
REDUCTIONS AND

COMPLETENESS

Chapter 8

8.1 Reductions 2/30

 What is called a reduction?

 Why do we need reductions?

 Relation to the complexity classes

3/30

 Definition 8.1: We say that a language L1 is

reducible to L2 if there is a function R(x) from

strings to strings computable by a deterministic

Turing machine such that for all inputs x,

x L1<=> R(x) L2. An “efficient reduction”

uses O(logn) space to be computed by a

deterministic Turing machine.

4/30

 Proposition 8.1: If R is a Reduction as defined
above then it will be computed in a polynomial
number of steps.

 Proof: We have f(n)=O(logn) bits of storage
,where n=|x| (length of the input) , and k states
of the turing machine. So the possible
configurations are: k*n*2f(n) = O(n*clogn) =
O(poln). If one of them is repeated, then the
machine will not halt. So every computation is
completed in a polynomial number of steps.

5/30

 Example 8.1: Reduction of HAMILTON PATH to

SAT

 Given a graph G we shall construct a boolean

expression R(G) s.t: R(G) is satisfiable iff G has a

hamilton path. The construction is as follows:

We introduce the boolean variables:

Xij: “Node j is the ith node in the Hamilton path”.

R(G) will be in CNF form with clauses:

 Node j must appear in the path:)...(21 njjj xxxj

6/30

 Node i cannot appear both ith and kth:

 Some Node must be ith:

 No two nodes should be ith:

 If (i,j) is not an edge of G, then j shouldn’t

come after I in the Hamilton path:

)(kjij xxkij

)...(21 inii xxxi

)(ikij xxkji

)]()(),[(,1 jkki xxGEjiji

7/30

 Now suppose R(G) has a satisfying assignment T.

So let π(i)=j iff T(xij)=True be a permutation of

the nodes of G.

Also the clauses of the form:

guarantee that for all k, (π(k),π(k+1)) is an edge of

G <=> (π(1),π(2),…,π(n)) is a Hamilton path of G.

truexTij ij)(:!
truexTji ij)(:!

)(,1, ikik xx

8/30

 Conversely, suppose that G has a Hamilton path
(π(1),π(2),…,π(n)), where π is a permutation.

Then by definition the truth assignment T:
T(xij)=True if π(i)=j , and T(xij)=false if π(i)≠j ,
satisfies all clauses of R(G).

 Space complexity of the reduction:

A turing machine that will carry out this
computation needs only 3 counters i,j,k to produce
all the clauses. So the length of the binary
representation of these counters is O(logn) where
n=|x| because i,j,k<=n.

This completes the reduction.

9/30

 Example 8.2: Reduction of REACHABILITY to
CIRCUIT VALUE

 Given a graph G, we are going to construct a variable-
free circuit R(G) such that the output of R(G) is True
iff there is a path from node 1 to node n in G.

 Let gijk,hijk be boolean variables.

T(gijk)=true iff there is a path in G from node i to node
j not using any intermediate node bigger than k.

T(hijk)=true iff there is a path in G from node i to node
j which uses k but no other nodes bigger than k as
intermediate nodes.

10/30

 All gij0 gates are input gates (there are no hij0
gates).

In particular, T(gij0)=true iff i=j or (i,j) is an edge of
G.

 For k=1,2,…n , hijk is an AND gate, and its
predecessors are gi,k,k-1 and gk,j,k-1 meaning that
there is a path in G from node i to node j passing
through k and no other bigger than k iff there are
paths from i to k and from k to j not using any
nodes bigger than k.

 Similarly, gijk is an OR gate , and its predecessors
are gi,j,k-1 and hijk .

11/30

Finally, ginn is the output gate. So, we have inductively
described the whole circuit R(G).

 Proof: We will use induction on k.

For k=0 the truth values of gijk are given according to their
description.

if this is also true up to k-1 the definitions of hijk and gijk
guarantee that it to be true for k as well.

So, g1nn (the output) is true iff there is a path from node 1

to n in G.

 Finally, we shall show that the reduction can be computed in
O(logn) space. Just like before, the space needed is only for
storing the 3 indexes (I,j,k) whose value is no greater than
n=|x|. So their binary representation is O(logn) bits long.

12/30

 Example 8.3: Reduction of CIRCUIT SAT to SAT

 Given a boolean circuit C, we wish to produce a Boolean
expression R(C) such that R(C) is satisfyable iff C is
satisfyable.

 R(C) contains a variable “gi” for each gate of C.

 Depending on the type of the gates, we add the clauses:

Variable gate:

True gate: (gi)

False gate:

NOT gate with predecessor gate h:

OR gate with predecessors h and h’:

AND gate with predecessors h and h’:

Output gate: (gi)

)()(xgxg

)(ig

)(),(hghg

)'()'()(ghhghgh

)')('()(ghhhghg

13/30

 R(C) is satisfiable iff C is satisfiable.

 The reductions uses O(logn) space (it only

needs to store the predecessors).

14/30

 Example 8.4: Reduction by generalization.

 Problem A is a special case of problem B: the

input of A is a subset of the input of B, and for

this input A,B give the same answers.

 For example CIRCUIT SAT is a generalization

of CIRCUIT VALUE.

15/30

 Proposition 8.2: If R is a reduction from language L1 to L2
and R’ is a reduction from L2 to L3, then RoR’ is a reduction
from L1 to L3.

 Proof: It is trivial that:

But we have to show that RoR’ can be computed using
O(logn) space.

If we were using a string R(x) as the output of MR and input
for MR’ the computation could require a polynomial amound of
space since the output of a TM can be of the same size as
the time of computation.

Solution: We could only store the cursor position in R(x) in a
variable i (logn bits). So, the output symbols of MR will be
generated one by one or the computation of R(x) will be
restarted until i is reached, if needed.

31))((' LxRRLx

16/30

8.2 Completeness 17/30

 8.2: Completeness

 Definition 8.2: Let C be a complexity class, and let

L be a language in C. We say that L is C-complete

if any language L’ C can be reduced to L.

 Definition: We say that a class C is closed under

reductions if whenever L is reducible to L’ and

L’ C, then also L C.

 Proposition 8.3: P, NP, coNP, L, NL, PSPACE,

EXP are all closed under reductions.

18/30

 Proposition 8.4: If two classes C and C’ are

both closed under reductions, and there is a

language L which is complete for both C and

C’, then C=C’.

 Proof: L is C-complete , L’

reduces to L C’

(C’ is closed under reductions).

In a similar way: . So, C=C’.

CL '
 ''' CCCL

CC '

19/30

 The table method:

Consider a polynomial-time Turing machine
M=(K,Σ,δ,s) deciding language L. Its
computation is shown in the following

|x|k X |x|k table (where |x|k is the time bound).

 The (i,j) table entry represents the contents of
position j of the string of M at time i.

 Also if an entry has a subscript (which is the
symbol of the current state), then this denotes
that the cursor at that time is at this position.

20/30

21/30

 Figure 8.3 shows the computation table of a

TM deciding palindromes in O(n2) time, when

we put 0110 as input.

 Proposition 8.5: M accepts x iff the

computational table of M on input x is

accepting.

22/30

 Theorem 8.1: CIRCUIT VALUE is P-complete.

 Proof:

CIRCUIT VALUE is in P. So, we have to show that any problem –
language L P can be reduced to CIRCUIT VALUE.

Equivalently, given an input x and a TM, we have to construct a

variable – free cirquit R(x) such that

x L iff the output of R(x) is true.

Let M: The deterministic Turing machine that decides L in time nk

T: The computational table of M.

Now, consider some special cases:

T0j=the j-th symbol of x or a “ ”.

Ti0=a “ ”

Tij=“ ” for j=|x|k-1

23/30

 For every 0<=i,j<=|x|k-1, Tij depends only on the
entries: Ti-1,j-1 , Ti-1,j , Ti-1,j+1 as illustrated below:

 Now, we encode each symbol σ Γ as a vector
of the m-dimensional space: {0,1}m ,

where m= .

 ||log

24/30

 Let Sijl be the l-th bit of the encoding of Tij.

We can see that the value of each of these m

bits depends only (through a boolean cirquit C

depending only on M) on the 3m bits

corresponding to Ti-1,j-1, Ti-1,j , Ti-1,j+1 as shown

in the following figure:

25/30

 For each x, R(x) will consist of (|x|k-1)*(|x|k-2) cirquits (copies
of C) connected as illustrated below:

 Input gates of R(x): 1st row and 1st and last column.

 Output gate: The first output of the cirquit C(|x|k-1,1) (without
harming generality).

 Note that we choose the first bit of the encoding of “yes” to be
1, whereas the first bit of the encoding of “no” is 0.

26/30

 We are going to prove that R(x) is true iff x L.

If the value of R(x) is true (1) then the 1st bit of the encoding
of the answer is 1.So, the answer is “yes” and so

M accepts x . Conversely, if the answer is
“yes” and thus the value of R(x) (1st bit of C(|x|k-1)) is true.

 Finally, we have to argue that R can be carried out in
O(log|x|) space. This is actually easy, since we can construct
every copy of C only using indexes: i,j,l<=|x|, which require
log|x| bits to be represented.

 Note that during the reduction, we did not use any NOT
gates. This means that CIRQUIT VALUE as well as
MONOTONE CIRQUIT VALUE are P-complete.

Lx Lx

27/30

 Theorem 8.2 (Cook’s Theorem): SAT is NP-complete.

 Proof:

SAT NP: The verification of a satisfying truth
assignment takes polynomial time.

Now, we are going to prove that every problem-
language in NP can be reduced to CIRQUIT SAT,
which can be then reduced to SAT (example 8.3).

The reduction is similar to the one we made before for
the P-completeness of CIRQUIT VALUE, but we have
to introduce a few more ideas.

Let L NP. There is a non-deterministic Turing
machine M(K,Σ,Δ,s) that decides L in time nk .

28/30

 With no loss of generality we can assume that

at each step of the computation we have 2

non-deterministic choices. In case we have

more, we can make the conversion described

below:

29/30

 We make a construction similar to the previous

one, and also add an extra bit (ci-1) as input of

each boolean cirquit C, corresponding to the

non-deterministic choice of the Turing machine

as shown below:

30/30

 We consider the gates ci that correspond to
the non-deterministic choices, as input
variables of the cirquit. So, L was eventually
reduced to CIRQUIT SAT. That is, x L iff the
constructed boolean cirquit has a satisfying
truth assignment.

 Finally, it is easy to show that R can be
computed using log|x| space in a similar way
as the previous one.

 SAT is NP-complete.

