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Motivation

Why use algebraic models of computation?

I Bit-based models of computation (like TM’s) do not ca-
pture the essence of computations involving real or com-
plex numbers (or other fields).

I Analyzing the complexity of algebraic computations using
a bit-based model can be misleading (there is another side
to the coin as we shall see below).

I Many areas of Computer Science use algebraic compu-
tations: computational algebra and geometry, numerical
analysis, signal processing, robotics, et.c.

I Useful approximation to the asymptotic behavior of algebraic
algorithms, as computers are allowed to use bigger precision
day by day (progress in hardware).
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Potential Pitfalls

Designers of algebraic models must be careful not to produce a too
powerful model. We do not need something unrealistic.

Example. Shamir has shown that we can factor any integer N in
poly(logN) time in any model that allows arithmetic (including
mod) with arbitrary precision. �

Example. Avoid a model which allows hardwired real numbers in
its programs, as a single real number can encode infinite amount of
information (like an answer to every instance of SAT). �

We can avoid such pitfalls by restricting the algorithm’s ability to
access individual bits.
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Algebraic Straight-Line Programs

Something like the following:

Program. Computes e× (x1 + e) + π × x2 in R.

Input: x1, x2
Output: y4
y1 = x1 + e
y2 = π × x2
y3 = e× y1
y4 = y3 + y2

In the above straight-line program, x1 and x2 are given as inputs and
the output y4 is computed from previous yi’s, which are the results
of a binary operation in the field; π and e are built-in constants.

I Note: straight-line = no conditionals or loops.



Algebraic Straight-Line Programs (cnt’d)

Definition. An algebraic straight-line program of length T with
input variables x1, x2, . . . , xn ∈ F and built-in constants c1, c2,
. . . , cn ∈ F is a sequence of T statements of the form

yi = zi1 ∗ zi2 ,

where ∗ is an operation in F, and each of zi1 , zi2 is either an in-
put variable, a built-in constant or yj for j < i.

The computation consists of executing these simple statements in
order, finding values for y1, y2, . . . , yT . The output of the compu-
tation is the value of yT .

Lemma. The output of a straight-line program of length T with
variables x1, x2, . . . , xn is a polynomial p(x1, x2, . . . , xn) of degree
at most 2T .
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Algebraic Straight-Line Programs (cnt’d)

When asking complexity questions for a problem computable in this
model, we are interested in the length (as a function of n) of the
program for an input x1, x2, . . . , xn.

Some problems computable in this model and their complexity:
I Polynomial Multiplication:

I O(n2) using the school method,
I O(n log n) using FFT, for fields that have a primitive mth root

of unity1, where m is the smallest power of 2 less than 2n,
I O(n log n log log n) - using FFT, for any field.

I FFT: O(n log n) [Cooley and Tukey].

I Matrix Multiplication: O(n3) with the naive method and this
can be improved using techniques like Strassen’s.

I Determinant: O(n3) using Gaussian elimination.

1z is a primitive mth root of unity ⇐⇒ zm = 1 and zk 6= 1, ∀k < m
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Algebraic Circuits

Again, an example (x1, x2 inputs, e, π constants):

+

×

e +

x1 e

×

π x2

The above circuit computes e × (x1 + e) + π × x2 in R. Note the
similarity with the straight-line program that we saw earlier.



Algebraic Circuits (cnt’d)

Definition. An algebraic circuit consists of an acyclic graph. The
leaves are called input nodes, are labeled x1, x2, . . . , xn and take
values in a field F. We also allow special input nodes labeled with
arbitrary constants c1, c2, . . . , ck ∈ F. Each internal node, called a
gate, is labeled with one of the operations +,×. We consider only
circuits with a single output node and with the in-degree of each
gate being 2.

The size of a circuit is the number of gates in it. The depth of the
circuit is the length of the longest path from input to output in it.

Lemma. Let f : Fn → F be some function. If f has an algebraic
straight-line program of size S, then it has an algebraic circuit of
size 3S. If it is computable by an algebraic circuit of size S then it
is computable by an algebraic straight line program of length S.
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Algebraic Circuits (cnt’d)

Definition. Let F be a field. We say that a family of polynomials
{pn}n∈N, where pn takes n variables over F, has polynomially-
bounded degree if there is a constant c s.t. for every n the degree
of pn is at most cnc.

Definition. The class AlgP/poly contains all polynomially
bounded degree families of polynomials that are computable by
algebraic circuits of polynomial size and polynomial degree.

Definition. The class AlgNP/poly is the class of polynomially
bounded degree families {pn} that are definable as

pn(x1, x2, . . . , xn) =
∑

e∈{0,1}m−n

gm(x1, x2, . . . , xn, en+1, . . . , em),

where gm ∈ AlgP/poly and m is polynomial in n.
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Algebraic Circuits (cnt’d)

Definition. A function f(x1, x2, . . . , xn) is a projection of a
function g(y1, y2, . . . , yn) if there is a mapping σ from
{y1, y2, . . . , yn} to {0, 1, x1, x2, . . . , xn} s.t.

f(x1, x2, . . . , xn) = g(σ(y1), σ(y2), . . . , σ(yn)).

We say f is projection-reducible to g if f is a projection of g.

Example. Let f(x1, x2) = x1 + x2; f is projection-reducible to
g(y1, y2, y3) = y21y3 + y2 since f(x1, x2) = g(1, x1, x2). �

Completeness results based on the above:

I determinant is AlgP/poly-complete.

I permanent is AlgNP/poly-complete.

Interesting fact: we need to show AlgP/poly 6= AlgNP/poly before
we can show P 6= NP.
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Blum-Shub-Smale

I The first uniform algebraic model that we see.
I Generalization of TM’s.

I Input string in Fn.
I Each cell can hold an element of F.

I Three categories of states:
I Shift: move head ±1 cell.
I Branch: If current cell = a, then goto q1 else goto q2.
I Compute: replace the content a of the current cell with f(a),

where f is a hard-wired function (polynomial or rational
depending on whether F is a ring or a field).

I Note: need a register for branching.

I Very powerful model (e.g. computes x2
n

in n steps).
I Could be even more powerful.

I Allowing ≥ comparisons when branching would give it the
ability to decide every language in P/poly. (even undecidable!)

I Allowing rounding as a basic operation would give it the ability
of integer factorization in poly-time.
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Mandelbrot set is defined as

M = {c ∈ C | the sequence pc(0), pc(pc(0)), . . . is bounded }.
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