#### REDUCTIONS AND COMPLETENESS



#### 8.1 Reductions



- What is called a reduction?
- Why do we need reductions?
- Relation to the complexity classes



Figure 8-1. Reduction from B to A.

Definition 8.1: We say that a language L1 is reducible to L<sub>2</sub> if there is a function R(x) from strings to strings computable by a deterministic Turing machine such that for all inputs x,

 $x \in L_1 \le R(x) \in L_2$ . An "efficient reduction" uses O(logn) space to be computed by a deterministic Turing machine.

- Proposition 8.1: If R is a Reduction as defined above then it will be computed in a polynomial number of steps.
- Proof: We have f(n)=O(logn) bits of storage ,where n=|x| (length of the input), and k states of the turing machine. So the possible configurations are: k\*n\*2<sup>f(n)</sup> = O(n\*c<sup>logn</sup>) = O(poln). If one of them is repeated, then the machine will not halt. So every computation is completed in a polynomial number of steps.

- Example 8.1: Reduction of HAMILTON PATH to SAT
- Given a graph G we shall construct a boolean expression R(G) s.t: R(G) is satisfiable iff G has a hamilton path. The construction is as follows:

We introduce the boolean variables:

X<sub>ij</sub>: "Node j is the ith node in the Hamilton path". R(G) will be in CNF form with clauses:

□ Node j must appear in the path:  $\forall j(x_{1j} \lor x_{2j} \lor ... \lor x_{nj})$ 

Node i cannot appear both ith and kth:

$$\forall j \forall i \neq k(\neg x_{ij} \lor \neg x_{kj})$$

Some Node must be ith:

$$\forall i(x_{i1} \lor x_{i2} \lor \ldots \lor x_{in})$$

No two nodes should be ith:

$$\forall i \forall j \neq k(\neg x_{ij} \lor \neg x_{ik})$$

If (i,j) is not an edge of G, then j shouldn't come after I in the Hamilton path:

$$\forall i \forall j [(i, j) \notin E(G) \Longrightarrow (\neg x_{ki} \lor \neg x_{k+1, j})]$$

 $\square$  Now suppose R(G) has a satisfying assignment T.

 $\forall j \exists ! i : T(x_{ij}) = true$  $\forall i \exists ! j : T(x_{ij}) = true$ So let  $\pi(i)=j$  iff  $T(x_{ij})=True$  be a permutation of the nodes of G.

Also the clauses of the form:  $(\neg x_{k,i} \lor \neg x_{k+1,i})$ guarantee that for all k,  $(\pi(k),\pi(k+1))$  is an edge of G <=>  $(\pi(1),\pi(2),...,\pi(n))$  is a Hamilton path of G.

- □ Conversely, suppose that G has a Hamilton path  $(\pi(1),\pi(2),...,\pi(n))$ , where  $\pi$  is a permutation. Then by definition the truth assignment T:  $T(x_{ij})=True$  if  $\pi(i)=j$ , and  $T(x_{ij})=false$  if  $\pi(i)\neq j$ , satisfies all clauses of R(G).
- Space complexity of the reduction:

A turing machine that will carry out this computation needs only 3 counters i,j,k to produce all the clauses. So the length of the binary representation of these counters is **O(logn)** where n=|x| because i,j,k<=n.

This completes the reduction.

- Example 8.2: Reduction of REACHABILITY to CIRCUIT VALUE
- Given a graph G, we are going to construct a variablefree circuit R(G) such that the output of R(G) is True iff there is a path from node 1 to node n in G.
- □ Let  $g_{ijk}$ ,  $h_{ijk}$  be boolean variables.

 $T(g_{ijk})$ =**true** iff there is a path in G from node i to node j not using any intermediate node bigger than k.

 $T(h_{ijk})$ =**true** iff there is a path in G from node i to node j which **uses k** but no other nodes bigger than k as intermediate nodes.

All g<sub>ij0</sub> gates are input gates (there are no h<sub>ij0</sub> gates).
 In particular T(q\_)-true iff i-i or (i i) is an edge

In particular,  $T(g_{ij0})$ =true iff i=j or (i,j) is an edge of G.

- For k=1,2,...n, h<sub>ijk</sub> is an AND gate, and its predecessors are g<sub>i,k,k-1</sub> and g<sub>k,j,k-1</sub> meaning that there is a path in G from node i to node j passing through k and no other bigger than k iff there are paths from i to k and from k to j not using any nodes bigger than k.
- Similarly, g<sub>ijk</sub> is an OR gate , and its predecessors are g<sub>i,j,k-1</sub> and h<sub>ijk</sub>.

Finally,  $g_{inn}$  is the output gate. So, we have inductively described the whole circuit R(G).

- Proof: We will use induction on k.
  - For k=0 the truth values of  $g_{ijk}$  are given according to their description.

if this is also true up to k-1 the definitions of  $h_{ijk}$  and  $g_{ijk}$  guarantee that it to be true for k as well.

So,  $g_{1nn}$  (the output) is true iff there is a path from node 1 to n in G.

Finally, we shall show that the reduction can be computed in O(logn) space. Just like before, the space needed is only for storing the 3 indexes (I,j,k) whose value is no greater than n=|x|. So their binary representation is O(logn) bits long.

- Example 8.3: Reduction of CIRCUIT SAT to SAT
- Given a boolean circuit C, we wish to produce a Boolean expression R(C) such that R(C) is satisfyable iff C is satisfyable.
- $\square$  R(C) contains a variable "g<sub>i</sub>" for each gate of C.
- Depending on the type of the gates, we add the clauses: Variable gate:  $(\neg g \lor x) \land (g \lor \neg x)$

**True** gate: (g<sub>i</sub>)

**False** gate:  $(\neg g_i)$ 

NOT gate with predecessor gate h:  $(\neg g \lor \neg h), (g \lor h)$ 

OR gate with predecessors h and h':  $(\neg h \lor g) \land (\neg h \lor g) \land (h \lor h \lor \neg g)$ 

AND gate with predecessors h and h':  $(\neg g \lor h) \land (\neg g \lor h')(\neg h \lor \neg h' \lor g)$ Output gate: (g<sub>i</sub>)

- $\square$  R(C) is satisfiable iff C is satisfiable.
- The reductions uses O(logn) space (it only needs to store the predecessors).

- Example 8.4: Reduction by generalization.
- Problem A is a special case of problem B: the input of A is a subset of the input of B, and for this input A,B give the same answers.
- For example CIRCUIT SAT is a generalization of CIRCUIT VALUE.

- Proposition 8.2: If R is a reduction from language L1 to L2 and R' is a reduction from L2 to L3, then RoR' is a reduction from L1 to L3.
- □ Proof: It is trivial that:  $x \in L_1 \Leftrightarrow R'(R(x)) \in L_3$

But we have to show that RoR' can be computed using O(logn) space.

If we were using a string R(x) as the output of  $M_R$  and input for  $M_{R'}$  the computation could require a polynomial amound of space since the output of a TM can be of the same size as the time of computation.

Solution: We could only store the cursor position in R(x) in a variable i (logn bits). So, the output symbols of  $M_R$  will be generated one by one or the computation of R(x) will be restarted until i is reached, if needed.



Figure 8-2. How not to compose reductions.

#### 8.2 Completeness

## 17/30

#### 8.2: Completeness

- Definition 8.2: Let C be a complexity class, and let L be a language in C. We say that L is C-complete if any language L'∈ C can be reduced to L.
- Definition: We say that a class C is closed under reductions if whenever L is reducible to L' and

 $L' \in C$ , then also  $L \in C$ .

Proposition 8.3: P, NP, coNP, L, NL, PSPACE, EXP are all closed under reductions.

- Proposition 8.4: If two classes C and C' are both closed under reductions, and there is a language L which is complete for both C and C', then C=C'.
- Proof: L is C-complete  $\Rightarrow \forall L' \in C$ , L' reduces to L  $\in$  C'  $\Rightarrow L' \in C' \Rightarrow C \subseteq C'$ (C' is closed under reductions). In a similar way:  $C' \subset C$ . So, C=C'.

#### □ The table method:

Consider a polynomial-time Turing machine  $M=(K,\Sigma,\delta,s)$  deciding language L. Its computation is shown in the following

 $|x|^k X |x|^k$  table (where  $|x|^k$  is the time bound).

- The (i,j) table entry represents the contents of position j of the string of M at time i.
- Also if an entry has a subscript (which is the symbol of the current state), then this denotes that the cursor at that time is at this position.

| ⊳ | $0_s$              | 1                  | 1          | 0              | Ц              | Ц      | Ц      | Ш      | Ц      | Ш      | Ц      | Ш            | Ц            | Ш      | Ц |
|---|--------------------|--------------------|------------|----------------|----------------|--------|--------|--------|--------|--------|--------|--------------|--------------|--------|---|
| ⊳ | ⊳                  | $1_{q_0}$          | 1          | 0              | L              | $\Box$ | Ц      | $\Box$ | Ц      | Ш      | Ц      | Ш            | Ц            | Ш      | Ц |
| ⊳ | ⊳                  | 1                  | $1_{q_0}$  | 0              | $\Box$         | $\Box$ | Ц      | $\Box$ | Ш      | $\Box$ | Ц      | ${{\sqcup}}$ | Ц            | Ц      | Ц |
| ⊳ | ⊳                  | 1                  | 1          | $0_{q_0}$      | L              | Ш      | Ц      | Ц      | Ш      | Ц      | Ц      | Ш            | Ш            | Ш      | Ц |
| ⊳ | ⊳                  | 1                  | 1          | 0              | $\sqcup_{q_0}$ | $\Box$ | Ц      | Ц      | Ш      | $\Box$ | Ш      | Ш            | Ц            | Ш      | Ц |
| ⊳ | ⊳                  | 1                  | 1          | $0_{q'_0}$     | $\Box$         | $\Box$ | Ц      | $\Box$ | Ш      | $\Box$ | Ц      | $\Box$       | Ц            | $\Box$ | Ц |
| ⊳ | ⊳                  | 1                  | $1_q$      | Ц              | $\Box$         | $\Box$ | Ц      | $\Box$ | Ц      | $\Box$ | Ц      | $\Box$       | Ш            | Ц      | Ц |
| ⊳ | ⊳                  | $1_q$              | 1          | Ц              | $\Box$         | Ш      | Ц      | $\Box$ | $\Box$ | $\Box$ | Ш      | Ц            | Ш            | Ц      | Ц |
| ⊳ | $\triangleright_q$ | 1                  | 1          | L              | Ш              | $\Box$ | Ц      | Ц      | Ш      | $\Box$ | Ц      | Ц            | ${{\sqcup}}$ | $\Box$ | Ц |
| ⊳ | ⊳                  | $1_s$              | 1          | $\Box$         | $\Box$         | $\Box$ | Ц      | Ш      | Ш      | Ľ      | $\Box$ | Ц            | Ш            | $\Box$ | Ц |
| ⊳ | ⊳                  | $\triangleright$   | $1_{q_1}$  | $\Box$         | $\Box$         | $\Box$ | Ш      | $\Box$ | $\Box$ | $\Box$ | $\Box$ | L            | Ш            | $\Box$ | Ц |
| ⊳ | ⊳                  | $\triangleright$   | 1          | $\sqcup_{q_1}$ | Ц              | $\Box$ | Ш      | $\Box$ | Ш      | Ц      | Ц      | Ц            | Ш            | Ц      | Ц |
| ⊳ | ⊳                  | ⊳                  | $1_{q_1'}$ | $\Box$         | $\Box$         | $\Box$ | Ц      | $\Box$ | Ш      | $\Box$ | Ц      | $\Box$       | Ц            | $\Box$ | Ц |
| ⊳ | ⊳                  | $\triangleright_q$ | ЦÎ         | $\Box$         | Ц              | $\Box$ | $\Box$ | $\Box$ | $\Box$ | L      | $\Box$ | Ц            | $\Box$       | L      | Ц |
| ⊳ | ⊳                  | $\triangleright$   | $\sqcup_s$ | Ш              | L              | Ш      | Ц      | Ц      | Ш      | Ц      | Ц      | Ц            | Ц            | Ц      | Ц |
| ⊳ | ⊳                  | $\triangleright$   | "yes"      | Ш              | L              | $\Box$ | L      | $\Box$ | Ц      | $\Box$ | $\Box$ | L            | Ц            | Ц      | Ц |

Figure 8.3. Computation table.

- Figure 8.3 shows the computation table of a TM deciding palindromes in O(n<sup>2</sup>) time, when we put 0110 as input.
- Proposition 8.5: M accepts x iff the computational table of M on input x is accepting.

- Theorem 8.1: CIRCUIT VALUE is P-complete.
- Proof:

CIRCUIT VALUE is in P. So, we have to show that any problem – language  $L \in P$  can be reduced to CIRCUIT VALUE.

Equivalently, given an input x and a TM, we have to construct a variable – free cirquit R(x) such that

 $x \in L$  iff the output of R(x) is **true**.

Let M: The deterministic Turing machine that decides L in time  $n^{k}% =0$ 

T: The computational table of M.

Now, consider some special cases:

```
T_{0j}=the j-th symbol of x or a " ⊔ ".

T_{i0}=a " ▷ "

T_{ij}=" ⊔ " for j=|x|<sup>k</sup>-1
```

□ For every 0<=i,j<=|x|<sup>k</sup>-1, T<sub>ij</sub> depends only on the entries: T<sub>i-1,j-1</sub>, T<sub>i-1,j</sub>, T<sub>i-1,j+1</sub> as illustrated below:

□ Now, we encode each symbol  $\sigma \in \Gamma$  as a vector of the m-dimensional space:  $\{0,1\}^m$ , where m =  $\lceil \log |\Gamma| \rceil$ .

#### □ Let $S_{ijl}$ be the l-th bit of the encoding of $T_{ij}$ . We can see that the value of each of these m bits depends only (through a boolean cirquit C depending only on M) on the 3m bits corresponding to $T_{i-1,j-1}$ , $T_{i-1,j}$ , $T_{i-1,j+1}$ as shown in the following figure: $S_{i-1,j-1,1}$ ... $S_{i-1,j+1,m}$



For each x, R(x) will consist of (|x|<sup>k</sup>-1)\*(|x|<sup>k</sup>-2) cirquits (copies of C) connected as illustrated below:



- □ Input gates of R(x): 1<sup>st</sup> row and 1<sup>st</sup> and last column.
- Output gate: The first output of the cirquit C(|x|<sup>k</sup>-1,1) (without harming generality).
- Note that we choose the first bit of the encoding of "yes" to be 1, whereas the first bit of the encoding of "no" is 0.

- We are going to prove that R(x) is true iff  $x \in L$ . If the value of R(x) is true (1) then the 1<sup>st</sup> bit of the encoding of the answer is 1.So, the answer is "yes" and so M accepts  $x \Rightarrow x \in L$ . Conversely, if  $x \in L$  the answer is "yes" and thus the value of R(x) (1<sup>st</sup> bit of  $C(|x|^{k}-1)$ ) is **true**.
- Finally, we have to argue that R can be carried out in O(log|x|) space. This is actually easy, since we can construct every copy of C only using indexes: i,j,l<=|x|, which require log|x| bits to be represented.
- Note that during the reduction, we did not use any NOT gates. This means that CIRQUIT VALUE as well as MONOTONE CIRQUIT VALUE are P-complete.

- □ Theorem 8.2 (Cook's Theorem): SAT is NP-complete.
- Proof:
  - SAT  $\in$  NP: The verification of a satisfying truth assignment takes polynomial time.
  - Now, we are going to prove that every problemlanguage in NP can be reduced to CIRQUIT SAT, which can be then reduced to SAT (example 8.3).
  - The reduction is similar to the one we made before for the P-completeness of CIRQUIT VALUE, but we have to introduce a few more ideas.
  - Let  $L \in NP$ . There is a non-deterministic Turing machine  $M(K, \Sigma, \Delta, s)$  that decides L in time  $n^k$ .

With no loss of generality we can assume that at each step of the computation we have 2 non-deterministic choices. In case we have more, we can make the conversion described below:



Figure 8-5. Reducing the degree of nondeterminism.

We make a construction similar to the previous one, and also add an extra bit (c<sub>i-1</sub>) as input of each boolean cirquit C, corresponding to the non-deterministic choice of the Turing machine as shown below:



- We consider the gates c<sub>i</sub> that correspond to the non-deterministic choices, as input variables of the cirquit. So, L was eventually reduced to CIRQUIT SAT. That is, x∈ L iff the constructed boolean cirquit has a satisfying truth assignment.
- Finally, it is easy to show that R can be computed using log|x| space in a similar way as the previous one.
- SAT is NP-complete.