Arithmetical Hierarchy

Vlachos Vagios
$$
\mu \sqcap \lambda \forall
$$

Algorithms and Complexity II

Arithmetical Hierarchy

Definitions

For $k \geq 0$,

- Σ_{k}^{0} is the class of languages

$$
L=\left\{x \mid \exists x_{1} \forall x_{2} \ldots Q_{k} x_{k} R\left(x_{1}, \ldots, x_{k}, x\right)\right\}
$$

where R is recursive relation, and

$$
Q_{k}= \begin{cases}\exists, & \text { if } k \text { is odd } \\ \forall, & \text { if } k \text { is even }\end{cases}
$$

and also $x_{i}, \forall i \in\{1, \ldots, k\}$ are tuples of natural numbers.

- $\Pi_{k}^{0}=\operatorname{co}_{k}^{0}$
- $\Delta_{k}^{0}=\Sigma_{k}^{0} \cap \Pi_{k}^{0}$

Arithmetical Hierarchy

Definitions

For $k \geq 0$,

- Σ_{k}^{0} is the class of languages

$$
L=\left\{x \mid \exists x_{1} \forall x_{2} \ldots Q_{k} x_{k} R\left(x_{1}, \ldots, x_{k}, x\right)\right\}
$$

where R is recursive relation, and

$$
Q_{k}= \begin{cases}\exists, & \text { if } k \text { is odd } \\ \forall, & \text { if } k \text { is even }\end{cases}
$$

and also $x_{i}, \forall i \in\{1, \ldots, k\}$ are tuples of natural numbers.

- $\Pi_{k}^{0}=\operatorname{co} \Sigma_{k}^{0}$

Arithmetical Hierarchy

Definitions

For $k \geq 0$,

- Σ_{k}^{0} is the class of languages

$$
L=\left\{x \mid \exists x_{1} \forall x_{2} \ldots Q_{k} x_{k} R\left(x_{1}, \ldots, x_{k}, x\right)\right\}
$$

where R is recursive relation, and

$$
Q_{k}= \begin{cases}\exists, & \text { if } k \text { is odd } \\ \forall, & \text { if } k \text { is even }\end{cases}
$$

and also $x_{i}, \forall i \in\{1, \ldots, k\}$ are tuples of natural numbers.

- $\Pi_{k}^{0}=\operatorname{co}^{0}{ }_{k}^{0}$
- $\Delta_{k}^{0}=\Sigma_{k}^{0} \cap \Pi_{k}^{0}$

More definitions...

- $\underline{L} \in \Sigma_{k}^{0} \Rightarrow \bar{L}=\left\{x \mid \neg\left(\exists x_{1} \forall x_{2} \ldots Q_{k} x_{k} R\left(x_{1}, x_{2}, \ldots, x_{k}, x\right)\right)\right\} \Rightarrow$ $\bar{L}\left\{x \mid \forall x_{1} \exists x_{2} \ldots Q_{k}^{\prime} x_{k} \neg R\left(x_{1}, x_{2}, \ldots, x_{k}, x\right)\right\}$
- $L_{1} \in \Sigma_{0}^{0} \Rightarrow L_{1}=\{x \mid R(x)\} \Rightarrow \Sigma_{0}^{0}=\mathbf{R}$
$\Rightarrow \overline{L_{1}} \in \Pi_{0}^{0} \Rightarrow \overline{L_{1}}=\{x \mid-R(x)\} \Rightarrow \Pi_{0}^{0}=R$
- Prenex normal form
- Tarski - Kuratowski algorithm
- praenexus "tied or bound up in front", past participle of praenectere

More definitions...

- $L \in \Sigma_{k}^{0} \Rightarrow \bar{L}=\left\{x \mid \neg\left(\exists x_{1} \forall x_{2} \ldots Q_{k} x_{k} R\left(x_{1}, x_{2}, \ldots, x_{k}, x\right)\right)\right\} \Rightarrow$ $\bar{L}\left\{x \mid \forall x_{1} \exists x_{2} \ldots Q_{k}^{\prime} x_{k} \neg R\left(x_{1}, x_{2}, \ldots, x_{k}, x\right)\right\}$
- $L_{1} \in \Sigma_{0}^{0} \Rightarrow L_{1}=\{x \mid R(x)\} \Rightarrow \Sigma_{0}^{0}=\mathbf{R}$
$\Rightarrow \overline{L_{1}} \in \Pi_{0}^{0} \Rightarrow \overline{L_{1}}=\{x \mid \neg R(x)\} \Rightarrow \Pi_{0}^{0}=\mathbf{R}$
- Prenex normal form
- Tarski - Kuratowski algorithm
- praenexus "tied or bound up in front", past participle of
praenectere

More definitions...

- $L \in \Sigma_{k}^{0} \Rightarrow \bar{L}=\left\{x \mid \neg\left(\exists x_{1} \forall x_{2} \ldots Q_{k} x_{k} R\left(x_{1}, x_{2}, \ldots, x_{k}, x\right)\right)\right\} \Rightarrow$ $\bar{L}\left\{x \mid \forall x_{1} \exists x_{2} \ldots Q_{k}^{\prime} x_{k} \neg R\left(x_{1}, x_{2}, \ldots, x_{k}, x\right)\right\}$
- $L_{1} \in \Sigma_{0}^{0} \Rightarrow L_{1}=\{x \mid R(x)\} \Rightarrow \Sigma_{0}^{0}=\mathbf{R}$
- $\overline{L_{1}} \in \Pi_{0}^{0} \Rightarrow \overline{L_{1}}=\{x \mid \neg R(x)\} \Rightarrow \Pi_{0}^{0}=\mathbf{R}$
- Prenex normal form
- Tarski - Kuratowski algorithm
- praenexus "tied or bound up in front", past participle of
praenectere

More definitions...

- $L \in \Sigma_{k}^{0} \Rightarrow \bar{L}=\left\{x \mid \neg\left(\exists x_{1} \forall x_{2} \ldots Q_{k} x_{k} R\left(x_{1}, x_{2}, \ldots, x_{k}, x\right)\right)\right\} \Rightarrow$ $\bar{L}\left\{x \mid \forall x_{1} \exists x_{2} \ldots Q_{k}^{\prime} x_{k} \neg R\left(x_{1}, x_{2}, \ldots, x_{k}, x\right)\right\}$
- $L_{1} \in \Sigma_{0}^{0} \Rightarrow L_{1}=\{x \mid R(x)\} \Rightarrow \Sigma_{0}^{0}=\mathbf{R}$
- $\overline{L_{1}} \in \Pi_{0}^{0} \Rightarrow \overline{L_{1}}=\{x \mid \neg R(x)\} \Rightarrow \Pi_{0}^{0}=\mathbf{R}$
- Prenex normal form
- Tarski - Kuratowski algorithm
- praenexus "tied or bound up in front", past participle of praenectere

A proof for $\Sigma_{1}^{0}=\mathrm{RE}$
$L \in \Sigma_{1}^{0} \Rightarrow L=\{x \mid \exists y R(y, x)\}$
$\Sigma_{1}^{0} \subseteq \mathrm{RE}$

- M_{R} TM which decides R
- We construct M_{L} as below
- on input $\langle x\rangle$
- run M_{R} for $\langle y=\varepsilon, x\rangle$ if it accepts M_{L} accepts, else
- run M_{R} for the lexicographicaly next y
$\mathrm{RE} \subseteq \Sigma_{1}^{0}$
Theorem
Let $L \in R E$, then
$n \in L \Longleftrightarrow\left(\exists\left(m_{1}, m_{2}, \ldots, m_{k}\right)\left(P\left(m_{1}, m_{2}, \ldots, m_{k}, n\right)=0\right)\right)$

A proof for $\Sigma_{1}^{0}=\mathrm{RE}$
$L \in \Sigma_{1}^{0} \Rightarrow L=\{x \mid \exists y R(y, x)\}$
$\Sigma_{1}^{0} \subseteq \mathrm{RE}$

- M_{R} TM which decides R
- We construct M_{L} as below
- on input $\langle x\rangle$
- run M_{R} for $\langle y=\varepsilon, x\rangle$ if it accepts M_{L} accepts, else
- run M_{R} for the lexicographicaly next y
$\mathrm{RE} \subseteq \Sigma_{1}^{0}$
Theorem
Let $L \in \mathrm{RE}$, then

$$
n \in L \Longleftrightarrow\left(\exists\left(m_{1}, m_{2}, \ldots, m_{k}\right)\left(P\left(m_{1}, m_{2}, \ldots, m_{k}, n\right)=0\right)\right)
$$

for some k and for P some Diophantine equation.

A first step to show the hierarchy

Theorem
For all $i, \Sigma_{i+1}^{0} \supseteq \Sigma_{i}^{0}, \Pi_{i}^{0}$
Proof.
Use "dummy" quantifiers. \square

Figure: The Arithmetical Hierarchy

Upper bounds in AH and some known problems

- Showing upper bounds is generally an easy task
- HALT $\equiv H=\{\langle M, x\rangle \mid M(x) \downarrow\}=\left\{\langle M, x\rangle \mid \exists t M(x) \downarrow^{t}\right\}$
- HALT $\in \Sigma_{1}^{0}=\mathrm{RE}$
- we already know that HALT $\notin \mathrm{R}$
- $K=\{\langle M\rangle \mid M(M) \downarrow\}=\left\{\langle M\rangle \mid \exists t M(M) \downarrow^{t}\right\} \in \Sigma_{1}^{0}$
- $K=\left\{x \mid \varphi_{x}(x) \downarrow\right\}=\left\{x \mid \exists t \varphi_{x}(x) \downarrow^{t}\right\}$

Upper bounds in AH and some known problems

- Showing upper bounds is generally an easy task
- HALT $\equiv H=\{\langle M, x\rangle \mid M(x) \downarrow\}=\left\{\langle M, x\rangle \mid \exists t M(x) \downarrow^{t}\right\}$
- $H A L T \in \Sigma_{1}^{0}=\mathbf{R E}$
- we already know that HALT $\notin \mathbf{R}$
- $K=\{\langle M\rangle \mid M(M) \downarrow\}=\left\{\langle M\rangle \mid \exists t M(M) \downarrow^{t}\right\} \in \Sigma_{1}^{0}$

Upper bounds in AH and some known problems

- Showing upper bounds is generally an easy task
- HALT $\equiv H=\{\langle M, x\rangle \mid M(x) \downarrow\}=\left\{\langle M, x\rangle \mid \exists t M(x) \downarrow^{t}\right\}$
- HALT $\in \Sigma_{1}^{0}=\mathbf{R E}$
- we already know that $H A L T \notin \mathbf{R}$
- $K=\{\langle M\rangle \mid M(M) \downarrow\}=\left\{\langle M\rangle \mid \exists t M(M) \downarrow^{t}\right\} \in \Sigma_{1}^{0}$
- $K=\left\{x \mid \varphi_{x}(x) \downarrow\right\}=\left\{x \mid \exists t \varphi_{x}(x) \downarrow^{t}\right\}$

The power from below

Fact
We can enumerate languages in $\mathrm{RE}=\Sigma_{1}^{0}$ using a $T M$
Question. Can we enumerate/decide languages of higher hierarchy?

Question. How much "stronger" we have to make a TM to be able to enumerate/decide a language in Σ_{n}^{0} ?

Question. How can we make a TM "stronger"?
Answer. We will give to TMs the power to decide difficult problems (Oracles)

The power from below

Fact
We can enumerate languages in $\mathrm{RE}=\Sigma_{1}^{0}$ using a $T M$
Question. Can we enumerate/decide languages of higher hierarchy?

Question. How much "stronger" we have to make a TM to be able to enumerate/decide a language in Σ_{n}^{0} ?
Question. How can we make a TM "stronger"?
Answer. We will give to TMs the power to decide difficult problems (Oracles)

The power from below

Fact
We can enumerate languages in $\mathrm{RE}=\Sigma_{1}^{0}$ using a $T M$
Question. Can we enumerate/decide languages of higher hierarchy?
Question. How much "stronger" we have to make a TM to be able to enumerate/decide a language in Σ_{n}^{0} ?

Question. How can we make a TM "stronger'?
Answer. We will give to TMs the power to decide difficult problems (Oracles)

Oracles and the AH

Let $L \in \Sigma_{2}^{0}$. Then $L=\{x \mid \exists y \forall z R(y, z, x)\}$ where R is a recursive predicate.

- We construct first the TM M,

1. M gets an input $\langle y, x\rangle$
2. then by dovetailing check for all z if $R(y, z, x)=1$. If at any step $R=0 M$ rejects.

- We construct now the TM M_{L},

1. M_{L} gets an input $\langle x\rangle$
2. lexicographicaly gets a y and put as input in $M\langle y, x\rangle$
3. then M^{\prime} goes into the special state, if the next state is $q^{\prime \prime}$ yes then we go to (2) and try the next y, if the next state is $q^{\prime \prime}$ no' then then M^{\prime} accepts.

Oracles and the AH

Let $L \in \Sigma_{2}^{0}$. Then $L=\{x \mid \exists y \forall z R(y, z, x)\}$ where R is a recursive predicate.

- We construct first the TM M,

1. M gets an input $\langle y, x\rangle$
2. then by dovetailing check for all z if $R(y, z, x)=1$. If at any step $R=0 M$ rejects.

- We construct now the TM M_{L},

1. M_{L} gets an input $\langle x\rangle$
2. lexicographicaly gets a y and put as input in $M\langle y, x\rangle$
3. then M^{\prime} goes into the special state, if the next state is $q^{\prime \prime}$ yes" then we go to (2) and try the next y, if the next state is $q^{\prime \prime \prime}$ no" then then M^{\prime} accepts.

Oracles and the AH

Theorem
The languages in Σ_{2}^{0} can be enumerated by a $T M^{H}$ where H is an oracle for the Halting problem.

Can we do something similar to this with languages in \sum_{n}^{0} for $n>2$?

Yes, we can.

Oracles and the AH

Theorem
The languages in Σ_{2}^{0} can be enumerated by a $T M^{H}$ where H is an oracle for the Halting problem.

Can we do something similar to this with languages in Σ_{n}^{0} for $n>2$?

Yes, we can.

Oracles and the AH

Theorem
The languages in Σ_{2}^{0} can be enumerated by a $T M^{H}$ where H is an oracle for the Halting problem.

Can we do something similar to this with languages in Σ_{n}^{0} for $n>2$?

Yes, we can.

Let's Jump

Definition

Let A a language. Then we define $A^{\prime}=K^{A}=\left\{x \mid \varphi_{x}^{A}(x) \downarrow\right\} . A^{\prime}$ is called jump of A, and $A^{(n)}$ is the nth jump of A.

- $\emptyset^{\prime}:=K=\left\{x \mid \varphi_{x}(x) \downarrow\right\}$.
$\emptyset^{(n)}$ is \leq_{m}-complete for \sum_{n}^{0}, for $n \geq 1$.
\qquad

Let's Jump

Definition

Let A a language. Then we define $A^{\prime}=K^{A}=\left\{x \mid \varphi_{x}^{A}(x) \downarrow\right\} . A^{\prime}$ is called jump of A, and $A^{(n)}$ is the nth jump of A.

- $\emptyset^{\prime}:=K=\left\{x \mid \varphi_{x}(x) \downarrow\right\}$.

Theorem
$\emptyset^{(n)}$ is \leq_{m}-complete for Σ_{n}^{0}, for $n \geq 1$.
Proof.
By induction.

We Jumping...

$\emptyset^{\prime}=K$ is complete in $\Sigma_{1}^{0}=$ RE. By induction it suffices to show that K^{A} is Σ_{n+1}^{0}-complete when A is Σ_{n}^{0}-complete.

$$
K^{A}=\left\{x \mid \varphi_{x}^{A}(x)\right\}=\left\{x \mid(\exists t) \varphi_{x}^{A}(x) \downarrow^{t}\right\}
$$

$K^{A} \in \Sigma_{n+1}^{0}$. Need to show that K^{A} is Σ_{n+1}^{0}-hard when A is Σ_{n}^{0}-hard.

- Let $B \in \Sigma_{n+1}^{0}, B=\{x \mid \exists y\langle x, y\rangle \in C\}$ where $C \in \Pi_{n}^{0}$.
- A is \sum_{n}^{0}-hard so \bar{A} is Π_{n}^{0}-hard

จ exists mapping $\sigma(\langle x, y\rangle) \in \bar{A} \longleftrightarrow\langle x, y\rangle \in C$

We Jumping...

$\emptyset^{\prime}=K$ is complete in $\Sigma_{1}^{0}=$ RE. By induction it suffices to show that K^{A} is Σ_{n+1}^{0}-complete when A is Σ_{n}^{0}-complete.

$$
K^{A}=\left\{x \mid \varphi_{x}^{A}(x)\right\}=\left\{x \mid(\exists t) \varphi_{x}^{A}(x) \downarrow^{t}\right\}
$$

$K^{A} \in \Sigma_{n+1}^{0}$. Need to show that K^{A} is Σ_{n+1}^{0}-hard when A is Σ_{n}^{0}-hard.

- Let $B \in \Sigma_{n+1}^{0}, B=\{x \mid \exists y\langle x, y\rangle \in C\}$ where $C \in \Pi_{n}^{0}$.
- A is \sum_{n}^{0}-hard so \bar{A} is Π_{n}^{0}-hard
- exists mapping $\sigma(\langle x, y\rangle) \in \bar{A} \Longleftrightarrow\langle x, y\rangle \in C$

We Jumping...

$\emptyset^{\prime}=K$ is complete in $\Sigma_{1}^{0}=$ RE. By induction it suffices to show that K^{A} is Σ_{n+1}^{0}-complete when A is Σ_{n}^{0}-complete.

$$
K^{A}=\left\{x \mid \varphi_{x}^{A}(x)\right\}=\left\{x \mid(\exists t) \varphi_{x}^{A}(x) \downarrow^{t}\right\}
$$

$K^{A} \in \Sigma_{n+1}^{0}$. Need to show that K^{A} is Σ_{n+1}^{0}-hard when A is Σ_{n}^{0}-hard.

- Let $B \in \Sigma_{n+1}^{0}, B=\{x \mid \exists y\langle x, y\rangle \in C\}$ where $C \in \Pi_{n}^{0}$.
- A is Σ_{n}^{0}-hard so \bar{A} is Π_{n}^{0}-hard

We Jumping...

$\emptyset^{\prime}=K$ is complete in $\Sigma_{1}^{0}=$ RE. By induction it suffices to show that K^{A} is Σ_{n+1}^{0}-complete when A is Σ_{n}^{0}-complete.

$$
K^{A}=\left\{x \mid \varphi_{x}^{A}(x)\right\}=\left\{x \mid(\exists t) \varphi_{x}^{A}(x) \downarrow^{t}\right\}
$$

$K^{A} \in \Sigma_{n+1}^{0}$. Need to show that K^{A} is Σ_{n+1}^{0}-hard when A is Σ_{n}^{0}-hard.

- Let $B \in \Sigma_{n+1}^{0}, B=\{x \mid \exists y\langle x, y\rangle \in C\}$ where $C \in \Pi_{n}^{0}$.
- A is Σ_{n}^{0}-hard so \bar{A} is Π_{n}^{0}-hard
- exists mapping $\sigma(\langle x, y\rangle) \in \bar{A} \Longleftrightarrow\langle x, y\rangle \in C$

Still Jumping...

- Now we define a mapping τ that is on $x, \tau(x)$ is the index of a TM M^{A} which on any input,
- enumerates $y=0,1,2, \ldots$
- compute $\sigma(\langle x, y\rangle)$
- ask oracle if $\sigma(\langle x, y\rangle) \notin A$ and if it says yes then M^{A} halt.

Still Jumping...

- Now we define a mapping τ that is on $x, \tau(x)$ is the index of a TM M^{A} which on any input,
- enumerates $y=0,1,2, \ldots$
- compute $\sigma(\langle x, y\rangle)$
- ask oracle if $\sigma(\langle x, y\rangle) \notin A$ and if it says yes then M^{A} halt.

$$
\begin{aligned}
x \in B & \Longleftrightarrow \exists x\langle x, y\rangle \in C \\
& \Longleftrightarrow \exists y \sigma(\langle x, y\rangle) \notin A \\
& \Longleftrightarrow \varphi_{\tau(x)}^{A}(\tau(x)) \downarrow \\
& \Longleftrightarrow \tau(x) \in K^{A}
\end{aligned}
$$

Still Jumping...

- Now we define a mapping τ that is on $x, \tau(x)$ is the index of a TM M^{A} which on any input,
- enumerates $y=0,1,2, \ldots$
- compute $\sigma(\langle x, y\rangle)$
- ask oracle if $\sigma(\langle x, y\rangle) \notin A$ and if it says yes then M^{A} halt.

$$
\begin{aligned}
x \in B & \Longleftrightarrow \exists x\langle x, y\rangle \in C \\
& \Longleftrightarrow \exists y \sigma(\langle x, y\rangle) \notin A \\
& \Longleftrightarrow \varphi_{\tau(x)}^{A}(\tau(x)) \downarrow \\
& \Longleftrightarrow \tau(x) \in K^{A}
\end{aligned}
$$

So τ consists a reduction from B to K^{A}, and K^{A} is Σ_{n+1}^{0}-hard.

A part of Jump's Theorem

Theorem
If A is \leq_{m}-complete for Σ_{n}^{0}, then $A^{\prime} \notin \Sigma_{n}^{0}$.
Proof.
Suppose $A^{\prime}=K^{A} \in \Sigma_{n}^{0}$. Because A is \leq_{m}-complete for Σ_{n}^{0} there is mapping σ s.t.

$$
x \in K^{A} \Longleftrightarrow \sigma(x) \in A
$$

Let M^{A} be $T M$ with an oracle for A that halts on y iff $\sigma(y) \in A$

A part of Jump's Theorem

Theorem
If A is \leq_{m}-complete for Σ_{n}^{0}, then $A^{\prime} \notin \Sigma_{n}^{0}$.
Proof.
Suppose $A^{\prime}=K^{A} \in \Sigma_{n}^{0}$. Because A is \leq_{m}-complete for Σ_{n}^{0} there is mapping σ s.t.

$$
x \in K^{A} \Longleftrightarrow \sigma(x) \in A
$$

Let M^{A} be $T M$ with an oracle for A that halts on y iff $\sigma(y) \in A$

A part of Jump's Theorem

Theorem
If A is \leq_{m}-complete for Σ_{n}^{0}, then $A^{\prime} \notin \Sigma_{n}^{0}$.
Proof.
Suppose $A^{\prime}=K^{A} \in \Sigma_{n}^{0}$. Because A is \leq_{m}-complete for Σ_{n}^{0} there is mapping σ s.t.

$$
x \in K^{A} \Longleftrightarrow \sigma(x) \in A
$$

Let M^{A} be $T M$ with an oracle for A that halts on y iff $\sigma(y) \in A$

$$
\begin{aligned}
\sigma\left(\left\langle M^{A}\right\rangle\right) & \in A \\
& \left.\Longleftrightarrow M^{A}\left(\left\langle M^{A}\right\rangle \in K^{A}\right\rangle\right) \downarrow \\
& \Longleftrightarrow \sigma\left(\left\langle M^{A}\right\rangle\right) \notin A
\end{aligned}
$$

Theorem of Arithmetical Hierarchy

Theorem
Arithmetical Hierachy does not collapse.
$\emptyset^{(n)} \in \Sigma_{n}^{0} \backslash \Pi_{n}^{0}$ and $\emptyset^{(n)} \in \Pi_{n}^{0} \backslash \Sigma_{n}^{0}$. Then

$$
(\forall n>0)\left[\Delta_{n}^{0} \subset \Sigma_{n}^{0} \& \Delta_{n}^{0} \subset \Pi_{n}^{0}\right]
$$

Theorem of Arithmetical Hierarchy

Theorem
Arithmetical Hierachy does not collapse.
Proof.
$\emptyset^{(n)} \in \Sigma_{n}^{0} \backslash \Pi_{n}^{0}$ and $\emptyset^{(n)} \in \Pi_{n}^{0} \backslash \Sigma_{n}^{0}$. Then

$$
(\forall n>0)\left[\Delta_{n}^{0} \subset \Sigma_{n}^{0} \& \Delta_{n}^{0} \subset \Pi_{n}^{0}\right]
$$

Post's Theorem

Theorem
For $n \geq 0$,

1. $B \in \Sigma_{n+1}^{0} \Longleftrightarrow B$ is r.e. in some Π_{n}^{0} set $\Longleftrightarrow B$ is r.e in some Σ_{n}^{0} set
2. $\emptyset^{(n)}$ is Σ_{n}^{0}-complete for $n>0$
3. $B \in \sum_{n+1}^{0} \Longleftrightarrow$ is r.e. in $\emptyset^{(n)}$
4. $B \in \Delta_{n+1}^{0} \Longleftrightarrow B \leq_{T} \emptyset^{(n)} \Longleftrightarrow$ is decided in $\emptyset^{(n)}$

- A language in \sum_{n+1}^{0} can be enumerated by a $T M^{A}$ where
- A language in Δ_{n+1}^{0} can be decided by a $T M^{A}$ where $A \in \Sigma_{n}^{0}$

Post's Theorem

Theorem
For $n \geq 0$,

1. $B \in \Sigma_{n+1}^{0} \Longleftrightarrow B$ is r.e. in some Π_{n}^{0} set $\Longleftrightarrow B$ is r.e in some Σ_{n}^{0} set
2. $\emptyset^{(n)}$ is \sum_{n}^{0}-complete for $n>0$
3. $B \in \sum_{n+1}^{0} \Longleftrightarrow$ is r.e. in $\emptyset^{(n)}$
4. $B \in \Delta_{n+1}^{0} \Longleftrightarrow B \leq_{T} \emptyset^{(n)} \Longleftrightarrow$ is decided in $\emptyset^{(n)}$

- A language in Σ_{n+1}^{0} can be enumerated by a $T M^{A}$ where $A \in \Sigma_{n}^{0}$
- A language in Δ_{n+1}^{0} can be decided by a $T M^{A}$ where $A \in \Sigma_{n}^{0}$

Lower bounds in AH

TOTAL $=\left\{\langle M\rangle \mid L(M)=\Sigma^{*}\right\}=\left\{\langle M\rangle \mid \varphi_{M}\right.$ is total $\}$

- Let $A \in \Pi_{2}$
- $x \in A \Longleftrightarrow(\forall y)(\exists z) R(y, z, x)$

- $x \in A \Rightarrow f(x)$ total
* also if $x \in \bar{A} \Rightarrow L_{f(x)}$ finite $(!) \Rightarrow f(x)$ finite

Lower bounds in AH

TOTAL $=\left\{\langle M\rangle \mid L(M)=\Sigma^{*}\right\}=\left\{\langle M\rangle \mid \varphi_{M}\right.$ is total $\}$

- TOTAL $=\left\{\langle M\rangle \mid\left(\forall x \in \Sigma^{*}\right)(\exists t \in \mathbb{N}) M(x) \downarrow^{t}\right\} \in \Pi_{2}^{0}$

- $x \in A \Longleftrightarrow(\forall y)(\exists z) R(y, z, x)$
e exists $f(x)$ s.t. $\varphi_{f(x)}(u)=\{0, \quad$ if $(\forall y \leq u)(\exists z) R(y, z, x)$ otherwise
- $x \in A \Rightarrow f(x)$ total
= also if $x \in \bar{A} \Rightarrow L_{f(x)}$ finite $(!) \Rightarrow f(x)$ finite

Lower bounds in AH

TOTAL $=\left\{\langle M\rangle \mid L(M)=\Sigma^{*}\right\}=\left\{\langle M\rangle \mid \varphi_{M}\right.$ is total $\}$

- TOTAL $=\left\{\langle M\rangle \mid\left(\forall x \in \Sigma^{*}\right)(\exists t \in \mathbb{N}) M(x) \downarrow^{t}\right\} \in \Pi_{2}^{0}$
- Let $A \in \Pi_{2}$
- $x \in A \Longleftrightarrow(\forall y)(\exists z) R(y, z, x)$
$=x \in A \Rightarrow f(x)$ total
- also if $x \in \bar{A} \Rightarrow L_{f(x)}$ finite (!) $\Rightarrow f(x)$ finite

Lower bounds in AH

TOTAL $=\left\{\langle M\rangle \mid L(M)=\Sigma^{*}\right\}=\left\{\langle M\rangle \mid \varphi_{M}\right.$ is total $\}$

- TOTAL $=\left\{\langle M\rangle \mid\left(\forall x \in \Sigma^{*}\right)(\exists t \in \mathbb{N}) M(x) \downarrow^{t}\right\} \in \Pi_{2}^{0}$
- Let $A \in \Pi_{2}$
- $x \in A \Longleftrightarrow(\forall y)(\exists z) R(y, z, x)$
- exists $f(x)$ s.t. $\varphi_{f(x)}(u)= \begin{cases}0, & \text { if }(\forall y \leq u)(\exists z) R(y, z, x) \\ \uparrow, & \text { otherwise }\end{cases}$
- $x \in A \Rightarrow f(x)$ total
- also if $x \in \bar{A} \Rightarrow L_{f(x)}$ finite (!) $\Rightarrow f(x)$ finite

Lower bounds in AH

TOTAL $=\left\{\langle M\rangle \mid L(M)=\Sigma^{*}\right\}=\left\{\langle M\rangle \mid \varphi_{M}\right.$ is total $\}$

- TOTAL $=\left\{\langle M\rangle \mid\left(\forall x \in \Sigma^{*}\right)(\exists t \in \mathbb{N}) M(x) \downarrow^{t}\right\} \in \Pi_{2}^{0}$
- Let $A \in \Pi_{2}$
- $x \in A \Longleftrightarrow(\forall y)(\exists z) R(y, z, x)$
- exists $f(x)$ s.t. $\varphi_{f(x)}(u)= \begin{cases}0, & \text { if }(\forall y \leq u)(\exists z) R(y, z, x) \\ \uparrow, & \text { otherwise }\end{cases}$
- $x \in A \Rightarrow f(x)$ total
- also if $x \in \bar{A} \Rightarrow L_{f(x)}$ finite (!) $\Rightarrow f(x)$ finite

Lower bounds in AH

TOTAL $=\left\{\langle M\rangle \mid L(M)=\Sigma^{*}\right\}=\left\{\langle M\rangle \mid \varphi_{M}\right.$ is total $\}$

- TOTAL $=\left\{\langle M\rangle \mid\left(\forall x \in \Sigma^{*}\right)(\exists t \in \mathbb{N}) M(x) \downarrow^{t}\right\} \in \Pi_{2}^{0}$
- Let $A \in \Pi_{2}$
- $x \in A \Longleftrightarrow(\forall y)(\exists z) R(y, z, x)$
- exists $f(x)$ s.t. $\varphi_{f(x)}(u)= \begin{cases}0, & \text { if }(\forall y \leq u)(\exists z) R(y, z, x) \\ \uparrow, & \text { otherwise }\end{cases}$
- $x \in A \Rightarrow f(x)$ total
- also if $x \in \bar{A} \Rightarrow L_{f(x)}$ finite (!) $\Rightarrow f(x)$ finite

Lower bounds in AH

$I N F=\{\langle M\rangle \mid L(M)$ is infinite $\}$

- $I N F=$ $\left\{\langle M\rangle\left|(\forall n \in \mathbb{N})\left(\exists t \in \mathbb{N}, x \in \Sigma^{*}\right)\right|\langle x\rangle \mid>n \Rightarrow M(x) \downarrow^{t}\right\} \in \Pi_{2}^{0}$
- A is \sum_{n}^{0}-complete iff \bar{A} is Π_{n}^{0}-complete
- $I \bar{N} F=F I N=$
$\left\{\langle M\rangle\left|(\exists n \in \mathbb{N})\left(\forall t \in \mathbb{N}, x \in \Sigma^{*}\right)\right|\langle x\rangle \mid>n \Rightarrow M(x) \not \Downarrow^{t}\right\} \in \Sigma_{2}^{0}$
- In previous slide we showed that FIN is Σ_{2}^{0}-complete

Lower bounds in AH

$I N F=\{\langle M\rangle \mid L(M)$ is infinite $\}$

- $I N F=$ $\left\{\langle M\rangle\left|(\forall n \in \mathbb{N})\left(\exists t \in \mathbb{N}, x \in \Sigma^{*}\right)\right|\langle x\rangle \mid>n \Rightarrow M(x) \downarrow^{t}\right\} \in \Pi_{2}^{0}$
- A is Σ_{n}^{0}-complete iff \bar{A} is Π_{n}^{0}-complete
- $I \bar{N} F=F I N=$ $\left\{\langle M\rangle\left|(\exists n \in \mathbb{N})\left(\forall t \in \mathbb{N}, x \in \Sigma^{*}\right)\right|\langle x\rangle \mid>n \Rightarrow M(x) \not \downarrow^{t}\right\} \in \Sigma_{2}^{0}$.
- In previous slide we showed that F / N is Σ_{2}^{0}-complete

Lower bounds in AH

$I N F=\{\langle M\rangle \mid L(M)$ is infinite $\}$

- $I N F=$ $\left\{\langle M\rangle\left|(\forall n \in \mathbb{N})\left(\exists t \in \mathbb{N}, x \in \Sigma^{*}\right)\right|\langle x\rangle \mid>n \Rightarrow M(x) \downarrow^{t}\right\} \in \Pi_{2}^{0}$
- A is Σ_{n}^{0}-complete iff \bar{A} is Π_{n}^{0}-complete
- $I \bar{N} F=F I N=$ $\left\{\langle M\rangle\left|(\exists n \in \mathbb{N})\left(\forall t \in \mathbb{N}, x \in \Sigma^{*}\right)\right|\langle x\rangle \mid>n \Rightarrow M(x) \not \downarrow^{t}\right\} \in \Sigma_{2}^{0}$.
- In previous slide we showed that $F I N$ is Σ_{2}^{0}-complete

More Problems

- The Riemann Hypothesis is in Π_{1}^{0}
- The Twin Prime

Conjecture is in Π_{2}^{0}

- $\mathbf{P} \neq \mathrm{NP}$ is in Π_{2}^{0}

Figure: The Arithmetical Hierarchy

References

Q Robert Irving Soare
Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets Spinger, 1987.

䡒 Dexter C. Kozen
Theory of Computation, Texts in Computer Science Spinger, 2006.
圊 Yiannis N. Moschovakis
А $\nu \alpha \delta \rho о \mu \dot{\eta}$ каl $\Upsilon \pi о \lambda о \gamma ь \sigma \mu o ́ \tau \eta \tau \alpha$
2008

