Integer Linear Programming NP-Completeness

Christos Litsas

January 26, 2012

Outline

Motivation

Connection with Other Famous NP-Complete Problems

0-1 ILP is NP-Complete

Pseudopolynomial Algorithm

The Problem

Figure: A, linear, bounded set.

- Maximize some function $f\left(x_{1}, x_{2}\right)$

Subject to $\frac{1}{8} \cdot x_{1}+x_{2} \leq 2,3 \cdot x_{1}+x_{2} \leq \frac{15}{2}, x_{1}, x_{2} \in \mathbb{N}$

Primal Problem

- Maximize $c^{\prime} \cdot x$

Subject to $A x \leq 0, x \in \mathbb{N}^{n}$

Questions

> How hard is ILP (any connection with general LP)?

- Are there efficient algorithms that solve at least some special instances of the problem?

Integer Programming

Decide whether, for given $m \times n$ integer matrix A and m-vector b, the conditions

$$
A x=b, x \geq 0
$$

are satisfied by some $x \in \mathbb{N}$

Connection with Other Famous NP-Complete Problems

Set Cover

>A. $x \geq \operatorname{ones}(n)(A:$ has rows the bit vectors of the sets)
$>\sum x_{i} \leq b$ (b : the budget)
$>x_{i} \in\{0,1\}$

Knapsack
$>\sum a_{i} \cdot x_{i}=B(B:$ the budget $)$
$>x_{i} \in \mathbb{N}$

From 3 SAT:
> \quad : a formula in CNF.
> introduce a variable x_{i} for every atomic variable y_{i}.
> x_{i} can only be zero (false) or one (true).
$>$ replace \wedge by \times, \vee by + , literals y_{i} by x_{i} and $\neg y_{i}$ by $1-x_{i}$.
$>$ Let Φ : be the arithmetic formula obtained
> The ILP is $\Phi \geq 1$ subject to x_{i} in $\{0,1\}$

NP-Complete Instances

Corollary

0-1 ILP is NP-Hard.

NP-Complete Instances

Corollary
 0-1 ILP is NP-Hard.

Corollary
0-1 ILP is NP-Complete (since it is NP-Hard but we can check a solution in Poly Time).

Some maths...

Theorem

Let A be an $m \times n$ integer matrix and b an m-vector, both with entrtes from $\{0, \pm 1, \ldots, \pm a\}$. Then if $A x=b$ has a solution $x \in \mathbb{N}^{n}$, it also has one in $\left\{0,1, \ldots, n(m a)^{2 m+1}\right\}^{n}$.

Some maths...

Theorem
Let A be an $m \times n$ integer matrix and b an m-vector, both with entrtes from $\{0, \pm 1, \ldots, \pm a\}$. Then if $A x=b$ has a solution $x \in \mathbb{N}^{n}$, it also has one in $\left\{0,1, \ldots, n(m a)^{2 m+1}\right\}^{n}$.

Corollary
There is a pseudopolynomial algorithm for solving $m \times n$ integer programs, with fixed m.

Dynamic Programming Algorithm

Algorithm

Solve the $m \times n$ integer program $A x=b$ by dynamic programming, proceeding in stages.
j-th stage: compute the set S_{j} of all vectors v that can be written as $\sum_{i=1}^{j} v_{i} x_{i}$, with v_{i} the i-th column of A and with the x_{i} in the range $0 \leq x_{i} \leq B$, where $B=n(m a)^{2 m+1}$.

Dynamic Programming Algorithm

Algorithm
Solve the $m \times n$ integer program $A x=b$ by dynamic programming, proceeding in stages.
j-th stage: compute the set S_{j} of all vectors v that can be written as $\sum_{i=1}^{j} v_{i} x_{i}$, with v_{i} the i-th column of A and with the x_{i} in the range $0 \leq x_{i} \leq B$, where $B=n(m a)^{2 m+1}$.

Theorem
Since the S_{j} cannot become larger than $(n B)^{m}$, the whole algorithm can be carried out in time $O\left((n B)^{m+1}\right)=O\left(n^{2 m+2}(m a)^{(m+1)(2 m+1)}\right)$, a polynomial in n and a if m is fixed.

More maths...

Theorem
Consider the following linear programming relaxation:

- Maximize $c^{\prime} \cdot x$
> Subject to $A x \leq 0, x \in \mathbb{R}^{+n}$
If the original ILP is feasible and the above problem is unbounded, then original ILP is also unbounded.

More maths...

Consider the following linear programming relaxation:

- Maximize $c^{\prime} \cdot x$
- Subject to $A x \leq 0, x \in \mathbb{R}^{+n}$

If the original ILP is feasible and the above problem is unbounded, then original ILP is also unbounded.

Theorem
Suppose that the original ILP is feasible and bounded, and let z be its optimal cost. Then $|z| \leq\left(\sum_{j=1}^{n}\left|c_{j}\right|\right) \cdot M$, where $M=n^{2}\left(m a^{2}\right)^{2 m+3}$.

Pseudopolynomial Algorithm

Theorem
There is a pseudopolynomial algorithm for finding the optimum in any $m \times n$ optimization integer program, for m fixed.

Pseudopolynomial Algorithm

Theorem
There is a pseudopolynomial algorithm for finding the optimum in any $m \times n$ optimization integer program, for m fixed.

Algorithm

Solve the problem:

- Maximize $c^{\prime} \cdot x=z$
- Subject to $A x \leq 0, x \in \mathbb{N}^{n}$
for each value of z in the range
$\left[-\left(\sum_{j=1}^{n}\left|\mathcal{C}_{j}\right|\right) \cdot M-1,\left(\sum_{j=1}^{n}\left|\mathcal{C}_{j}\right|\right) \cdot M\right]$ using the pseudopolynomial algorithm described above. Binary search would yield a better bound.

