Vlachos Vagios

 $\mu\Pi\lambda\forall$

Algorithms and Complexity II

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Definitions For $k \ge 0$,

$$L = \{x | \exists x_1 \forall x_2 \dots Q_k x_k R(x_1, \dots, x_k, x)\}$$

where R is recursive relation, and

$$Q_k = egin{cases} \exists, & ext{if } k ext{ is odd} \ orall, & ext{if } k ext{ is even} \end{cases}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

and also $x_i, \forall i \in \{1, \dots, k\}$ are tuples of natural numbers. $\Pi_k^0 = \mathbf{co} \Sigma_k^0$ $\Delta_k^0 = \Sigma_k^0 \cap \Pi_k^0$

Definitions For $k \ge 0$,

•
$$\Sigma_k^0$$
 is the class of languages

$$L = \{x | \exists x_1 \forall x_2 \dots Q_k x_k R(x_1, \dots, x_k, x)\}$$

where R is recursive relation, and

$$Q_k = egin{cases} \exists, & ext{if } k ext{ is odd} \ orall, & ext{if } k ext{ is even} \end{cases}$$

and also $x_i, \forall i \in \{1, \dots, k\}$ are tuples of natural numbers. • $\Pi_k^0 = \mathbf{co} \Sigma_k^0$ • $\Delta_k^0 = \Sigma_k^0 \cap \Pi_k^0$

◆□> <圖> < => < => < => < => < <</p>

Definitions For $k \ge 0$,

$$L = \{x | \exists x_1 \forall x_2 \dots Q_k x_k R(x_1, \dots, x_k, x)\}$$

where R is recursive relation, and

$$Q_k = egin{cases} \exists, & ext{if } k ext{ is odd} \ orall, & ext{if } k ext{ is even} \end{cases}$$

and also $x_i, \forall i \in \{1, \dots, k\}$ are tuples of natural numbers.

$$\Pi_k^0 = \mathbf{co}\Sigma_k^0$$

$$\Delta_k^0 = \Sigma_k^0 \cap \Pi_k^0$$

$$L \in \Sigma_k^0 \Rightarrow \overline{L} = \{ x | \neg (\exists x_1 \forall x_2 \dots Q_k x_k R(x_1, x_2, \dots, x_k, x)) \} \Rightarrow \\ \overline{L} \{ x | \forall x_1 \exists x_2 \dots Q'_k x_k \neg R(x_1, x_2, \dots, x_k, x) \}$$

- $L_1 \in \Sigma_0^0 \Rightarrow L_1 = \{ x | R(x) \} \Rightarrow \Sigma_0^0 = \mathbf{R}$
- Prenex normal form
 - Tarski Kuratowski algorithm
 - praenexus "tied or bound up in front", past participle of praenectere

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$$L \in \Sigma_k^0 \Rightarrow \overline{L} = \{ x | \neg (\exists x_1 \forall x_2 \dots Q_k x_k R(x_1, x_2, \dots, x_k, x)) \} \Rightarrow \\ \overline{L} \{ x | \forall x_1 \exists x_2 \dots Q'_k x_k \neg R(x_1, x_2, \dots, x_k, x) \}$$

•
$$L_1 \in \Sigma_0^0 \Rightarrow L_1 = \{x | R(x)\} \Rightarrow \Sigma_0^0 = \mathbf{R}$$

- $\quad \overline{L_1} \in \Pi_0^0 \Rightarrow \overline{L_1} = \{ x | \neg R(x) \} \Rightarrow \Pi_0^0 = \mathbf{R}$
- Prenex normal form
 - Tarski Kuratowski algorithm
 - praenexus "tied or bound up in front", past participle of praenectere

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$L \in \Sigma_k^0 \Rightarrow \overline{L} = \{ x | \neg (\exists x_1 \forall x_2 \dots Q_k x_k R(x_1, x_2, \dots, x_k, x)) \} \Rightarrow \\ \overline{L} \{ x | \forall x_1 \exists x_2 \dots Q'_k x_k \neg R(x_1, x_2, \dots, x_k, x) \}$$

$$L_1 \in \Sigma_0^0 \Rightarrow L_1 = \{x | R(x)\} \Rightarrow \Sigma_0^0 = \mathbf{R}$$

- $\bar{L_1} \in \Pi_0^0 \Rightarrow \bar{L_1} = \{x | \neg R(x)\} \Rightarrow \Pi_0^0 = \mathbf{R}$
- Prenex normal form
 - Tarski Kuratowski algorithm
 - praenexus "tied or bound up in front", past participle of praenectere

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$$L \in \Sigma_k^0 \Rightarrow \overline{L} = \{ x | \neg (\exists x_1 \forall x_2 \dots Q_k x_k R(x_1, x_2, \dots, x_k, x)) \} \Rightarrow \\ \overline{L} \{ x | \forall x_1 \exists x_2 \dots Q'_k x_k \neg R(x_1, x_2, \dots, x_k, x) \}$$

$$L_1 \in \Sigma_0^0 \Rightarrow L_1 = \{x | R(x)\} \Rightarrow \Sigma_0^0 = \mathbf{R}$$

Prenex normal form

- Tarski Kuratowski algorithm
- praenexus "tied or bound up in front", past participle of praenectere

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A proof for $\Sigma_1^0 = \mathbf{RE}$ $L \in \Sigma_1^0 \Rightarrow L = \{x | \exists y R(y, x)\}$ $\Sigma_1^0 \subseteq \mathbf{RE}$

- *M_R* TM which decides *R*
- We construct M_L as below
 - on input $\langle x \rangle$
 - run M_R for $\langle y = \varepsilon, x \rangle$ if it accepts M_L accepts, else
 - run M_R for the lexicographicaly next y

 $\mathsf{RE} \subseteq \Sigma_1^0$

Theorem *Let* $L \in \mathbf{RE}$ *, then*

 $n \in L \iff (\exists (m_1, m_2, \ldots, m_k) (P(m_1, m_2, \ldots, m_k, n) = 0))$

for some k and for P some Diophantine equation.

A proof for $\Sigma_1^0 = \mathbf{RE}$ $L \in \Sigma_1^0 \Rightarrow L = \{x | \exists y R(y, x)\}$ $\Sigma_1^0 \subseteq \mathbf{RE}$

- *M_R* TM which decides *R*
- We construct M_L as below
 - on input $\langle x \rangle$
 - run M_R for $\langle y = \varepsilon, x \rangle$ if it accepts M_L accepts, else
 - run M_R for the lexicographicaly next y

 $\mathsf{RE} \subseteq \Sigma_1^0$

Theorem Let $L \in \mathbf{RE}$, then

$$n \in L \iff (\exists (m_1, m_2, \ldots, m_k) (P(m_1, m_2, \ldots, m_k, n) = 0))$$

for some k and for P some Diophantine equation.

A first step to show the hierarchy

Theorem For all $i, \Sigma_{i+1}^0 \supseteq \Sigma_i^0, \Pi_i^0$

Proof.

Use "dummy" quantifiers.

Figure: The Arithmetical Hierarchy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Upper bounds in AH and some known problems

Showing upper bounds is generally an easy task

 $\models HALT \equiv H = \{ \langle M, x \rangle | M(x) \downarrow \} = \{ \langle M, x \rangle | \exists t M(x) \downarrow^t \}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- $HALT \in \Sigma_1^0 = \mathbf{RE}$
- we already know that $HALT \notin \mathbf{R}$
- $\mathsf{K} = \{ \langle M \rangle | M(M) \downarrow \} = \{ \langle M \rangle | \exists t M(M) \downarrow^t \} \in \Sigma_1^0$
 - $K = \{x | \varphi_x(x) \downarrow\} = \{x | \exists t \varphi_x(x) \downarrow^t\}$

Upper bounds in AH and some known problems

- Showing upper bounds is generally an easy task
- $HALT \equiv H = \{ \langle M, x \rangle | M(x) \downarrow \} = \{ \langle M, x \rangle | \exists t M(x) \downarrow^t \}$

- $HALT \in \Sigma_1^0 = \mathbf{RE}$
- we already know that $HALT \notin \mathbf{R}$
- $K = \{ \langle M \rangle | M(M) \downarrow \} = \{ \langle M \rangle | \exists t M(M) \downarrow^t \} \in \Sigma_1^0$

• $K = \{x | \varphi_x(x) \downarrow\} = \{x | \exists t \varphi_x(x) \downarrow^t\}$

Upper bounds in AH and some known problems

- Showing upper bounds is generally an easy task
- $HALT \equiv H = \{ \langle M, x \rangle | M(x) \downarrow \} = \{ \langle M, x \rangle | \exists t M(x) \downarrow^t \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- $HALT \in \Sigma_1^0 = \mathbf{RE}$
- we already know that $HALT \notin \mathbf{R}$

The power from below

Fact We can enumerate languages in $RE = \Sigma_1^0$ using a TM

Question. Can we enumerate/decide languages of higher hierarchy?

Question. How much "stronger" we have to make a TM to be able to enumerate/decide a language in Σ_n^0 ?

Question. How can we make a TM "stronger"?

Answer. We will give to TMs the power to decide *difficult* problems (Oracles)

ション ふゆ アメリア メリア しょうくしゃ

The power from below

Fact We can enumerate languages in $RE = \Sigma_1^0$ using a TM Question. Can we enumerate/decide languages of higher hierarchy? Question. How much "stronger" we have to make a TM to be able to enumerate/decide a language in Σ_n^0 ?

ション ふゆ アメリア メリア しょうくしゃ

The power from below

Fact We can enumerate languages in $RE = \Sigma_1^0$ using a TM Question. Can we enumerate/decide languages of higher hierarchy? Question. How much "stronger" we have to make a TM to be able to enumerate/decide a language in Σ_n^0 ? Question. How can we make a TM "stronger"? Answer. We will give to TMs the power to decide *difficult* problems (Oracles)

Oracles and the AH

Let $L \in \Sigma_2^0$. Then $L = \{x | \exists y \forall z R(y, z, x)\}$ where R is a recursive predicate.

▶ We construct first the TM *M*,

- 1. *M* gets an input $\langle y, x \rangle$
- 2. then by dovetailing check for all z if R(y,z,x) = 1. If at any step R = 0 M rejects.
- We construct now the TM M_L ,
 - 1. M_L gets an input $\langle x \rangle$
 - 2. lexicographically gets a y and put as input in $M\langle y,x\rangle$
 - then M' goes into the special state, if the next state is q_{"yes}" then we go to (2) and try the next y, if the next state is q_{"no}" then then M' accepts.

Oracles and the AH

Let $L \in \Sigma_2^0$. Then $L = \{x | \exists y \forall z R(y, z, x)\}$ where R is a recursive predicate.

- We construct first the TM M,
 - 1. *M* gets an input $\langle y, x \rangle$
 - 2. then by dovetailing check for all z if R(y,z,x) = 1. If at any step R = 0 M rejects.
- We construct now the TM M_L ,
 - 1. M_L gets an input $\langle x \rangle$
 - 2. lexicographically gets a y and put as input in $M \langle y, x \rangle$
 - then M' goes into the special state, if the next state is q["]yes" then we go to (2) and try the next y, if the next state is q["]no" then then M' accepts.

Theorem

The languages in Σ_2^0 can be enumerated by a TM^H where H is an oracle for the Halting problem.

Can we do something similar to this with languages in Σ_n^0 for n > 2?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Yes, we can.

Theorem

The languages in Σ_2^0 can be enumerated by a TM^H where H is an oracle for the Halting problem.

Can we do something similar to this with languages in Σ_n^0 for n > 2?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Yes, we can.

Theorem

The languages in Σ_2^0 can be enumerated by a TM^H where H is an oracle for the Halting problem.

Can we do something similar to this with languages in Σ_n^0 for n > 2?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Yes, we can.

Let's Jump

Definition

Let A a language. Then we define $A' = K^A = \{x | \varphi_x^A(x) \downarrow\}$. A' is called *jump* of A, and $A^{(n)}$ is the *n*th jump of A.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

$$\blacktriangleright \ \emptyset' := K = \{ x | \varphi_x(x) \downarrow \}.$$

Theorem $\emptyset^{(n)}$ is \leq_m -complete for Σ_n^0 , for $n \geq 1$.

Proof. By inductior

Let's Jump

Definition

Let A a language. Then we define $A' = K^A = \{x | \varphi_x^A(x) \downarrow\}$. A' is called *jump* of A, and $A^{(n)}$ is the *n*th jump of A.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

$$\blacktriangleright \ \emptyset' := K = \{ x | \varphi_x(x) \downarrow \}.$$

Theorem $\emptyset^{(n)}$ is \leq_m -complete for Σ_n^0 , for $n \geq 1$.

Proof.

By induction.

 $\emptyset' = K$ is complete in $\Sigma_1^0 = \mathbf{RE}$. By induction it suffices to show that K^A is Σ_{n+1}^0 -complete when A is Σ_n^0 -complete.

$$\mathcal{K}^{\mathcal{A}} = \left\{ x | \varphi_{x}^{\mathcal{A}}(x) \right\} = \left\{ x | (\exists t) \varphi_{x}^{\mathcal{A}}(x) \downarrow^{t} \right\}$$

 $K^A \in \Sigma^0_{n+1}$. Need to show that K^A is Σ^0_{n+1} -hard when A is Σ^0_n -hard.

- ► Let $B \in \Sigma_{n+1}^0$, $B = \{x | \exists y \langle x, y \rangle \in C\}$ where $C \in \Pi_n^0$.
- A is Σ_n^0 -hard so \overline{A} is Π_n^0 -hard
- exists mapping $\sigma(\langle x, y \rangle) \in \bar{A} \iff \langle x, y \rangle \in C$

 $\emptyset' = K$ is complete in $\Sigma_1^0 = \mathbf{RE}$. By induction it suffices to show that K^A is Σ_{n+1}^0 -complete when A is Σ_n^0 -complete.

$$\mathcal{K}^{\mathcal{A}} = \left\{ x | \varphi_{x}^{\mathcal{A}}(x) \right\} = \left\{ x | (\exists t) \varphi_{x}^{\mathcal{A}}(x) \downarrow^{t} \right\}$$

 $K^A \in \Sigma^0_{n+1}$. Need to show that K^A is Σ^0_{n+1} -hard when A is Σ^0_n -hard.

► Let $B \in \Sigma_{n+1}^0$, $B = \{x | \exists y \langle x, y \rangle \in C\}$ where $C \in \Pi_n^0$.

• A is Σ_n^0 -hard so \overline{A} is Π_n^0 -hard

• exists mapping $\sigma(\langle x, y \rangle) \in \bar{A} \iff \langle x, y \rangle \in C$

 $\emptyset' = K$ is complete in $\Sigma_1^0 = \mathbf{RE}$. By induction it suffices to show that K^A is Σ_{n+1}^0 -complete when A is Σ_n^0 -complete.

$$\mathcal{K}^{\mathcal{A}} = \left\{ x | \varphi_{x}^{\mathcal{A}}(x) \right\} = \left\{ x | (\exists t) \varphi_{x}^{\mathcal{A}}(x) \downarrow^{t} \right\}$$

 $K^A \in \Sigma^0_{n+1}$. Need to show that K^A is Σ^0_{n+1} -hard when A is Σ^0_n -hard.

► Let $B \in \Sigma_{n+1}^0$, $B = \{x | \exists y \langle x, y \rangle \in C\}$ where $C \in \Pi_n^0$.

• A is Σ_n^0 -hard so \overline{A} is Π_n^0 -hard

• exists mapping $\sigma(\langle x, y \rangle) \in \overline{A} \iff \langle x, y \rangle \in C$

 $\emptyset' = K$ is complete in $\Sigma_1^0 = \mathbf{RE}$. By induction it suffices to show that K^A is Σ_{n+1}^0 -complete when A is Σ_n^0 -complete.

$$\mathcal{K}^{\mathcal{A}} = \left\{ x | \varphi_{x}^{\mathcal{A}}(x) \right\} = \left\{ x | (\exists t) \varphi_{x}^{\mathcal{A}}(x) \downarrow^{t} \right\}$$

 $K^A \in \Sigma^0_{n+1}$. Need to show that K^A is Σ^0_{n+1} -hard when A is Σ^0_n -hard.

- ► Let $B \in \Sigma_{n+1}^0$, $B = \{x | \exists y \langle x, y \rangle \in C\}$ where $C \in \Pi_n^0$.
- A is Σ_n^0 -hard so \overline{A} is Π_n^0 -hard

• exists mapping $\sigma(\langle x,y \rangle) \in \bar{A} \iff \langle x,y \rangle \in C$

Still Jumping...

- Now we define a mapping τ that is on x, τ(x) is the index of a TM M^A which on any input,
 - enumerates y = 0, 1, 2, ...
 - compute $\sigma(\langle x, y \rangle)$
 - ▶ ask oracle if $\sigma(\langle x, y \rangle) \notin A$ and if it says *yes* then M^A halt.

$$\begin{aligned} x \in B \iff \exists x \langle x, y \rangle \in C \\ \iff \exists y \, \sigma \left(\langle x, y \rangle \right) \notin A \\ \iff \phi^A_{\tau(x)}(\tau(x)) \downarrow \\ \iff \tau(x) \in K^A \end{aligned}$$

So τ consists a reduction from B to K^A , and K^A is Σ^0_{n+1} -hard.

Still Jumping...

- Now we define a mapping τ that is on x, τ(x) is the index of a TM M^A which on any input,
 - enumerates y = 0, 1, 2, ...
 - compute $\sigma(\langle x, y \rangle)$
 - ▶ ask oracle if $\sigma(\langle x, y \rangle) \notin A$ and if it says *yes* then M^A halt.

$$egin{aligned} x \in B & \Longleftrightarrow \ \exists x \, \langle x, y
angle \in C \ & \Leftrightarrow \ \exists y \, \sigma(\langle x, y
angle)
otin A \ & \Leftrightarrow \ \phi^A_{ au(x)}(au(x)) \downarrow \ & \Leftrightarrow \ au(x) \in K^A \end{aligned}$$

So τ consists a reduction from B to K^A , and K^A is Σ^0_{n+1} -hard.

ション ふゆ アメリア メリア しょうくしゃ

Still Jumping...

- Now we define a mapping τ that is on x, τ(x) is the index of a TM M^A which on any input,
 - enumerates y = 0, 1, 2, ...
 - compute $\sigma(\langle x, y \rangle)$
 - ▶ ask oracle if $\sigma(\langle x, y \rangle) \notin A$ and if it says *yes* then M^A halt.

$$egin{aligned} & x \in B \iff \exists x \ \langle x, y
angle \in C \ \iff \exists y \, \sigma(\langle x, y
angle)
otin A \ \iff \phi^A_{ au(x)}(au(x))
otin A \ \iff au(x) \in \mathcal{K}^A \end{aligned}$$

ション ふゆ アメリア メリア しょうくしゃ

So τ consists a reduction from B to K^A , and K^A is \sum_{n+1}^{0} -hard.

A part of Jump's Theorem

Theorem If A is \leq_m -complete for Σ_n^0 , then $A' \notin \Sigma_n^0$.

Proof.

Suppose $A' = K^A \in \Sigma_n^0$. Because A is \leq_m -complete for Σ_n^0 there is mapping σ s.t.

$$x \in K^A \iff \sigma(x) \in A$$

Let M^A be TM with an oracle for A that halts on y iff $\sigma(y) \in A$

$$\sigma\left(\left\langle M^{A}\right\rangle\right) \in A \iff \left\langle M^{A}\right\rangle \in K^{A}$$
$$\iff M^{A}\left(\left\langle M^{A}\right\rangle\right) \downarrow$$
$$\iff \sigma\left(\left\langle M^{A}\right\rangle\right) \notin A$$

A part of Jump's Theorem

Theorem If A is \leq_m -complete for Σ_n^0 , then $A' \notin \Sigma_n^0$.

Proof.

Suppose $A' = K^A \in \Sigma_n^0$. Because A is \leq_m -complete for Σ_n^0 there is mapping σ s.t.

$$x \in K^A \iff \sigma(x) \in A$$

Let M^A be TM with an oracle for A that halts on y iff $\sigma(y) \in A$

$$\sigma\left(\left\langle M^{A}\right\rangle\right) \in A \iff \left\langle M^{A}\right\rangle \in K^{A}$$
$$\iff M^{A}\left(\left\langle M^{A}\right\rangle\right) \downarrow$$
$$\iff \sigma\left(\left\langle M^{A}\right\rangle\right) \notin A$$

A part of Jump's Theorem

Theorem If A is \leq_m -complete for Σ_n^0 , then $A' \notin \Sigma_n^0$.

Proof.

Suppose $A' = K^A \in \Sigma_n^0$. Because A is \leq_m -complete for Σ_n^0 there is mapping σ s.t.

$$x \in K^A \iff \sigma(x) \in A$$

Let M^A be TM with an oracle for A that halts on y iff $\sigma(y) \in A$

$$\sigma\left(\left\langle M^{A}\right\rangle\right) \in A \iff \left\langle M^{A}\right\rangle \in K^{A}$$
$$\iff M^{A}\left(\left\langle M^{A}\right\rangle\right) \downarrow$$
$$\iff \sigma\left(\left\langle M^{A}\right\rangle\right) \notin A$$

Theorem of Arithmetical Hierarchy

Theorem Arithmetical Hierachy does not collapse.

Proof. $\emptyset^{(n)} \in \Sigma_n^0 \setminus \Pi_n^0$ and $\overline{\emptyset^{(n)}} \in \Pi_n^0 \setminus \Sigma_n^0$. Then $(\forall n > 0) [\Delta_n^0 \subset \Sigma_n^0 \& \Delta_n^0 \subset \Pi_n^0)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem of Arithmetical Hierarchy

Theorem Arithmetical Hierachy does not collapse.

Proof. $\emptyset^{(n)} \in \Sigma_n^0 \setminus \Pi_n^0 \text{ and } \emptyset^{\overline{(n)}} \in \Pi_n^0 \setminus \Sigma_n^0.$ Then $(\forall n > 0) [\Delta_n^0 \subset \Sigma_n^0 \& \Delta_n^0 \subset \Pi_n^0]$

ション ふゆ く 山 マ チャット しょうくしゃ

Post's Theorem

Theorem

For $n \ge 0$,

1. $B \in \Sigma_{n+1}^{0} \iff B$ is r.e. in some $\prod_{n=1}^{0} Set \iff B$ is r.e in some Σ_{n}^{0} set

2.
$$\emptyset^{(n)}$$
 is Σ_n^0 -complete for $n > 0$

3.
$$B \in \Sigma_{n+1}^0 \iff$$
 is r.e. in $\emptyset^{(n)}$

- 4. $B \in \Delta_{n+1}^{0} \iff B \leq_{T} \emptyset^{(n)} \iff$ is decided in $\emptyset^{(n)}$
 - ▶ A language in Σ_{n+1}^{0} can be enumerated by a TM^{A} where $A \in \Sigma_{n}^{0}$
 - ► A language in Δ_{n+1}^0 can be decided by a TM^A where $A \in \Sigma_n^0$

Post's Theorem

Theorem

For $n \ge 0$,

1. $B \in \Sigma_{n+1}^{0} \iff B$ is r.e. in some $\prod_{n=1}^{0} Set \iff B$ is r.e in some Σ_{n}^{0} set

2.
$$\emptyset^{(n)}$$
 is Σ_n^0 -complete for $n > 0$

3.
$$B \in \Sigma_{n+1}^0 \iff$$
 is r.e. in $\emptyset^{(n)}$

- 4. $B \in \Delta_{n+1}^{0} \iff B \leq_{T} \emptyset^{(n)} \iff$ is decided in $\emptyset^{(n)}$
 - ▶ A language in Σ_{n+1}^0 can be enumerated by a TM^A where $A \in \Sigma_n^0$
 - A language in Δ_{n+1}^0 can be decided by a TM^A where $A \in \Sigma_n^0$

$TOTAL = \{ \langle M \rangle \, | \, L(M) = \Sigma^* \} = \{ \langle M \rangle \, | \, \varphi_M \text{ is total} \}$

- $TOTAL = \{ \langle M \rangle \, | \, (\forall x \in \Sigma^*) \, (\exists t \in \mathbb{N}) \, M(x) \, \downarrow^t \} \in \Pi_2^0$
- Let $A \in \Pi_2$
 - $\blacktriangleright x \in A \iff (\forall y) (\exists z) R(y, z, x)$

► exists
$$f(x)$$
 s.t. $\varphi_{f(x)}(u) = \begin{cases} 0, & \text{if } (\forall y \le u) (\exists z) R(y, z, x) \\ \uparrow, & \text{otherwise} \end{cases}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- $x \in A \Rightarrow f(x)$ total
- ▶ also if $x \in \overline{A} \Rightarrow L_{f(x)}$ finite (!) $\Rightarrow f(x)$ finite

$$TOTAL = \{ \langle M \rangle \, | \, L(M) = \Sigma^* \} = \{ \langle M \rangle \, | \, \varphi_M \text{ is total} \}$$

- ► $TOTAL = \{ \langle M \rangle | (\forall x \in \Sigma^*) (\exists t \in \mathbb{N}) M(x) \downarrow^t \} \in \Pi_2^0 \}$
- Let $A \in \Pi_2$
 - $\blacktriangleright x \in A \iff (\forall y) (\exists z) R(y, z, x)$

► exists
$$f(x)$$
 s.t. $\varphi_{f(x)}(u) = \begin{cases} 0, & \text{if } (\forall y \le u) (\exists z) R(y, z, x) \\ \uparrow, & \text{otherwise} \end{cases}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- $x \in A \Rightarrow f(x)$ total
- ▶ also if $x \in \overline{A} \Rightarrow L_{f(x)}$ finite $(!) \Rightarrow f(x)$ finite

$$TOTAL = \{ \langle M \rangle | L(M) = \Sigma^* \} = \{ \langle M \rangle | \varphi_M \text{ is total} \}$$

- ► $TOTAL = \{ \langle M \rangle | (\forall x \in \Sigma^*) (\exists t \in \mathbb{N}) M(x) \downarrow^t \} \in \Pi_2^0 \}$
- Let $A \in \Pi_2$
 - $x \in A \iff (\forall y)(\exists z) R(y, z, x)$

► exists
$$f(x)$$
 s.t. $\varphi_{f(x)}(u) = \begin{cases} 0, & \text{if } (\forall y \le u) (\exists z) R(y, z, x) \\ \uparrow, & \text{otherwise} \end{cases}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- $x \in A \Rightarrow f(x)$ total
- ▶ also if $x \in \overline{A} \Rightarrow L_{f(x)}$ finite (!) $\Rightarrow f(x)$ finite

$$TOTAL = \{ \langle M \rangle | L(M) = \Sigma^* \} = \{ \langle M \rangle | \varphi_M \text{ is total} \}$$

- ► $TOTAL = \{ \langle M \rangle | (\forall x \in \Sigma^*) (\exists t \in \mathbb{N}) M(x) \downarrow^t \} \in \Pi_2^0 \}$
- Let $A \in \Pi_2$
 - $x \in A \iff (\forall y) (\exists z) R(y, z, x)$

► exists
$$f(x)$$
 s.t. $\varphi_{f(x)}(u) = \begin{cases} 0, & \text{if } (\forall y \le u) (\exists z) R(y, z, x) \\ \uparrow, & \text{otherwise} \end{cases}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• $x \in A \Rightarrow f(x)$ total

► also if $x \in \overline{A} \Rightarrow L_{f(x)}$ finite $(!) \Rightarrow f(x)$ finite

$$TOTAL = \{ \langle M \rangle | L(M) = \Sigma^* \} = \{ \langle M \rangle | \varphi_M \text{ is total} \}$$

- ► $TOTAL = \{ \langle M \rangle | (\forall x \in \Sigma^*) (\exists t \in \mathbb{N}) M(x) \downarrow^t \} \in \Pi_2^0 \}$
- Let $A \in \Pi_2$
 - $x \in A \iff (\forall y)(\exists z) R(y, z, x)$

► exists
$$f(x)$$
 s.t. $\varphi_{f(x)}(u) = \begin{cases} 0, & \text{if } (\forall y \le u) (\exists z) R(y, z, x) \\ \uparrow, & \text{otherwise} \end{cases}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• $x \in A \Rightarrow f(x)$ total

▶ also if $x \in \overline{A} \Rightarrow L_{f(x)}$ finite (!) $\Rightarrow f(x)$ finite

$$TOTAL = \{ \langle M \rangle | L(M) = \Sigma^* \} = \{ \langle M \rangle | \varphi_M \text{ is total} \}$$

- ► $TOTAL = \{ \langle M \rangle | (\forall x \in \Sigma^*) (\exists t \in \mathbb{N}) M(x) \downarrow^t \} \in \Pi_2^0 \}$
- Let $A \in \Pi_2$
 - $x \in A \iff (\forall y)(\exists z) R(y, z, x)$

► exists
$$f(x)$$
 s.t. $\varphi_{f(x)}(u) = \begin{cases} 0, & \text{if } (\forall y \le u) (\exists z) R(y, z, x) \\ \uparrow, & \text{otherwise} \end{cases}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- $x \in A \Rightarrow f(x)$ total
- ▶ also if $x \in \overline{A} \Rightarrow L_{f(x)}$ finite (!) $\Rightarrow f(x)$ finite

$INF = \{ \langle M \rangle | L(M) \text{ is infinite } \}$

- ► $INF = \{\langle M \rangle | (\forall n \in \mathbb{N}) (\exists t \in \mathbb{N}, x \in \Sigma^*) | \langle x \rangle | > n \Rightarrow M(x) \downarrow^t \} \in \Pi_2^0$
- A is Σ_n^0 -complete iff \overline{A} is Π_n^0 -complete
- $I\overline{N}F = FIN = \{\langle M \rangle | (\exists n \in \mathbb{N}) (\forall t \in \mathbb{N}, x \in \Sigma^*) | \langle x \rangle| > n \Rightarrow M(x) \downarrow^t \} \in \Sigma_2^0.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

► In previous slide we showed that *FIN* is Σ_2^0 -complete

 $INF = \{ \langle M \rangle | L(M) \text{ is infinite } \}$

►
$$INF = \{\langle M \rangle | (\forall n \in \mathbb{N}) (\exists t \in \mathbb{N}, x \in \Sigma^*) | \langle x \rangle | > n \Rightarrow M(x) \downarrow^t \} \in \Pi_2^0$$

- A is Σ_n^0 -complete iff \overline{A} is Π_n^0 -complete
- ► $I\overline{N}F = FIN = \{\langle M \rangle | (\exists n \in \mathbb{N}) (\forall t \in \mathbb{N}, x \in \Sigma^*) | \langle x \rangle | > n \Rightarrow M(x) \downarrow^t \} \in \Sigma_2^0.$

ション ふゆ く 山 マ チャット しょうくしゃ

• In previous slide we showed that *FIN* is Σ_2^0 -complete

 $INF = \{ \langle M \rangle | L(M) \text{ is infinite } \}$

►
$$INF = \{\langle M \rangle | (\forall n \in \mathbb{N}) (\exists t \in \mathbb{N}, x \in \Sigma^*) | \langle x \rangle | > n \Rightarrow M(x) \downarrow^t \} \in \Pi_2^0$$

• A is
$$\Sigma_n^0$$
-complete iff \overline{A} is Π_n^0 -complete

►
$$I\overline{N}F = FIN = \{\langle M \rangle | (\exists n \in \mathbb{N}) (\forall t \in \mathbb{N}, x \in \Sigma^*) | \langle x \rangle | > n \Rightarrow M(x) \downarrow^t \} \in \Sigma_2^0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• In previous slide we showed that *FIN* is Σ_2^0 -complete

More Problems

- The Riemann Hypothesis is in Π₁⁰
- The Twin Prime Conjecture is in Π⁰₂
- $\mathbf{P} \neq \mathbf{NP}$ is in Π_2^0

Figure: The Arithmetical Hierarchy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

Robert Irving Soare

Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets Spinger, 1987.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Dexter C. Kozen Theory of Computation, Texts in Computer Science Spinger, 2006.

Yiannis N. Moschovakis Αναδρομή και Υπολογισιμότητα 2008