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 What is called a reduction?

 Why do we need reductions?

 Relation to the complexity classes
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 Definition 8.1: We say that a language L1 is 

reducible to L2 if there is a function R(x) from 

strings to strings computable by a deterministic 

Turing machine such that for all inputs x, 

x   L1<=> R(x)    L2. An “efficient reduction”  

uses O(logn) space to be computed by a 

deterministic Turing machine.
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 Proposition 8.1: If R is a Reduction as defined 
above then it will be computed in a polynomial 
number of steps. 

 Proof: We have f(n)=O(logn) bits of storage 
,where n=|x| (length of the input) , and k states 
of the turing machine.  So the possible 
configurations are: k*n*2f(n) = O(n*clogn) = 
O(poln). If one of them is repeated, then the 
machine will not halt. So every computation is 
completed in a polynomial number of steps.  
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 Example 8.1: Reduction of HAMILTON PATH to 

SAT

 Given a graph G we shall construct a boolean

expression R(G) s.t: R(G) is satisfiable iff G has a 

hamilton path. The construction is as follows:

We introduce the boolean variables: 

Xij: “Node j is the ith node in the Hamilton path”.

R(G) will be in CNF form with clauses: 

 Node j must appear in the path: )...( 21 njjj xxxj 
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 Node i cannot appear both ith and kth:

 Some Node must be ith:

 No two nodes should be ith:

 If (i,j) is not an edge of G, then j shouldn’t  

come after I in the Hamilton path: 

)( kjij xxkij 

)...( 21 inii xxxi 

)( ikij xxkji 

)]()(),[( ,1 jkki xxGEjiji 
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 Now suppose R(G) has a satisfying assignment T.

So let π(i)=j  iff T(xij)=True be a permutation of 

the nodes of G.

Also the clauses of the form: 

guarantee that for all k, (π(k),π(k+1)) is an edge of 

G <=> (π(1),π(2),…,π(n)) is a Hamilton path of G.

truexTij ij  )(:!
truexTji ij  )(:!

)( ,1, ikik xx 
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 Conversely, suppose that G has a Hamilton path 
(π(1),π(2),…,π(n)), where π is a permutation.

Then by definition the truth assignment T: 
T(xij)=True if π(i)=j , and T(xij)=false if π(i)≠j , 
satisfies all clauses of R(G).

 Space complexity of the reduction: 

A turing machine that will carry out this 
computation needs only 3 counters i,j,k to produce 
all the clauses. So the length of the binary 
representation of these counters is O(logn) where 
n=|x| because i,j,k<=n. 

This completes the reduction.  
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 Example 8.2: Reduction of REACHABILITY to 
CIRCUIT VALUE

 Given a graph G, we are going to construct a variable-
free circuit R(G) such that the output of R(G)  is True 
iff there is a path from node 1 to node n in G. 

 Let gijk,hijk be boolean variables.

T(gijk)=true iff there is a path in G from node i to node 
j not using any intermediate node bigger than k.

T(hijk)=true iff there is a path in G from node i to node 
j which uses k but no other nodes bigger than k as 
intermediate nodes. 
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 All gij0 gates are input gates (there are no hij0
gates).

In particular, T(gij0)=true iff i=j or (i,j) is an edge of 
G.

 For k=1,2,…n , hijk is an AND gate, and its 
predecessors are gi,k,k-1  and gk,j,k-1 meaning that 
there is a path in G from node i to node j passing 
through k and no other bigger than k iff there are 
paths from i to k and from k to j not using any 
nodes bigger than k.

 Similarly, gijk is an OR gate , and its predecessors 
are gi,j,k-1 and hijk . 
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Finally, ginn is the output gate. So, we have inductively 
described the whole circuit R(G).

 Proof: We will use induction on k. 

For k=0 the truth values of gijk are given according to their 
description. 

if this is also true up to k-1 the definitions of hijk and gijk
guarantee that it to be true for k as well.

So, g1nn (the output) is true iff there is a path from node 1

to n in G. 

 Finally, we shall show that the reduction can be computed in 
O(logn) space. Just like before, the space needed is only for 
storing the 3 indexes (I,j,k) whose value is no greater than 
n=|x|. So their binary representation is O(logn) bits long.
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 Example 8.3: Reduction of CIRCUIT SAT to SAT

 Given a boolean circuit C, we wish to produce a Boolean 
expression R(C) such that R(C) is satisfyable iff C is 
satisfyable. 

 R(C) contains a variable “gi” for each gate of C.

 Depending on the type of the gates, we add the clauses:

Variable gate: 

True gate: (gi)

False gate:

NOT gate with predecessor gate h: 

OR gate with predecessors h and h’: 

AND gate with predecessors h and h’: 

Output gate: (gi)

)()( xgxg 

)( ig

)(),( hghg 

)'()'()( ghhghgh 

)')('()( ghhhghg 
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 R(C) is satisfiable iff C is satisfiable.

 The reductions uses O(logn) space (it only 

needs to store the predecessors).  
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 Example 8.4: Reduction by generalization.

 Problem A is a special case of problem B: the 

input of A is a subset of the input of B, and for 

this input A,B give the same answers.

 For example CIRCUIT SAT is a generalization 

of CIRCUIT VALUE.
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 Proposition 8.2: If R is a reduction from language L1 to L2 
and R’ is a reduction from L2 to L3, then RoR’ is a reduction 
from L1 to L3.

 Proof: It is trivial that: 

But we have to show that RoR’ can be computed using 
O(logn) space. 

If we were using a string R(x) as the output of MR and input 
for MR’ the computation could require a polynomial amound of 
space since the output of a TM can be of the same size as 
the time of computation.

Solution: We could only store the cursor position in R(x) in a 
variable i (logn bits). So, the output symbols of MR will be 
generated one by one or the computation of R(x) will be 
restarted until i is reached, if needed. 

31 ))((' LxRRLx 
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 8.2: Completeness

 Definition 8.2: Let C be a complexity class, and let 

L be a language in C. We say that L is C-complete 

if any language L’    C  can be reduced to L. 

 Definition: We say that a class C is closed under 

reductions if whenever L is reducible to L’ and

L’     C, then also L     C.

 Proposition 8.3: P, NP, coNP, L, NL, PSPACE, 

EXP are all closed under reductions.
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 Proposition 8.4: If two classes C and C’ are 

both closed under reductions, and there is a 

language L which is complete for both C and 

C’, then C=C’.

 Proof: L is C-complete                      , L’ 

reduces to L     C’                                            

(C’ is closed under reductions).

In a similar way:             . So, C=C’.  

CL '
 ''' CCCL 

CC '
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 The table method:

Consider a polynomial-time Turing machine 
M=(K,Σ,δ,s) deciding language L. Its 
computation is shown in the following 

|x|k X |x|k table (where |x|k is the time bound). 

 The (i,j) table entry represents the contents of 
position j of the string of M at time i. 

 Also if an entry has a subscript (which is the 
symbol of the current state), then this denotes 
that the cursor at that time is at this position. 
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 Figure 8.3 shows the computation table of a 

TM deciding palindromes in O(n2) time, when 

we put 0110 as input.

 Proposition 8.5: M accepts x iff the 

computational table of M on input x is 

accepting.
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 Theorem 8.1: CIRCUIT VALUE is P-complete.

 Proof:

CIRCUIT VALUE is in P. So, we have to show that any problem –
language L    P can be reduced to CIRCUIT VALUE.

Equivalently, given an input x and a TM, we have to construct a

variable – free cirquit R(x) such that

x     L iff the output of R(x) is true. 

Let M: The deterministic Turing machine that decides L in time nk

T: The computational table of M.

Now, consider some special cases:

T0j=the j-th symbol of x or a “     ”.

Ti0=a “    ” 

Tij=“      ” for j=|x|k-1
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 For every  0<=i,j<=|x|k-1,  Tij depends only on the 
entries: Ti-1,j-1 , Ti-1,j , Ti-1,j+1 as illustrated below:

 Now, we encode each symbol σ     Γ  as a vector 
of the m-dimensional space: {0,1}m ,

where m=                 .



 ||log 
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 Let Sijl be the l-th bit of the encoding of Tij.

We can see that the value of each of these m 

bits depends only (through a boolean cirquit C 

depending only on M) on the 3m bits 

corresponding to Ti-1,j-1, Ti-1,j  , Ti-1,j+1 as shown 

in the following figure: 
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 For each x, R(x) will consist of (|x|k-1)*(|x|k-2) cirquits (copies 
of C) connected as illustrated below:

 Input gates of R(x): 1st row and 1st and last column.

 Output gate: The first output of the cirquit C(|x|k-1,1) (without 
harming generality).

 Note that we choose the first bit of the encoding of “yes” to be 
1, whereas the first bit of the encoding of “no” is 0.



26/30

 We are going to prove that R(x) is true iff x    L.

If the value of R(x) is true (1) then the 1st bit of the encoding 
of the answer is 1.So, the answer is “yes” and so

M accepts x               . Conversely, if             the answer is 
“yes” and thus the value of R(x) (1st bit of C(|x|k-1)) is true. 

 Finally, we have to argue that R can be carried out in 
O(log|x|) space. This is actually easy, since we can construct 
every copy of C only using indexes: i,j,l<=|x|, which require 
log|x| bits to be represented. 

 Note that during the reduction, we did not use any NOT 
gates. This means that CIRQUIT VALUE as well as 
MONOTONE CIRQUIT VALUE are P-complete.



Lx Lx
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 Theorem 8.2 (Cook’s Theorem): SAT is NP-complete.

 Proof:

SAT      NP: The verification of a satisfying truth 
assignment takes polynomial time. 

Now, we are going to prove that every problem-
language in NP can be reduced to CIRQUIT SAT, 
which can be then reduced to SAT (example 8.3).

The reduction is similar to the one we made before for 
the P-completeness of CIRQUIT VALUE, but we have 
to introduce a few more ideas.

Let L       NP. There is a non-deterministic Turing 
machine M(K,Σ,Δ,s) that decides L in time nk .  
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 With no loss of generality we can assume that 

at each step of the computation we have 2 

non-deterministic choices. In case we have 

more, we can make the conversion described 

below: 
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 We make a construction similar to the previous 

one, and also add an extra bit (ci-1) as input of 

each boolean cirquit C, corresponding to the 

non-deterministic choice of the Turing machine 

as shown below: 
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 We consider the gates ci that correspond to 
the non-deterministic choices, as input 
variables of the cirquit. So, L was eventually 
reduced to CIRQUIT SAT. That is, x    L  iff the 
constructed boolean cirquit has a satisfying 
truth assignment. 

 Finally, it is easy to show that R can be 
computed using log|x| space in a similar way 
as the previous one. 

 SAT is NP-complete.




