REDUCTIONS AND COMPLETENESS

Chapter 8

8.1 Reductions

\square What is called a reduction?
\square Why do we need reductions?
\square Relation to the complexity classes

Figure 8-1. Reduction from B to A.
\square Definition 8.1: We say that a language L1 is reducible to L_{2} if there is a function $R(x)$ from strings to strings computable by a deterministic Turing machine such that for all inputs x, $x \in L_{1}<=>R(x) \in L_{2}$. An "efficient reduction" uses $\mathrm{O}(\operatorname{logn})$ space to be computed by a deterministic Turing machine.
\square Proposition 8.1: If R is a Reduction as defined above then it will be computed in a polynomial number of steps.
\square Proof: We have $f(n)=O$ (logn) bits of storage , where $\mathrm{n}=|\mathrm{x}|$ (length of the input), and k states of the turing machine. So the possible configurations are: $\mathrm{k}^{*} \mathrm{n}^{*} 2^{f(n)}=\mathrm{O}\left(\mathrm{n}^{*} \mathrm{c}^{\log n}\right)=$ $\mathrm{O}($ poln). If one of them is repeated, then the machine will not halt. So every computation is completed in a polynomial number of steps.
\square Example 8.1: Reduction of HAMILTON PATH to SAT
\square Given a graph G we shall construct a boolean expression $R(G)$ s.t: $R(G)$ is satisfiable iff G has a hamilton path. The construction is as follows:
We introduce the boolean variables:
X_{i} : "Node j is the ith node in the Hamilton path". $\mathrm{R}(\mathrm{G})$ will be in CNF form with clauses:
\square Node j must appear in the path: $\forall j\left(x_{1 j} \vee x_{2 j} \vee \ldots \vee x_{n j}\right)$
\square Node i cannot appear both ith and kth:
$\forall j \forall i \neq k\left(\longrightarrow x_{i j} \vee \longrightarrow x_{k j}\right)$

- Some Node must be ith:
$\forall i\left(x_{i 1} \vee x_{i 2} \vee \ldots \vee x_{i n}\right)$
\square No two nodes should be ith:
$\forall i \forall j \neq k\left(\neg x_{i j} \vee \neg x_{i k}\right)$
\square If (i, j) is not an edge of G, then j shouldn't come after I in the Hamilton path:

$$
\forall i \forall j\left[(i, j) \notin E(G) \Rightarrow\left(\neg x_{k i} \vee \neg x_{k+1, j}\right)\right]
$$

\square Now suppose $\mathrm{R}(\mathrm{G})$ has a satisfying assignment T .
$\forall j \exists!i: T\left(x_{i j}\right)=$ true
$\forall i \exists!j: T\left(x_{i j}\right)=$ true
So let $\pi(i)=j$ iff $T\left(x_{i j}\right)=$ True be a permutation of the nodes of G .
Also the clauses of the form: $\left(\neg x_{k, i} \vee \neg x_{k+1, i}\right)$
guarantee that for all $k,(\pi(k), \pi(k+1))$ is an edge of G <=> $(\pi(1), \pi(2), \ldots, \pi(n))$ is a Hamilton path of G.
\square Conversely, suppose that G has a Hamilton path $(\pi(1), \pi(2), \ldots, \pi(n))$, where π is a permutation. Then by definition the truth assignment T: $T\left(x_{\mathrm{ij}}\right)=$ True if $\pi(\mathrm{i})=\mathrm{j}$, and $\mathrm{T}\left(\mathrm{x}_{\mathrm{ij}}\right)=$ false if $\pi(\mathrm{i}) \neq \mathrm{j}$, satisfies all clauses of $R(G)$.
\square Space complexity of the reduction:
A turing machine that will carry out this computation needs only 3 counters i,j,k to produce all the clauses. So the length of the binary representation of these counters is $\mathbf{O}(l o g n)$ where $\mathrm{n}=|\mathrm{x}|$ because $\mathrm{i}, \mathrm{j}, \mathrm{k}<=\mathrm{n}$.
This completes the reduction.
\square Example 8.2: Reduction of REACHABILITY to CIRCUIT VALUE
\square Given a graph G, we are going to construct a variablefree circuit $R(G)$ such that the output of $R(G)$ is True iff there is a path from node 1 to node n in G .
\square Let $g_{\mathrm{ijk}}, h_{\mathrm{ijk}}$ be boolean variables.
$T\left(g_{i j k}\right)=$ true iff there is a path in G from node i to node j not using any intermediate node bigger than k.
$T\left(h_{i j k}\right)=$ true iff there is a path in G from node i to node j which uses \mathbf{k} but no other nodes bigger than k as intermediate nodes.
\square All $g_{i j 0}$ gates are input gates (there are no $h_{i j 0}$ gates).
In particular, $T\left(g_{i j}\right)=$ true iff $i=j$ or (i, j) is an edge of G.
\square For $k=1,2, \ldots n, h_{i j k}$ is an AND gate, and its predecessors are $g_{i, k, k-1}$ and $g_{k, j, k-1}$ meaning that there is a path in G from node ito node j passing through k and no other bigger than k iff there are paths from i to k and from k to j not using any nodes bigger than k .
\square Similarly, $\mathrm{g}_{\mathrm{ijk}}$ is an OR gate, and its predecessors are $g_{\mathrm{i}, \mathrm{j}, \mathrm{k}-1}$ and $\mathrm{h}_{\mathrm{ijk}}$.

Finally, $g_{\text {in }}$ is the output gate. So, we have inductively described the whole circuit $R(G)$.
\square Proof: We will use induction on k.
For $\mathrm{k}=0$ the truth values of $\mathrm{g}_{\mathrm{ijk}}$ are given according to their description.
if this is also true up to $\mathrm{k}-1$ the definitions of $\mathrm{h}_{\mathrm{ijk}}$ and g_{ijk} guarantee that it to be true for k as well.
So, $g_{1 n n}$ (the output) is true iff there is a path from node 1 to n in G .

- Finally, we shall show that the reduction can be computed in O(logn) space. Just like before, the space needed is only for storing the 3 indexes ($1, j, k$) whose value is no greater than $\mathrm{n}=|\mathrm{x}|$. So their binary representation is $\mathrm{O}(\operatorname{logn})$ bits long.
- Example 8.3: Reduction of CIRCUIT SAT to SAT
- Given a boolean circuit C, we wish to produce a Boolean expression $R(C)$ such that $R(C)$ is satisfyable iff C is satisfyable.
$\square R(C)$ contains a variable " g_{i} " for each gate of C.
\square Depending on the type of the gates, we add the clauses:
Variable gate: $(\neg g \vee x) \wedge(g \vee \neg x)$
True gate: $\left(\mathrm{g}_{\mathrm{i}}\right)$
False gate: $\left(\neg g_{i}\right)$
NOT gate with predecessor gate h: $(\neg g \vee \neg h),(g \vee h)$
OR gate with predecessors h and h : $(\neg h \vee g) \wedge\left(\neg h^{\prime} \vee g\right) \wedge\left(h \vee h^{\prime} \vee \neg g\right)$
AND gate with predecessors h and h : $(\neg g \vee h) \wedge\left(\neg g \vee h^{\prime}\right)\left(\neg h \vee \neg h^{\prime} \vee g\right)$
Output gate: $\left(\mathrm{g}_{\mathrm{i}}\right)$
$\square R(C)$ is satisfiable iff C is satisfiable.
\square The reductions uses O(logn) space (it only needs to store the predecessors).
\square Example 8.4: Reduction by generalization.
\square Problem A is a special case of problem B: the input of A is a subset of the input of B, and for this input A, B give the same answers.
\square For example CIRCUIT SAT is a generalization of CIRCUIT VALUE.
- Proposition 8.2: If R is a reduction from language $L 1$ to $L 2$ and R^{\prime} ' is a reduction from $L 2$ to $L 3$, then RoR' is a reduction from L1 to L3.
\square Proof: It is trivial that: $x \in L_{1} \Leftrightarrow R^{\prime}(R(x)) \in L_{3}$
But we have to show that RoR' can be computed using O(logn) space.
If we were using a string $R(x)$ as the output of M_{R} and input for M_{R}, the computation could require a polynomial amound of space since the output of a TM can be of the same size as the time of computation.
Solution: We could only store the cursor position in $R(x)$ in a variable i (logn bits). So, the output symbols of M_{R} will be generated one by one or the computation of $R(x)$ will be restarted until i is reached, if needed.

Figure 8-2. How not to compose reductions.

8.2 Completeness

\square 8.2: Completeness
\square Definition 8.2: Let C be a complexity class, and let L be a language in C . We say that L is C -complete if any language $L^{\prime} \in C$ can be reduced to L.
\square Definition: We say that a class C is closed under reductions if whenever L is reducible to L ' and $L^{\prime} \in C$, then also $L \in C$.
\square Proposition 8.3: P, NP, coNP, L, NL, PSPACE, EXP are all closed under reductions.
\square Proposition 8.4: If two classes C and C ' are both closed under reductions, and there is a language L which is complete for both C and C^{\prime}, then $\mathrm{C}=\mathrm{C}^{\prime}$.
\square Proof: L is C-complete $\Rightarrow \forall L^{\prime} \in C \quad, L^{\prime}$ reduces to $L \in \mathrm{C}^{\prime} \Rightarrow L^{\prime} \in C^{\prime} \Rightarrow C \subseteq C^{\prime}$ (C^{\prime} is closed under reductions). In a similar way: $C^{\prime} \subseteq C$. So, $\mathrm{C}=\mathrm{C}^{\prime}$.
\square The table method:
Consider a polynomial-time Turing machine $\mathrm{M}=(\mathrm{K}, \Sigma, \bar{\delta}, \mathrm{s})$ deciding language L . Its computation is shown in the following
$|x|^{k} X|x|^{k}$ table (where $|x|^{k}$ is the time bound).
\square The (i,j) table entry represents the contents of position j of the string of M at time i .
\square Also if an entry has a subscript (which is the symbol of the current state), then this denotes that the cursor at that time is at this position.

\triangleright	0 s	1	1	0	\sqcup	ப	ப	\sqcup	ப	\sqcup	\sqcup	ப	\sqcup	$\sqcup \quad \sqcup$
D	\triangleright	$1_{q_{0}}$	1	0	\sqcup	$\sqcup \quad \sqcup$								
D	D	1	$1_{q 0}$	0	\sqcup	$\sqcup \quad \sqcup$								
D	D	1	1	$0_{q_{0}}$	\sqcup	\sqcup	\sqcup	\pm	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	
D	\triangleright	1	1	0	$\sqcup_{q_{0}}$	\sqcup	$\sqcup \quad \sqcup$							
D	D	1	1	$0 q_{0}^{\prime}$	\sqcup									
-	-	1	1_{q}	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	\pm	\sqcup	\sqcup	\sqcup	U	
\triangleright	D	1_{q}	1	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	\square	\square	\sqcup	\sqcup	$\sqcup \quad \sqcup$
\triangleright	∇_{q}	1	1	\sqcup										
D	D	$1 s$	1	ப	ப	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	ப	\sqcup	\sqcup	ப ப
D	D	D	$1_{q_{1}}$	\sqcup	ப	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	ப	\sqcup	ப ப
-	D	D	1	$\sqcup_{q_{1}}$	\sqcup	ப	\sqcup	$\sqcup \quad \cup$						
\triangleright	D	-	$1_{q_{1}^{\prime}}$	\sqcup	ப	\sqcup								
\triangleright	-	\triangleright_{q}	ப	\sqcup	\sqcup	\sqcup	ப	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	
D	D	D	\sqcup_{s}	\sqcup	ப	\sqcup								
D	D	D	"yes"	\sqcup	ப	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup		\sqcup	$\sqcup \quad \sqcup$

Figure 8.3. Computation table.
\square Figure 8.3 shows the computation table of a TM deciding palindromes in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time, when we put 0110 as input.
\square Proposition 8.5: M accepts x iff the computational table of M on input x is accepting.
\square Theorem 8.1: CIRCUIT VALUE is P-complete.

- Proof:

CIRCUIT VALUE is in P. So, we have to show that any problem language $L \in P$ can be reduced to CIRCUIT VALUE.
Equivalently, given an input x and a TM, we have to construct a variable - free cirquit $R(x)$ such that
$x \in L$ iff the output of $R(x)$ is true.
Let M : The deterministic Turing machine that decides L in time n^{k}
T : The computational table of M .
Now, consider some special cases:
$T_{0 j}=$ the j-th symbol of x or a " \sqcup ".
$\mathrm{T}_{\mathrm{i} 0}=\mathrm{a}$ " \triangleright "
$\mathrm{T}_{\mathrm{ij}} \mathrm{J}^{\prime} \sqcup$ " for $\mathrm{j}=|\mathrm{x}|^{\mathrm{k}}-1$
\square For every $0<=i, j<=|x|^{k}-1, \quad \mathrm{~T}_{\mathrm{ij}}$ depends only on the entries: $T_{i-1, j-1}, T_{i-1, j}, T_{i-1, j+1}$ as illustrated below:

\square Now, we encode each symbol $\sigma \in \Gamma$ as a vector of the m-dimensional space: $\{0,1\}^{m}$, where $\mathrm{m}=\lceil\log |\Gamma|\rceil$.
\square Let S_{ij} be the l -th bit of the encoding of T_{ij}. We can see that the value of each of these m bits depends only (through a boolean cirquit C depending only on M) on the 3 m bits corresponding to $\mathrm{T}_{\mathrm{i}-1, \mathrm{j}-1}, \mathrm{~T}_{\mathrm{i}-1, \mathrm{j}}, \mathrm{T}_{\mathrm{i}-1, \mathrm{j}+1}$ as shown in the following figure:

\square For each $x, R(x)$ will consist of $\left(|x|^{k}-1\right)^{*}\left(|x|^{k}-2\right)$ cirquits (copies of C) connected as illustrated below:

\square Input gates of $R(x)$: $1^{\text {st }}$ row and $1^{\text {st }}$ and last column.
\square Output gate: The first output of the cirquit $C\left(|x|^{k}-1,1\right)$ (without harming generality).
\square Note that we choose the first bit of the encoding of "yes" to be 1 , whereas the first bit of the encoding of "no" is 0 .
\square We are going to prove that $R(x)$ is true iff $x \in L$. If the value of $R(x)$ is true (1) then the $1^{\text {st }}$ bit of the encoding of the answer is 1. So, the answer is "yes" and so M accepts $\mathrm{x} \Rightarrow x \in L$. Conversely, if $x \in L$ the answer is "yes" and thus the value of $R(x)$ ($1^{\text {st }}$ bit of $C\left(|x|^{k}-1\right)$) is true.

- Finally, we have to argue that R can be carried out in $O(\log |x|)$ space. This is actually easy, since we can construct every copy of C only using indexes: $\mathrm{i}, \mathrm{j}, \mathrm{l}==|\mathrm{x}|$, which require $\log |x|$ bits to be represented.
\square Note that during the reduction, we did not use any NOT gates. This means that CIRQUIT VALUE as well as MONOTONE CIRQUIT VALUE are P-complete.
\square Theorem 8.2 (Cook's Theorem): SAT is NP-complete.
\square Proof:
SAT \in NP: The verification of a satisfying truth assignment takes polynomial time.
Now, we are going to prove that every problemlanguage in NP can be reduced to CIRQUIT SAT, which can be then reduced to SAT (example 8.3).
The reduction is similar to the one we made before for the P-completeness of CIRQUIT VALUE, but we have to introduce a few more ideas.
Let $L \in N P$. There is a non-deterministic Turing machine $\mathrm{M}(\mathrm{K}, \Sigma, \Delta, \mathrm{s})$ that decides L in time n^{k}.
\square With no loss of generality we can assume that at each step of the computation we have 2 non-deterministic choices. In case we have more, we can make the conversion described below:

Figure 8-5. Reducing the degree of nondeterminism.
\square We make a construction similar to the previous one, and also add an extra bit ($\mathrm{c}_{\mathrm{i}-1}$) as input of each boolean cirquit C, corresponding to the non-deterministic choice of the Turing machine as shown below:

\square We consider the gates c_{i} that correspond to the non-deterministic choices, as input variables of the cirquit. So, L was eventually reduced to CIRQUIT SAT. That is, $x \in L$ iff the constructed boolean cirquit has a satisfying truth assignment.
\square Finally, it is easy to show that R can be computed using log|x| space in a similar way as the previous one.
\square SAT is NP-complete.

