the set S_j of all vectors v that can be written as $\sum_{i=1}^{j} v_i x_i$, with v_i the *i*-th column of A and with the x_i in the range $0 \le x_i \le B$, where $B = n(ma)^{2m+1}$.

Dynamic Programming Algorithm

Algorithm

Solve the $m \times n$ integer program Ax = b by dynamic programming, proceeding in stages. *j*-th stage: compute the set S_j of all vectors v that can be written as $\sum_{i=1}^{j} v_i x_i$, with v_i the *i*-th column of A and with the x_i in the range $0 \le x_i \le B$, where $B = n(ma)^{2m+1}$.

Theorem

Since the S_j cannot become larger than $(nB)^m$, the whole algorithm can be carried out in time $O((nB)^{m+1}) = O(n^{2m+2}(ma)^{(m+1)(2m+1)})$, a polynomial in n and a if m is fixed.

More maths...

Theorem

Consider the following linear programming relaxation:

- Maximize c' · x
- Subject to $Ax \leq 0, x \in \mathbb{R}^{+n}$

If the original ILP is feasible and the above problem is unbounded, then original ILP is also unbounded.

More maths...

Theorem

Consider the following linear programming relaxation:

- Maximize c' · x
- Subject to $Ax \leq 0, x \in \mathbb{R}^{+n}$

If the original ILP is feasible and the above problem is unbounded, then original ILP is also unbounded.

Theorem

Suppose that the original ILP is feasible and bounded, and let *z* be its optimal cost. Then $|z| \leq (\sum_{j=1}^{n} |c_j|) \cdot M$, where $M = n^2 (ma^2)^{2m+3}$.

Pseudopolynomial Algorithm

Theorem

There is a pseudopolynomial algorithm for finding the optimum in any $m \times n$ optimization integer program, for m fixed.

Pseudopolynomial Algorithm

Theorem

There is a pseudopolynomial algorithm for finding the optimum in any $m \times n$ optimization integer program, for m fixed.

Algorithm

Solve the problem:

- Maximize $c' \cdot x = z$
- Subject to $Ax \leq 0, x \in \mathbb{N}^n$

for each value of *z* in the range $[-(\sum_{j=1}^{n} |c_j|) \cdot M - 1, (\sum_{j=1}^{n} |c_j|) \cdot M]$ using the pseudopolynomial algorithm described above. Binary search would yield a better bound.