
Algebraic Computation Models

February 20, 2012



Motivation

Why use algebraic models of computation?

I Bit-based models of computation (like TM’s) do not ca-
pture the essence of computations involving real or com-
plex numbers (or other fields).

I Analyzing the complexity of algebraic computations using
a bit-based model can be misleading (there is another side
to the coin as we shall see below).

I Many areas of Computer Science use algebraic compu-
tations: computational algebra and geometry, numerical
analysis, signal processing, robotics, et.c.

I Useful approximation to the asymptotic behavior of algebraic
algorithms, as computers are allowed to use bigger precision
day by day (progress in hardware).



Motivation

Why use algebraic models of computation?

I Bit-based models of computation (like TM’s) do not ca-
pture the essence of computations involving real or com-
plex numbers (or other fields).

I Analyzing the complexity of algebraic computations using
a bit-based model can be misleading (there is another side
to the coin as we shall see below).

I Many areas of Computer Science use algebraic compu-
tations: computational algebra and geometry, numerical
analysis, signal processing, robotics, et.c.

I Useful approximation to the asymptotic behavior of algebraic
algorithms, as computers are allowed to use bigger precision
day by day (progress in hardware).



Motivation

Why use algebraic models of computation?

I Bit-based models of computation (like TM’s) do not ca-
pture the essence of computations involving real or com-
plex numbers (or other fields).

I Analyzing the complexity of algebraic computations using
a bit-based model can be misleading (there is another side
to the coin as we shall see below).

I Many areas of Computer Science use algebraic compu-
tations: computational algebra and geometry, numerical
analysis, signal processing, robotics, et.c.

I Useful approximation to the asymptotic behavior of algebraic
algorithms, as computers are allowed to use bigger precision
day by day (progress in hardware).



Motivation

Why use algebraic models of computation?

I Bit-based models of computation (like TM’s) do not ca-
pture the essence of computations involving real or com-
plex numbers (or other fields).

I Analyzing the complexity of algebraic computations using
a bit-based model can be misleading (there is another side
to the coin as we shall see below).

I Many areas of Computer Science use algebraic compu-
tations: computational algebra and geometry, numerical
analysis, signal processing, robotics, et.c.

I Useful approximation to the asymptotic behavior of algebraic
algorithms, as computers are allowed to use bigger precision
day by day (progress in hardware).



Motivation

Why use algebraic models of computation?

I Bit-based models of computation (like TM’s) do not ca-
pture the essence of computations involving real or com-
plex numbers (or other fields).

I Analyzing the complexity of algebraic computations using
a bit-based model can be misleading (there is another side
to the coin as we shall see below).

I Many areas of Computer Science use algebraic compu-
tations: computational algebra and geometry, numerical
analysis, signal processing, robotics, et.c.

I Useful approximation to the asymptotic behavior of algebraic
algorithms, as computers are allowed to use bigger precision
day by day (progress in hardware).



Potential Pitfalls

Designers of algebraic models must be careful not to produce a too
powerful model. We do not need something unrealistic.

Example. Shamir has shown that we can factor any integer N in
poly(logN) time in any model that allows arithmetic (including
mod) with arbitrary precision. �

Example. Avoid a model which allows hardwired real numbers in
its programs, as a single real number can encode infinite amount of
information (like an answer to every instance of SAT). �

We can avoid such pitfalls by restricting the algorithm’s ability to
access individual bits.



Potential Pitfalls

Designers of algebraic models must be careful not to produce a too
powerful model. We do not need something unrealistic.

Example. Shamir has shown that we can factor any integer N in
poly(logN) time in any model that allows arithmetic (including
mod) with arbitrary precision.

�

Example. Avoid a model which allows hardwired real numbers in
its programs, as a single real number can encode infinite amount of
information (like an answer to every instance of SAT). �

We can avoid such pitfalls by restricting the algorithm’s ability to
access individual bits.



Potential Pitfalls

Designers of algebraic models must be careful not to produce a too
powerful model. We do not need something unrealistic.

Example. Shamir has shown that we can factor any integer N in
poly(logN) time in any model that allows arithmetic (including
mod) with arbitrary precision. �

Example. Avoid a model which allows hardwired real numbers in
its programs, as a single real number can encode infinite amount of
information (like an answer to every instance of SAT).

�

We can avoid such pitfalls by restricting the algorithm’s ability to
access individual bits.



Potential Pitfalls

Designers of algebraic models must be careful not to produce a too
powerful model. We do not need something unrealistic.

Example. Shamir has shown that we can factor any integer N in
poly(logN) time in any model that allows arithmetic (including
mod) with arbitrary precision. �

Example. Avoid a model which allows hardwired real numbers in
its programs, as a single real number can encode infinite amount of
information (like an answer to every instance of SAT). �

We can avoid such pitfalls by restricting the algorithm’s ability to
access individual bits.



Algebraic Straight-Line Programs

Something like the following:

Program. Computes e× (x1 + e) + π × x2 in R.

Input: x1, x2
Output: y4
y1 = x1 + e
y2 = π × x2
y3 = e× y1
y4 = y3 + y2

In the above straight-line program, x1 and x2 are given as inputs and
the output y4 is computed from previous yi’s, which are the results
of a binary operation in the field; π and e are built-in constants.

I Note: straight-line = no conditionals or loops.



Algebraic Straight-Line Programs (cnt’d)

Definition. An algebraic straight-line program of length T with
input variables x1, x2, . . . , xn ∈ F and built-in constants c1, c2,
. . . , cn ∈ F is a sequence of T statements of the form

yi = zi1 ∗ zi2 ,

where ∗ is an operation in F, and each of zi1 , zi2 is either an in-
put variable, a built-in constant or yj for j < i.

The computation consists of executing these simple statements in
order, finding values for y1, y2, . . . , yT . The output of the compu-
tation is the value of yT .

Lemma. The output of a straight-line program of length T with
variables x1, x2, . . . , xn is a polynomial p(x1, x2, . . . , xn) of degree
at most 2T .



Algebraic Straight-Line Programs (cnt’d)

Definition. An algebraic straight-line program of length T with
input variables x1, x2, . . . , xn ∈ F and built-in constants c1, c2,
. . . , cn ∈ F is a sequence of T statements of the form

yi = zi1 ∗ zi2 ,

where ∗ is an operation in F, and each of zi1 , zi2 is either an in-
put variable, a built-in constant or yj for j < i.

The computation consists of executing these simple statements in
order, finding values for y1, y2, . . . , yT . The output of the compu-
tation is the value of yT .

Lemma. The output of a straight-line program of length T with
variables x1, x2, . . . , xn is a polynomial p(x1, x2, . . . , xn) of degree
at most 2T .



Algebraic Straight-Line Programs (cnt’d)

Definition. An algebraic straight-line program of length T with
input variables x1, x2, . . . , xn ∈ F and built-in constants c1, c2,
. . . , cn ∈ F is a sequence of T statements of the form

yi = zi1 ∗ zi2 ,

where ∗ is an operation in F, and each of zi1 , zi2 is either an in-
put variable, a built-in constant or yj for j < i.

The computation consists of executing these simple statements in
order, finding values for y1, y2, . . . , yT . The output of the compu-
tation is the value of yT .

Lemma. The output of a straight-line program of length T with
variables x1, x2, . . . , xn is a polynomial p(x1, x2, . . . , xn) of degree
at most 2T .



Algebraic Straight-Line Programs (cnt’d)

When asking complexity questions for a problem computable in this
model, we are interested in the length (as a function of n) of the
program for an input x1, x2, . . . , xn.

Some problems computable in this model and their complexity:
I Polynomial Multiplication:

I O(n2) using the school method,
I O(n log n) using FFT, for fields that have a primitive mth root

of unity1, where m is the smallest power of 2 less than 2n,
I O(n log n log log n) - using FFT, for any field.

I FFT: O(n log n) [Cooley and Tukey].

I Matrix Multiplication: O(n3) with the naive method and this
can be improved using techniques like Strassen’s.

I Determinant: O(n3) using Gaussian elimination.

1z is a primitive mth root of unity ⇐⇒ zm = 1 and zk 6= 1, ∀k < m



Algebraic Straight-Line Programs (cnt’d)

When asking complexity questions for a problem computable in this
model, we are interested in the length (as a function of n) of the
program for an input x1, x2, . . . , xn.

Some problems computable in this model and their complexity:
I Polynomial Multiplication:

I O(n2) using the school method,

I O(n log n) using FFT, for fields that have a primitive mth root
of unity1, where m is the smallest power of 2 less than 2n,

I O(n log n log log n) - using FFT, for any field.

I FFT: O(n log n) [Cooley and Tukey].

I Matrix Multiplication: O(n3) with the naive method and this
can be improved using techniques like Strassen’s.

I Determinant: O(n3) using Gaussian elimination.

1z is a primitive mth root of unity ⇐⇒ zm = 1 and zk 6= 1, ∀k < m



Algebraic Straight-Line Programs (cnt’d)

When asking complexity questions for a problem computable in this
model, we are interested in the length (as a function of n) of the
program for an input x1, x2, . . . , xn.

Some problems computable in this model and their complexity:
I Polynomial Multiplication:

I O(n2) using the school method,
I O(n log n) using FFT, for fields that have a primitive mth root

of unity1, where m is the smallest power of 2 less than 2n,

I O(n log n log log n) - using FFT, for any field.

I FFT: O(n log n) [Cooley and Tukey].

I Matrix Multiplication: O(n3) with the naive method and this
can be improved using techniques like Strassen’s.

I Determinant: O(n3) using Gaussian elimination.

1z is a primitive mth root of unity ⇐⇒ zm = 1 and zk 6= 1, ∀k < m



Algebraic Straight-Line Programs (cnt’d)

When asking complexity questions for a problem computable in this
model, we are interested in the length (as a function of n) of the
program for an input x1, x2, . . . , xn.

Some problems computable in this model and their complexity:
I Polynomial Multiplication:

I O(n2) using the school method,
I O(n log n) using FFT, for fields that have a primitive mth root

of unity1, where m is the smallest power of 2 less than 2n,
I O(n log n log log n) - using FFT, for any field.

I FFT: O(n log n) [Cooley and Tukey].

I Matrix Multiplication: O(n3) with the naive method and this
can be improved using techniques like Strassen’s.

I Determinant: O(n3) using Gaussian elimination.

1z is a primitive mth root of unity ⇐⇒ zm = 1 and zk 6= 1, ∀k < m



Algebraic Straight-Line Programs (cnt’d)

When asking complexity questions for a problem computable in this
model, we are interested in the length (as a function of n) of the
program for an input x1, x2, . . . , xn.

Some problems computable in this model and their complexity:
I Polynomial Multiplication:

I O(n2) using the school method,
I O(n log n) using FFT, for fields that have a primitive mth root

of unity1, where m is the smallest power of 2 less than 2n,
I O(n log n log log n) - using FFT, for any field.

I FFT: O(n log n) [Cooley and Tukey].

I Matrix Multiplication: O(n3) with the naive method and this
can be improved using techniques like Strassen’s.

I Determinant: O(n3) using Gaussian elimination.

1z is a primitive mth root of unity ⇐⇒ zm = 1 and zk 6= 1, ∀k < m



Algebraic Straight-Line Programs (cnt’d)

When asking complexity questions for a problem computable in this
model, we are interested in the length (as a function of n) of the
program for an input x1, x2, . . . , xn.

Some problems computable in this model and their complexity:
I Polynomial Multiplication:

I O(n2) using the school method,
I O(n log n) using FFT, for fields that have a primitive mth root

of unity1, where m is the smallest power of 2 less than 2n,
I O(n log n log log n) - using FFT, for any field.

I FFT: O(n log n) [Cooley and Tukey].

I Matrix Multiplication: O(n3) with the naive method and this
can be improved using techniques like Strassen’s.

I Determinant: O(n3) using Gaussian elimination.

1z is a primitive mth root of unity ⇐⇒ zm = 1 and zk 6= 1, ∀k < m



Algebraic Straight-Line Programs (cnt’d)

When asking complexity questions for a problem computable in this
model, we are interested in the length (as a function of n) of the
program for an input x1, x2, . . . , xn.

Some problems computable in this model and their complexity:
I Polynomial Multiplication:

I O(n2) using the school method,
I O(n log n) using FFT, for fields that have a primitive mth root

of unity1, where m is the smallest power of 2 less than 2n,
I O(n log n log log n) - using FFT, for any field.

I FFT: O(n log n) [Cooley and Tukey].

I Matrix Multiplication: O(n3) with the naive method and this
can be improved using techniques like Strassen’s.

I Determinant: O(n3) using Gaussian elimination.

1z is a primitive mth root of unity ⇐⇒ zm = 1 and zk 6= 1, ∀k < m



Algebraic Circuits

Again, an example (x1, x2 inputs, e, π constants):

+

×

e +

x1 e

×

π x2

The above circuit computes e × (x1 + e) + π × x2 in R. Note the
similarity with the straight-line program that we saw earlier.



Algebraic Circuits (cnt’d)

Definition. An algebraic circuit consists of an acyclic graph. The
leaves are called input nodes, are labeled x1, x2, . . . , xn and take
values in a field F. We also allow special input nodes labeled with
arbitrary constants c1, c2, . . . , ck ∈ F. Each internal node, called a
gate, is labeled with one of the operations +,×. We consider only
circuits with a single output node and with the in-degree of each
gate being 2.

The size of a circuit is the number of gates in it. The depth of the
circuit is the length of the longest path from input to output in it.

Lemma. Let f : Fn → F be some function. If f has an algebraic
straight-line program of size S, then it has an algebraic circuit of
size 3S. If it is computable by an algebraic circuit of size S then it
is computable by an algebraic straight line program of length S.



Algebraic Circuits (cnt’d)

Definition. An algebraic circuit consists of an acyclic graph. The
leaves are called input nodes, are labeled x1, x2, . . . , xn and take
values in a field F. We also allow special input nodes labeled with
arbitrary constants c1, c2, . . . , ck ∈ F. Each internal node, called a
gate, is labeled with one of the operations +,×. We consider only
circuits with a single output node and with the in-degree of each
gate being 2.

The size of a circuit is the number of gates in it. The depth of the
circuit is the length of the longest path from input to output in it.

Lemma. Let f : Fn → F be some function. If f has an algebraic
straight-line program of size S, then it has an algebraic circuit of
size 3S. If it is computable by an algebraic circuit of size S then it
is computable by an algebraic straight line program of length S.



Algebraic Circuits (cnt’d)

Definition. An algebraic circuit consists of an acyclic graph. The
leaves are called input nodes, are labeled x1, x2, . . . , xn and take
values in a field F. We also allow special input nodes labeled with
arbitrary constants c1, c2, . . . , ck ∈ F. Each internal node, called a
gate, is labeled with one of the operations +,×. We consider only
circuits with a single output node and with the in-degree of each
gate being 2.

The size of a circuit is the number of gates in it. The depth of the
circuit is the length of the longest path from input to output in it.

Lemma. Let f : Fn → F be some function. If f has an algebraic
straight-line program of size S, then it has an algebraic circuit of
size 3S. If it is computable by an algebraic circuit of size S then it
is computable by an algebraic straight line program of length S.



Algebraic Circuits (cnt’d)

Definition. Let F be a field. We say that a family of polynomials
{pn}n∈N, where pn takes n variables over F, has polynomially-
bounded degree if there is a constant c s.t. for every n the degree
of pn is at most cnc.

Definition. The class AlgP/poly contains all polynomially
bounded degree families of polynomials that are computable by
algebraic circuits of polynomial size and polynomial degree.

Definition. The class AlgNP/poly is the class of polynomially
bounded degree families {pn} that are definable as

pn(x1, x2, . . . , xn) =
∑

e∈{0,1}m−n

gm(x1, x2, . . . , xn, en+1, . . . , em),

where gm ∈ AlgP/poly and m is polynomial in n.



Algebraic Circuits (cnt’d)

Definition. Let F be a field. We say that a family of polynomials
{pn}n∈N, where pn takes n variables over F, has polynomially-
bounded degree if there is a constant c s.t. for every n the degree
of pn is at most cnc.

Definition. The class AlgP/poly contains all polynomially
bounded degree families of polynomials that are computable by
algebraic circuits of polynomial size and polynomial degree.

Definition. The class AlgNP/poly is the class of polynomially
bounded degree families {pn} that are definable as

pn(x1, x2, . . . , xn) =
∑

e∈{0,1}m−n

gm(x1, x2, . . . , xn, en+1, . . . , em),

where gm ∈ AlgP/poly and m is polynomial in n.



Algebraic Circuits (cnt’d)

Definition. Let F be a field. We say that a family of polynomials
{pn}n∈N, where pn takes n variables over F, has polynomially-
bounded degree if there is a constant c s.t. for every n the degree
of pn is at most cnc.

Definition. The class AlgP/poly contains all polynomially
bounded degree families of polynomials that are computable by
algebraic circuits of polynomial size and polynomial degree.

Definition. The class AlgNP/poly is the class of polynomially
bounded degree families {pn} that are definable as

pn(x1, x2, . . . , xn) =
∑

e∈{0,1}m−n

gm(x1, x2, . . . , xn, en+1, . . . , em),

where gm ∈ AlgP/poly and m is polynomial in n.



Algebraic Circuits (cnt’d)

Definition. A function f(x1, x2, . . . , xn) is a projection of a
function g(y1, y2, . . . , yn) if there is a mapping σ from
{y1, y2, . . . , yn} to {0, 1, x1, x2, . . . , xn} s.t.

f(x1, x2, . . . , xn) = g(σ(y1), σ(y2), . . . , σ(yn)).

We say f is projection-reducible to g if f is a projection of g.

Example. Let f(x1, x2) = x1 + x2; f is projection-reducible to
g(y1, y2, y3) = y21y3 + y2 since f(x1, x2) = g(1, x1, x2). �

Completeness results based on the above:

I determinant is AlgP/poly-complete.

I permanent is AlgNP/poly-complete.

Interesting fact: we need to show AlgP/poly 6= AlgNP/poly before
we can show P 6= NP.



Algebraic Circuits (cnt’d)

Definition. A function f(x1, x2, . . . , xn) is a projection of a
function g(y1, y2, . . . , yn) if there is a mapping σ from
{y1, y2, . . . , yn} to {0, 1, x1, x2, . . . , xn} s.t.

f(x1, x2, . . . , xn) = g(σ(y1), σ(y2), . . . , σ(yn)).

We say f is projection-reducible to g if f is a projection of g.

Example. Let f(x1, x2) = x1 + x2; f is projection-reducible to
g(y1, y2, y3) = y21y3 + y2 since f(x1, x2) = g(1, x1, x2). �

Completeness results based on the above:

I determinant is AlgP/poly-complete.

I permanent is AlgNP/poly-complete.

Interesting fact: we need to show AlgP/poly 6= AlgNP/poly before
we can show P 6= NP.



Algebraic Circuits (cnt’d)

Definition. A function f(x1, x2, . . . , xn) is a projection of a
function g(y1, y2, . . . , yn) if there is a mapping σ from
{y1, y2, . . . , yn} to {0, 1, x1, x2, . . . , xn} s.t.

f(x1, x2, . . . , xn) = g(σ(y1), σ(y2), . . . , σ(yn)).

We say f is projection-reducible to g if f is a projection of g.

Example. Let f(x1, x2) = x1 + x2; f is projection-reducible to
g(y1, y2, y3) = y21y3 + y2 since f(x1, x2) = g(1, x1, x2). �

Completeness results based on the above:

I determinant is AlgP/poly-complete.

I permanent is AlgNP/poly-complete.

Interesting fact: we need to show AlgP/poly 6= AlgNP/poly before
we can show P 6= NP.



Algebraic Circuits (cnt’d)

Definition. A function f(x1, x2, . . . , xn) is a projection of a
function g(y1, y2, . . . , yn) if there is a mapping σ from
{y1, y2, . . . , yn} to {0, 1, x1, x2, . . . , xn} s.t.

f(x1, x2, . . . , xn) = g(σ(y1), σ(y2), . . . , σ(yn)).

We say f is projection-reducible to g if f is a projection of g.

Example. Let f(x1, x2) = x1 + x2; f is projection-reducible to
g(y1, y2, y3) = y21y3 + y2 since f(x1, x2) = g(1, x1, x2). �

Completeness results based on the above:

I determinant is AlgP/poly-complete.

I permanent is AlgNP/poly-complete.

Interesting fact: we need to show AlgP/poly 6= AlgNP/poly before
we can show P 6= NP.



Blum-Shub-Smale

I The first uniform algebraic model that we see.
I Generalization of TM’s.

I Input string in Fn.
I Each cell can hold an element of F.

I Three categories of states:
I Shift: move head ±1 cell.
I Branch: If current cell = a, then goto q1 else goto q2.
I Compute: replace the content a of the current cell with f(a),

where f is a hard-wired function (polynomial or rational
depending on whether F is a ring or a field).

I Note: need a register for branching.

I Very powerful model (e.g. computes x2
n

in n steps).
I Could be even more powerful.

I Allowing ≥ comparisons when branching would give it the
ability to decide every language in P/poly. (even undecidable!)

I Allowing rounding as a basic operation would give it the ability
of integer factorization in poly-time.



Blum-Shub-Smale

I The first uniform algebraic model that we see.
I Generalization of TM’s.

I Input string in Fn.

I Each cell can hold an element of F.

I Three categories of states:
I Shift: move head ±1 cell.
I Branch: If current cell = a, then goto q1 else goto q2.
I Compute: replace the content a of the current cell with f(a),

where f is a hard-wired function (polynomial or rational
depending on whether F is a ring or a field).

I Note: need a register for branching.

I Very powerful model (e.g. computes x2
n

in n steps).
I Could be even more powerful.

I Allowing ≥ comparisons when branching would give it the
ability to decide every language in P/poly. (even undecidable!)

I Allowing rounding as a basic operation would give it the ability
of integer factorization in poly-time.



Blum-Shub-Smale

I The first uniform algebraic model that we see.
I Generalization of TM’s.

I Input string in Fn.
I Each cell can hold an element of F.

I Three categories of states:
I Shift: move head ±1 cell.
I Branch: If current cell = a, then goto q1 else goto q2.
I Compute: replace the content a of the current cell with f(a),

where f is a hard-wired function (polynomial or rational
depending on whether F is a ring or a field).

I Note: need a register for branching.

I Very powerful model (e.g. computes x2
n

in n steps).
I Could be even more powerful.

I Allowing ≥ comparisons when branching would give it the
ability to decide every language in P/poly. (even undecidable!)

I Allowing rounding as a basic operation would give it the ability
of integer factorization in poly-time.



Blum-Shub-Smale

I The first uniform algebraic model that we see.
I Generalization of TM’s.

I Input string in Fn.
I Each cell can hold an element of F.

I Three categories of states:
I Shift: move head ±1 cell.

I Branch: If current cell = a, then goto q1 else goto q2.
I Compute: replace the content a of the current cell with f(a),

where f is a hard-wired function (polynomial or rational
depending on whether F is a ring or a field).

I Note: need a register for branching.

I Very powerful model (e.g. computes x2
n

in n steps).
I Could be even more powerful.

I Allowing ≥ comparisons when branching would give it the
ability to decide every language in P/poly. (even undecidable!)

I Allowing rounding as a basic operation would give it the ability
of integer factorization in poly-time.



Blum-Shub-Smale

I The first uniform algebraic model that we see.
I Generalization of TM’s.

I Input string in Fn.
I Each cell can hold an element of F.

I Three categories of states:
I Shift: move head ±1 cell.
I Branch: If current cell = a, then goto q1 else goto q2.

I Compute: replace the content a of the current cell with f(a),
where f is a hard-wired function (polynomial or rational
depending on whether F is a ring or a field).

I Note: need a register for branching.

I Very powerful model (e.g. computes x2
n

in n steps).
I Could be even more powerful.

I Allowing ≥ comparisons when branching would give it the
ability to decide every language in P/poly. (even undecidable!)

I Allowing rounding as a basic operation would give it the ability
of integer factorization in poly-time.



Blum-Shub-Smale

I The first uniform algebraic model that we see.
I Generalization of TM’s.

I Input string in Fn.
I Each cell can hold an element of F.

I Three categories of states:
I Shift: move head ±1 cell.
I Branch: If current cell = a, then goto q1 else goto q2.
I Compute: replace the content a of the current cell with f(a),

where f is a hard-wired function (polynomial or rational
depending on whether F is a ring or a field).

I Note: need a register for branching.

I Very powerful model (e.g. computes x2
n

in n steps).
I Could be even more powerful.

I Allowing ≥ comparisons when branching would give it the
ability to decide every language in P/poly. (even undecidable!)

I Allowing rounding as a basic operation would give it the ability
of integer factorization in poly-time.



Blum-Shub-Smale

I The first uniform algebraic model that we see.
I Generalization of TM’s.

I Input string in Fn.
I Each cell can hold an element of F.

I Three categories of states:
I Shift: move head ±1 cell.
I Branch: If current cell = a, then goto q1 else goto q2.
I Compute: replace the content a of the current cell with f(a),

where f is a hard-wired function (polynomial or rational
depending on whether F is a ring or a field).

I Note: need a register for branching.

I Very powerful model (e.g. computes x2
n

in n steps).
I Could be even more powerful.

I Allowing ≥ comparisons when branching would give it the
ability to decide every language in P/poly. (even undecidable!)

I Allowing rounding as a basic operation would give it the ability
of integer factorization in poly-time.



Blum-Shub-Smale

I The first uniform algebraic model that we see.
I Generalization of TM’s.

I Input string in Fn.
I Each cell can hold an element of F.

I Three categories of states:
I Shift: move head ±1 cell.
I Branch: If current cell = a, then goto q1 else goto q2.
I Compute: replace the content a of the current cell with f(a),

where f is a hard-wired function (polynomial or rational
depending on whether F is a ring or a field).

I Note: need a register for branching.

I Very powerful model (e.g. computes x2
n

in n steps).

I Could be even more powerful.
I Allowing ≥ comparisons when branching would give it the

ability to decide every language in P/poly. (even undecidable!)
I Allowing rounding as a basic operation would give it the ability

of integer factorization in poly-time.



Blum-Shub-Smale

I The first uniform algebraic model that we see.
I Generalization of TM’s.

I Input string in Fn.
I Each cell can hold an element of F.

I Three categories of states:
I Shift: move head ±1 cell.
I Branch: If current cell = a, then goto q1 else goto q2.
I Compute: replace the content a of the current cell with f(a),

where f is a hard-wired function (polynomial or rational
depending on whether F is a ring or a field).

I Note: need a register for branching.

I Very powerful model (e.g. computes x2
n

in n steps).
I Could be even more powerful.

I Allowing ≥ comparisons when branching would give it the
ability to decide every language in P/poly. (even undecidable!)

I Allowing rounding as a basic operation would give it the ability
of integer factorization in poly-time.



Blum-Shub-Smale

I The first uniform algebraic model that we see.
I Generalization of TM’s.

I Input string in Fn.
I Each cell can hold an element of F.

I Three categories of states:
I Shift: move head ±1 cell.
I Branch: If current cell = a, then goto q1 else goto q2.
I Compute: replace the content a of the current cell with f(a),

where f is a hard-wired function (polynomial or rational
depending on whether F is a ring or a field).

I Note: need a register for branching.

I Very powerful model (e.g. computes x2
n

in n steps).
I Could be even more powerful.

I Allowing ≥ comparisons when branching would give it the
ability to decide every language in P/poly. (even undecidable!)

I Allowing rounding as a basic operation would give it the ability
of integer factorization in poly-time.



Blum-Shub-Smale

I The first uniform algebraic model that we see.
I Generalization of TM’s.

I Input string in Fn.
I Each cell can hold an element of F.

I Three categories of states:
I Shift: move head ±1 cell.
I Branch: If current cell = a, then goto q1 else goto q2.
I Compute: replace the content a of the current cell with f(a),

where f is a hard-wired function (polynomial or rational
depending on whether F is a ring or a field).

I Note: need a register for branching.

I Very powerful model (e.g. computes x2
n

in n steps).
I Could be even more powerful.

I Allowing ≥ comparisons when branching would give it the
ability to decide every language in P/poly. (even undecidable!)

I Allowing rounding as a basic operation would give it the ability
of integer factorization in poly-time.



Blum-Shub-Smale (cnt’d)

This power raises decidability questions. Can we compute anything
with it?

—NO

Definition. For complex c, z define pc(z) = z2 + c. The
Mandelbrot set is defined as

M = {c ∈ C | the sequence pc(0), pc(pc(0)), . . . is bounded }.



Blum-Shub-Smale (cnt’d)

This power raises decidability questions. Can we compute anything
with it?—NO

Definition. For complex c, z define pc(z) = z2 + c. The
Mandelbrot set is defined as

M = {c ∈ C | the sequence pc(0), pc(pc(0)), . . . is bounded }.



[http://upload.wikimedia.org/wikipedia/commons/2/21/Mandel_zoom_00_mandelbrot_set.jpg]



Blum-Shub-Smale (cnt’d)

Theorem. M is undecidable by a macine over C.

Philosophical questions: Roger Penrose vs. Artificial Intelligence.



Blum-Shub-Smale (cnt’d)

Theorem. M is undecidable by a macine over C.

Philosophical questions: Roger Penrose vs. Artificial Intelligence.



Bibliography

I S. Arora and B. Barak, Computational complexity: a modern
approach, Cambridge University Press, 2009.

I A. Shamir, Factoring numbers in O(log n) arithmetic steps,
Inf. Process. Lett., 1979.

I L. G. Valiant, Completeness classes in algebra. In STOC,
ACM, 1979.

I L. G. Valiant, The complexity of computing the permanent,
Theoretical Computer Science, 1979.

I L. Blum, M. Shub, and S. Smale, On a theory of computation
and complexity over the real numbers: NP-completeness, recu-
rsive functions and universal machines, American Mathemati-
cal Society, 1989.

I R. Penrose, The Emperor’s New Mind, Oxford University
Press, 1989.


