
Turing Machines and The Chomsky Hierarchy

November 24, 2011



Grammars

I Grammar G = (Σ, N, S , R)
I Σ : set of terminal symbols
I N : set of non-terminal symbols
I S ∈ N : start symbol
I R ⊆ (Σ ∪ N)∗ × (Σ ∪ N)∗ : finite set of rules

I Relation →⊆ (Σ ∪ N)∗ × (Σ ∪ N)∗

I Relation →∗ ⊆ (Σ ∪ N)∗ × (Σ ∪ N)∗ is the reflexive-transitive
closure of →
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Languages generated by grammars

Lemma
The class of languages generated by grammars is the class of
recursively enumerable languages

I We can enumerate all possible derivations of strings from S

1. L := [S ]
2. Pop out the first element of L (call it x)
3. if x ∈ Σ∗ then print x

else for each derivation rule applicable on x add the result of
the application of the rule as the last element of L

4. if L 6= [ ] go to step 2
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Languages generated by grammars

I Grammar derivations can be used to simulate the moves of a
Turing Machine, where the string being manipulated
represents the Turing Machine’s configuration

I we define non-terminal symbols R, L
I For all ((q, σ), (q′, σ′,→)) ∈ δ we create the derivations

Sσ, q, σi → Rσ′σi , q, for all σi

I For all ((q, σ), (q′, σ′,←)) ∈ δ we create the derivation
Sσ, q,→ L, q′, σ′

I For all ((q, σ), (q′, σ′,−)) ∈ δ we create the derivation
Sσ, q → Sσ′, q′

I We create the derivations σiL→ Sσi for all σi

I We create the derivations Rσi → σiS for all σi

I For all ((q, σ), (yes, σ′,m)) we create the derivation
Sσ, q,→ σ′



x ∈ L (G )?

Lemma
Given grammar G and x ∈ Σ∗ it is undecideable whether x ∈ L (G )

I The Halting Problem (HP) is recursively enumerable so there
is a grammar G so that L (G ) = HP

I We could construct a non-deterministic Turing Machine M
that simulates the rule applications of G . . .
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Context-sensitive Grammars

Definition
A context-sensitive grammar is a grammar for which whenever
(x , y) ∈ R we have |x | ≤ |y |

Example

There is a context-sensitive grammar that generates the language
L = {xx : x ∈ Σ∗}

S → aiai

S → aiAi

S → aiSai

S → aiSAi

Aiaj → ajAi

Aiε→ aiε

where ai , aj ∈ Σ and Ai ∈ N \ {S}
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x ∈ L (G )?

Lemma
Given grammar G and x ∈ Σ∗ it is decideable whether x ∈ L (G )

There is a non-deterministic algorithm (we can construct a
non-deterministic Turing Machine) that decides this problem

1. w := S , Store := ∅
2. Choose y 6∈ Store such that w→1y

if |x | ≤ |y | then halt with “no”
else if y = x then halt with “yes”
else Store := Store ∪ {w}, w := y , repeat

Due to the restriction (x , y) =⇒ |x | ≤ |y | we need at most
|x |∑
i=0
|Σ|i

steps to surpass the length of x
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Languages generated by context-sensitive grammars

Lemma
The class of languages generated by context-sensitive grammars is
precisely NSPACE (n)

I There is a non-deterministic algorithm that decides L (G ) with
additional space n

1. Choose x1, x2, . . . , xk so that
S → x1 → x2 → · · · → xk and
|xi | ≤ |x |

2. if xk ≡ x then halt with “yes” else halt with “no”

I If a non-deterministic Turing Machine using additional space n
decides L then there is a context-sensitive G such that
L = L (G )

I The string representation of the machine’s configuration has
length n + 3 at most

I We can use t (blank) as a terminal symbol of G
I We can design the grammar rules so that the string being

manipulated has always length n + 3 (padding with t)
I But this is a context-sensitive grammar. . .
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Context-free Grammars

Definition
A grammar is context-free if, for all rules (x , y) ∈ R, x ∈ N

Example

There is a context-free grammar that generates the language of
balanced parentheses

S → SS

S → (S)

S → ()

S → ε
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x ∈ L (G )?

Lemma
Given grammar G and x ∈ Σ∗ it is in P to decide whether
x ∈ L (G ).

Papadimitriou gives a dynamic-programming algorithm which
solves this problem in polynomial time
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Right-linear Context-free Grammars

Definition
A context-free grammar is right-linear if R ⊆ N × (ΣN ∪ {ε})

Example

There is right-linear context-free languages that generates all
strings of 1, 0 that end in 101

S → 0S

S → 1S

S → 1A

A→ 0B

B → 1C

C → ε



Right-linear Context-free Grammars

Definition
A context-free grammar is right-linear if R ⊆ N × (ΣN ∪ {ε})

Example

There is right-linear context-free languages that generates all
strings of 1, 0 that end in 101

S → 0S

S → 1S

S → 1A

A→ 0B

B → 1C

C → ε



Languages generated by right-linear context-free grammars

Lemma
The class of languages generated by right-linear context-free
grammars are precisely the regular languages

I For every such grammar G we can contruct a NFA that
accepts L (G )

1. For every non-terminal symbol of G we create a new state for
the NFA

2. For every rule A→ aB we create a transition As
a→ Bs

3. For every rule A→ ε we define state As to be an accepting
state

I For every language L accepted by a DFA we can contruct a
right-linear contex-free grammar G such that L = L (G )

1. For every transition q
a→ p we create a rule Q → aP

(we add Q, P in N if they are not already there)
2. For every accepting state q we create a rule Q → ε

(we add Q in N if it is not already there)
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