Turing Machines and The Chomsky Hierarchy

November 24, 2011

Grammars

• Grammar $G = (\Sigma, N, S, R)$

- Σ : set of terminal symbols
- ► N : set of non-terminal symbols
- $S \in N$: start symbol
- $R \subseteq (\Sigma \cup N)^* \times (\Sigma \cup N)^*$: finite set of rules

Grammars

• Grammar $G = (\Sigma, N, S, R)$

- Σ : set of terminal symbols
- ► N : set of non-terminal symbols
- $S \in N$: start symbol
- $R \subseteq (\Sigma \cup N)^* \times (\Sigma \cup N)^*$: finite set of rules

► Relation $\rightarrow \subseteq (\Sigma \cup N)^* \times (\Sigma \cup N)^*$

Grammars

• Grammar $G = (\Sigma, N, S, R)$

- Σ : set of terminal symbols
- N : set of non-terminal symbols
- $S \in N$: start symbol
- $R \subseteq (\Sigma \cup N)^* \times (\Sigma \cup N)^*$: finite set of rules
- ► Relation $\rightarrow \subseteq (\Sigma \cup N)^* \times (\Sigma \cup N)^*$
- ► Relation →* ⊆ (Σ ∪ N)* × (Σ ∪ N)* is the reflexive-transitive closure of →

Languages generated by grammars

Lemma

The class of languages generated by grammars is the class of recursively enumerable languages

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Languages generated by grammars

Lemma

The class of languages generated by grammars is the class of recursively enumerable languages

- \blacktriangleright We can enumerate all possible derivations of strings from S
 - 1. L := [S]
 - 2. Pop out the first element of L (call it x)
 - if x ∈ Σ* then print x else for each derivation rule applicable on x add the result of the application of the rule as the last element of L

4. if $L \neq []$ go to step 2

Languages generated by grammars

- Grammar derivations can be used to simulate the moves of a Turing Machine, where the string being manipulated represents the Turing Machine's configuration
 - ▶ we define non-terminal symbols R, L
 - ► For all $((q, \sigma), (q', \sigma', \rightarrow)) \in \delta$ we create the derivations $S\sigma, q, \sigma_i \rightarrow R\sigma'\sigma_i, q$, for all σ_i
 - ► For all $((q, \sigma), (q', \sigma', \leftarrow)) \in \delta$ we create the derivation $S\sigma, q, \rightarrow L, q', \sigma'$
 - ► For all $((q, \sigma), (q', \sigma', -)) \in \delta$ we create the derivation $S\sigma, q \to S\sigma', q'$
 - We create the derivations $\sigma_i L \rightarrow S \sigma_i$ for all σ_i
 - We create the derivations $R\sigma_i \rightarrow \sigma_i S$ for all σ_i
 - ► For all $((q, \sigma), (yes, \sigma', m))$ we create the derivation $S\sigma, q, \rightarrow \sigma'$

Lemma

Given grammar G and $x \in \Sigma^*$ it is undecideable whether $x \in L(G)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma

Given grammar G and $x \in \Sigma^*$ it is undecideable whether $x \in L(G)$

The Halting Problem (HP) is recursively enumerable so there is a grammar G so that L(G) = HP

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Lemma

Given grammar G and $x \in \Sigma^*$ it is undecideable whether $x \in L(G)$

The Halting Problem (HP) is recursively enumerable so there is a grammar G so that L(G) = HP

▶ We could construct a non-deterministic Turing Machine M that simulates the rule applications of G

Context-sensitive Grammars

Definition

A context-sensitive grammar is a grammar for which whenever $(x, y) \in R$ we have $|x| \le |y|$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Context-sensitive Grammars

Definition

A context-sensitive grammar is a grammar for which whenever $(x, y) \in R$ we have $|x| \le |y|$

Example

There is a context-sensitive grammar that generates the language $L = \{xx: x \in \Sigma^*\}$

$$S
ightarrow a_i a_i$$

 $S
ightarrow a_i A_i$
 $S
ightarrow a_i S a_i$
 $S
ightarrow a_i S A_i$
 $A_i a_j
ightarrow a_j A_i$
 $A_i \epsilon
ightarrow a_i \epsilon$

where $a_i, a_j \in \Sigma$ and $A_i \in N \setminus \{S\}$

Lemma

Given grammar G and $x \in \Sigma^*$ it is decideable whether $x \in L(G)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma

Given grammar G and $x \in \Sigma^*$ it is decideable whether $x \in L(G)$

There is a non-deterministic algorithm (we can construct a non-deterministic Turing Machine) that decides this problem

Lemma

Given grammar G and $x \in \Sigma^*$ it is decideable whether $x \in L(G)$

There is a non-deterministic algorithm (we can construct a non-deterministic Turing Machine) that decides this problem

1.
$$w := S$$
, Store $:= \emptyset$

2. Choose
$$y \notin Store$$
 such that $w \rightarrow {}^{1}y$
if $|x| \leq |y|$ then *halt* with "no"
else if $y = x$ then *halt* with "yes"
else *Store* := *Store* $\cup \{w\}, w := y$, *repeate*

Lemma

Given grammar G and $x \in \Sigma^*$ it is decideable whether $x \in L(G)$

There is a non-deterministic algorithm (we can construct a non-deterministic Turing Machine) that decides this problem

1.
$$w := S$$
, Store $:= \emptyset$

Due to the restriction $(x, y) \Longrightarrow |x| \le |y|$ we need at most $\sum_{i=0}^{|x|} |\Sigma|^i$ steps to surpass the length of x

Languages generated by context-sensitive grammars

Lemma

The class of languages generated by context-sensitive grammars is precisely **NSPACE** (n)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Languages generated by context-sensitive grammars

Lemma

The class of languages generated by context-sensitive grammars is precisely NSPACE(n)

There is a non-deterministic algorithm that decides L(G) with additional space n

1. Choose
$$x_1, x_2, \ldots, x_k$$
 so that
 $S \to x_1 \to x_2 \to \cdots \to x_k$ and
 $|x_i| \le |x|$

2. if
$$x_k \equiv x$$
 then *halt* with "yes" else *halt* with "no"

Languages generated by context-sensitive grammars

Lemma

The class of languages generated by context-sensitive grammars is precisely NSPACE(n)

- There is a non-deterministic algorithm that decides L(G) with additional space n
 - 1. Choose x_1, x_2, \ldots, x_k so that

$$S \to x_1 \to x_2 \to \cdots \to x_k$$
 and

$$|x_i| \leq |x|$$

- 2. if $x_k \equiv x$ then *halt* with "yes" else *halt* with "no"
- If a non-deterministic Turing Machine using additional space n decides L then there is a context-sensitive G such that L = L(G)
 - The string representation of the machine's configuration has length n + 3 at most
 - We can use \sqcup (blank) as a terminal symbol of G
 - We can design the grammar rules so that the string being manipulated has always length n + 3 (padding with □)
 - But this is a context-sensitive grammar...

Context-free Grammars

Definition

A grammar is context-free if, for all rules $(x, y) \in R$, $x \in N$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Context-free Grammars

Definition

A grammar is context-free if, for all rules $(x, y) \in R$, $x \in N$

Example

There is a context-free grammar that generates the language of balanced parentheses

$$S \rightarrow SS$$

 $S \rightarrow (S)$
 $S \rightarrow ()$
 $S \rightarrow \epsilon$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Lemma

Given grammar G and $x \in \Sigma^*$ it is in **P** to decide whether $x \in L(G)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma

Given grammar G and $x \in \Sigma^*$ it is in **P** to decide whether $x \in L(G)$.

Papadimitriou gives a dynamic-programming algorithm which solves this problem in polynomial time

Right-linear Context-free Grammars

Definition

A context-free grammar is right-linear if $R \subseteq N \times (\Sigma N \cup \{\epsilon\})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Right-linear Context-free Grammars

Definition

A context-free grammar is right-linear if $R \subseteq N \times (\Sigma N \cup \{\epsilon\})$

Example

There is right-linear context-free languages that generates all strings of 1, 0 that end in 101

$$S \rightarrow 0S$$

$$S \rightarrow 1S$$

$$S \rightarrow 1A$$

$$A \rightarrow 0B$$

$$B \rightarrow 1C$$

$$C \rightarrow \epsilon$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Languages generated by right-linear context-free grammars

Lemma

The class of languages generated by right-linear context-free grammars are precisely the regular languages

Languages generated by right-linear context-free grammars

Lemma

The class of languages generated by right-linear context-free grammars are precisely the regular languages

- ► For every such grammar G we can contruct a NFA that accepts L(G)
 - 1. For every non-terminal symbol of G we create a new state for the NFA
 - 2. For every rule $A \rightarrow aB$ we create a transition $A_s \xrightarrow{a} B_s$
 - 3. For every rule $A \rightarrow \epsilon$ we define state A_s to be an accepting state

Languages generated by right-linear context-free grammars

Lemma

The class of languages generated by right-linear context-free grammars are precisely the regular languages

- ► For every such grammar G we can contruct a NFA that accepts L(G)
 - 1. For every non-terminal symbol of G we create a new state for the NFA
 - 2. For every rule $A \rightarrow aB$ we create a transition $A_s \stackrel{a}{\rightarrow} B_s$
 - 3. For every rule $A \rightarrow \epsilon$ we define state A_s to be an accepting state

- ► For every language L accepted by a DFA we can contruct a right-linear contex-free grammar G such that L = L(G)
 - 1. For every transition $q \xrightarrow{a} p$ we create a rule $Q \rightarrow aP$ (we add Q, P in N if they are not already there)
 - 2. For every accepting state q we create a rule $Q \rightarrow \epsilon$ (we add Q in N if it is not already there)