REDUCTIONS AND
COMPLETENESS

8.1 Reductions 2/30

1
7 What is called a reduction?

o Why do we need reductions?
- Relation to the complexity classes

I

' :

I |

I I

I |

I I

! |

I

| T S ey Il b X I
I e5 no

: for A I J

i l

I I

I I

; I

I I

: I

: |

|

Figure 8-1. Reduction from B to A.

3/30

Definition 8.1: We say that a language L1 is
reducible to L, if there is a function R(x) from
strings to strings computable by a deterministic
Turing machine such that for all inputs X,

X € L,<=> R(X) €L,. An “efficient reduction”
uses O(logn) space to be computed by a
deterministic Turing machine.

4/30

Proposition 8.1: If R is a Reduction as defined
above then it will be computed in a polynomial
number of steps.

Proof: We have f(n)=0O(logn) bits of storage
,where n=|x| (length of the input) , and k states
of the turing machine. So the possible
configurations are: k*n*2'™W = O(n*c'o9n) =
O(poln). If one of them Is repeated, then the
machine will not halt. So every computation is
completed in a polynomial number of steps.

5/30

Example 8.1: Reduction of HAMILTON PATH to
SAT

Given a graph G we shall construct a boolean
expression R(G) s.t: R(G) is satisfiable iff G has a
hamilton path. The construction is as follows:

We Introduce the boolean variables:

Xi;: “Node | is the ith node in the Hamilton path”.
R(G) will be in CNF form with clauses:

Node j must appear in the path: VJ(X;; V X5 V...V X

6/30

Node i cannot appear both ith and kth:
Some Node must be ith:

VI(X, V X, VoV X
No two nodes should be ith:
If (1,}) is not an edge of G, then | shouldn't
come after | in the Hamilton path:

Viv][(, J) € E(G) = (—X, V_'Xk+1,j)]

7 /30

Now suppose R(G) has a satisfying assignment T.
V)3 T(x;) =true

Vi) iT(X;)_true

So let 11(1)= |ff T(x;)=True be a permutation of
the nodes of G.

Also the clauses of the form: (_'Xk,i \% _'Xk+1,i)

guarantee that for all k, (1r(k),m(k+1)) Is an edge of
G <=> (11(1),m(2),...,1m(n)) Is a Hamilton path of G.

8/30

Conversely, suppose that G has a Hamilton path
(tr(1),11(2),...,11(N)), Wwhere 1T is a permutation.

Then by definition the truth assignment T:
T(x;)=True if T(i)=] , and T(x;)=false if T(i)#] ,
satisfies all clauses of R(G).

Space complexity of the reduction:

A turing machine that will carry out this
computation needs only 3 counters 1,],k to produce
all the clauses. So the length of the binary
representation of these counters is O(logn) where
n=|x| because I,},k<=n.

This completes the reduction.

9/30

Example 8.2: Reduction of REACHABILITY to
CIRCUIT VALUE

Given a graph G, we are going to construct a variable-
free circuit R(G) such that the output of R(G) is True
Iff there Is a path from node 1 to node nin G.

Let gy, h;x be boolean variables.

T(gj)=true iff there is a path in G from node I to node
] not using any intermediate node bigger than k.

T(hy)=true iff there is a path in G from node I to node
] which uses k but no other nodes bigger than k as
Intermediate nodes.

10/30

All g;;, gates are input gates (there are no hy,
gates%

In particular, T(g;e)=true iff i=j or (i,)) is an edge of

Fork=1,2,...n, hy is an AND gate, and its
predecessors are Jixk1 and gy ., meaning that
there is a path in G ﬁom node 1t node | passing
through k and no other bigger than k iff there are
paths from i to k and from k to | not using any
nodes bigger than k.

Similarly, g;, Is an OR gate , and its predecessors
are g;; 1 and Niig -

11/30

Finally, gi., Is the output gate. So, we have inductively
described the whole circuit R(G).

Proof: We will use induction on k.

For k=0 the truth values of gy, are given according to their
description.

If this Is also true up to k-1 the definitions of hy, and g,
guarantee that it to be true for k as well.

So, g, (the output) is true iff there is a path from node 1

tonin G.

Finally, we shall show that the reduction can be computed in
O(logn) space. Just like before, the space needed is only for
storing the 3 indexes (l,},k) whose value is no greater than
n=|x|. So their binary representation is O(logn) bits long.

12/30

Example 8.3: Reduction of CIRCUIT SAT to SAT

Given a boolean circuit C, we wish to produce a Boolean
expression R(C) such that R(C) is satisfyable iff C is
satisfyable.

R(C) contains a variable “g;" for each gate of C.

Depending on the type of the gates, we add the clauses:
Variable gate: (—g v X) A (g v —X)

True gate: (g;)

False gate: (—0;)

NOT gate with predecessor gate h: (—gv—h),(gvh)

OR gate with predecessors h and h’: (=hv g)A(=h'vg) A (hvh'v—g)
AND gate with predecessors h and h’: (=gvh)A(=g vh’)(=hv—=h'vg)
Output gate: (g;)

13/30

R(C) is satisfiable iff C is satisfiable.

The reductions uses O(logn) space (it only
needs to store the predecessors).

14/30

Example 8.4: Reduction by generalization.

Problem A is a special case of problem B: the
iInput of A is a subset of the input of B, and for
this input A,B give the same answers.

For example CIRCUIT SAT is a generalization
of CIRCUIT VALUE.

15/30

Proposition 8.2: If R is a reduction from language L1 to L2
and R’ is a reduction from L2 to L3, then RoR’ is a reduction

from L1 to L3.
Proof: It is trivial that: xeL, < R'(R(x)) e L,

But we have to show that RoR’ can be computed using
O(logn) space.

If we were using a string R(x) as the output of Mg and input
for Mg the computation could require a polynomial amound of
space since the output of a TM can be of the same size as
the time of computation.

Solution: We could only store the cursor position in R(X) in a
variable i (logn bits). So, the output symbols of My will be
generated one by one or the computation of R(x) will be
restarted until i is reached, if needed.

m%i//rlw//:;:
T

16/30

R'(R(z))

Figure 8-2. How not to compose reductions.

8.2 Completeness 17/30

8.2: Completeness

Definition 8.2: Let C be a complexity class, and let
L be a language in C. We say that L is C-complete
if any language L’€ C can be reduced to L.

Definition: We say that a class C Is closed under
reductions if whenever L is reducible to L' and

'€ C, thenalso L € C.

Proposition 8.3: P, NP, coNP, L, NL, PSPACE,
EXP are all closed under reductions.

18/30

Proposition 8.4: If two classes C and C’ are
noth closed under reductions, and there is a
anguage L which is complete for both C and
C’, then C=C".

Proof: L is C-complete = VL'eC ,L

reducestoL €C’ = L'eC'=Cc(C
(C’ is closed under reductions).

In a similar way: C'c C . So, C=C'.

19/30

The table method:

Consider a polynomial-time Turing machine
M=(K,2,0,s) deciding language L. Its
computation is shown in the following

IX|< X |x|k table (where |x|¥ is the time bound).
The (1,)) table entry represents the contents of
position | of the string of M at time 1.

Also If an entry has a subscript (which is the
symbol of the current state), then this denotes
that the cursor at that time is at this position.

20/30

u o u uuuuuuu gy
U U U uuuuuyuuuuu
U U U U U U U ULy o
U U uuuuyuuuuuuuu

0

0
0
Ogo

0 U U U U UUUUUUU
U uUuuUuuuUuuuuuuuuuuy
U U U U u U U U Uy
(I B e T
U U U U U U U g g Uy
(N e s
u U U o uuuuu oy
U U U U U U U g g Uy
g uuvuUuuuUuuyuuUuuUuuUuyu
U U uuwuuuuuuu
U u U uu U uwuuuuuud
u U u U uUuuUuw Uy uuyd

O,
U
U
U
U
L

g,
(]
(W]
L

3

= - - L]
— - e - -

== FT= 7a A A A A

A AL AL B L AL AL A

H B A A A A M AN A A A

Figure 8.3. Computation table.

21/30

Figure 8.3 shows the computation table of a
TM deciding palindromes in O(n?) time, when
we put 0110 as input.

Proposition 8.5: M accepts x Iff the
computational table of M on input X IS
accepting.

22/30

Theorem 8.1: CIRCUIT VALUE is P-complete.

Proof:

CIRCUIT VALUE is in P. So, we have to show that any problem —
language L€ P can be reduced to CIRCUIT VALUE.

Equivalently, given an input x and a TM, we have to construct a

variable — free cirquit R(x) such that

X € L iff the output of R(X) is true.

Let M: The deterministic Turing machine that decides L in time nk
T. The computational table of M.

Now, consider some special cases:

To=the j-th symbol of x ora “ 1 .

Tp=a ' ="~

T,=" U ”for j=|x|*-1

23/30

For every 0<=i,j<=[x|*-1, T; depends only on the
entries: Tiyiq, Tigjr Tigjer as illustrated below:

t—1,5j-1] i-1,7 |t—-1,7+1

Now, we encode each symbol o€ [as a vector
of the m-dimensional space: {0,1}™,

where m= |log |T||

24/30

Let S;; be the I-th bit of the encoding of T;.

We can see that the value of each of these m
bits depends only (through a boolean cirquit C
depending only on M) on the 3m bits
corresponding to T; 4 4, Tiy; , Tigj+1 @S Shown
In the following figure:

Si-1,j-1,1 ‘s Si-1,j+1,m

IIlIIIlIIIiI

S,_j[... Sijm

25/30

For each x, R(x) will consist of (|x|%-1)*(|x|%-2) cirquits (copies
of C) connected as illustrated below:

AEEEEEEE NN NN

FTTTTT R T

Input gates of R(x): 15t row and 15t and last column.
Output gate: The first output of the cirquit C(Jx|*-1,1) (without
harming generality).

Note that we choose the first bit of the encodlng of “yes” to be
1, whereas the first bit of the encoding of “no” is 0.

26/30

We are going to prove that R(x) is true iff x €L.

If the value of R(X) is true (1) then the 15t bit of the encoding
of the answer is 1.S0, the answer is “yes” and so

M accepts x=> X € L . Conversely, if X € L the answer is
“yes” and thus the value of R(x) (15t bit of C(|x|*-1)) is true.

Finally, we have to argue that R can be carried out In
O(log|x|) space. This is actually easy, since we can construct
every copy of C only using indexes: 1,},I<=|x|, which require
log|x| bits to be represented.

Note that during the reduction, we did not use any NOT
gates. This means that CIRQUIT VALUE as well as
MONOTONE CIRQUIT VALUE are P-complete.

27/30

Theorem 8.2 (Cook’s Theorem): SAT is NP-complete.
Proof:

SAT € NP: The verification of a satisfying truth
assignment takes polynomial time.

Now, we are going to prove that every problem-
language in NP can be reduced to CIRQUIT SAT,
which can be then reduced to SAT (example 8.3).

The reduction is similar to the one we made before for
the P-completeness of CIRQUIT VALUE, but we have
to introduce a few more ideas.

Let L € NP. There is a non-deterministic Turing
machine M(K,Z,A,s) that decides L in time nk..

28/30

With no loss of generality we can assume that
at each step of the computation we have 2
non-deterministic choices. In case we have

more, we can make the conversion described
below:

(1) a

—

Figure 8-5. Reducing the degree of nondeterminism.

29/30

We make a construction similar to the previous
one, and also add an extra bit (¢ ;) as input of
each boolean cirquit C, corresponding to the

non-deterministic choice of the Turing machine
as shown below:

Si-1,j-1,1 Sie] jlm

AN EEEEN N Ci—1

Si_'.r'l-"S:jm

30/30

We consider the gates c; that correspond to
the non-deterministic choices, as input
variables of the cirquit. So, L was eventually
reduced to CIRQUIT SAT. That is, xe L Iff the
constructed boolean cirquit has a satisfying
truth assignment.

Finally, it Is easy to show that R can be
computed using log|x| space in a similar way
as the previous one.

SAT is NP-complete.

