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Randomized Algorithms

Randomized Algorithms: algorithms that can ”flip a coin”.

Many computational problems seem to be more easily solvable by
randomized algorithms.

Some examples:

1. Symbolic Determinants

2. Random Walks

3. The Fermat Test
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Symbolic Determinants

• We may need to find out whether the determinant of a matrix
A is identically zero or not.
(For example in the bipartite matching problem, consider the
matrix AG of a graph G - where aij = xij if there is an edge
connecting nodes i , j and aij = 0 otherwise. Then G has a
perfect matching iff detA 6= 0.)

• We can calculate the determinant of a matrix using Gaussian
elimination in polynomial time.

• Using the same method to calculate the determinant of a
symbolic matrix can be much harder.
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A simple example of a symbolic Gaussian elimination:

 x w z
z x w
y z 0

⇒
 x w z

0 x2−zw
x

wx−z2
x

0 zx−wy
x − zy

x



⇒

 x w z

0 x2−zw
x

wx−z2
x

0 0 − yz(xz−xw)+(zx−wy)(wx−z2)
x(x2−zw)





Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Idea: Substitute arbitrary integers for the variables.

• We now get a numerical matrix whose determinant we can
calculate in polynomial time.

• If this determinant is not zero then we know that the symbolic
determinant is not identically zero.

• But we may be unlucky and choose the wrong numbers. That
is, the numerical determinant may be zero although the
symbolic one is not.
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The following Lemma reassures us that choosing the ”wrong
numbers” is a very unlikely event.

Lemma 1
Let π(x1, x2, . . . , xm) be a polynomial, not identically zero, in m
variables each of degree at most d in it and let M > 0 be an
integer. Then the number of m-tuples
(x1, x2, . . . , xm) ∈ {0, 1, . . . ,M − 1}m such that
π(x1, x2, . . . , xm) = 0 is at most mdMm−1.

Proof:
By reduction on the number of variables, m.
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The above lemma suggests a randomized algorithm for deciding if
a graph G has a perfect matching, that is, if the determinant of
the matrix AG is identically zero.

• AG (x1, . . . , xm) = AG with its m variables.

• det(AG (x1, . . . , xm)) is a polynomial in m variables each of
degree at most 1 in it.

Choose m random integers i1, i2, . . . , im between 0 and

M = 2m.

Compute detAG (x1, . . . , xm)) by Gaussian elimination.

If detAG (x1, . . . , xm)) 6= 0, reply "G has a perfect

matching".

If detAG (x1, . . . , xm)) = 0, reply "G probably has no

perfect matching".
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• If the algorithm finds that a matching exists, then we know it
does.

• If the algorithm answers ”G probably has no perfect
matching”, then there is a possibility of a false negative. The
probability of a false negative is no more than 1

2 .

Such algorithms, that can have false negatives with a bounded
probability, but no false positives, are called Monte Carlo
algorithms.

If we perform many independent experiments we can reduce the
chance of false negatives: if we repeat k times, then our
confidence on the outcome that there is no perfect matching for G
increases to 1− (12)k .
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Random Walks

This is a randomized algorithm for SAT:

Start with any truth assignment T, and repeat the
following r times:

If there is no unsatisfied clause, then reply

"formula is satisfiable" and halt.

Otherwise, take any unsatisfied clause; pick any

of its literals at random and flip it, updating

T.

After r repetitions reply "formula is probably

unsatisfiable".

This is the random walk algorithm.
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Again, for this algorithm we have that

• if the algorithm finds that the formula is satisfiable, then we
know it is (no false positives) and

• if the algorithm finds that the formula is probably
unsatisfiable, then there is a possibility of a false negative.

In other words

• if the formula is unsatisfiable then our algorithm will give us a
correct answer but

• if the formula is satisfiable then there is a possibility that a
satisfying truth assignment won’t be discovered.
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The random walk algorithm may perform badly for even a simple
satisfiable instance of 3SAT.
But when it comes to 2SAT, the algorithm performs quite decently:

Theorem 1
If the random walk algorithm is applied to a satisfiable instance of
2SAT with n variables, for r = 2n2, then the probability that a
satisfying truth assignment will be discoverd is at least 1

2 .

This Theorem implies that the random walk algorithm with
r = 2n2 is a Monte Carlo algorithm for 2SAT.



Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

To prove this consider:

T̂ is a truth assignment that satisfies the given instance of
2SAT.

The starting assignment T differs from T̂ in i values.

t(i) is the expected number of repetitions of the flipping step
until a satisfying truth assignment is discovered.

Notice that every time the algorithm flips a randomly chosen
literal, we have at least 1

2 chance of moving closer to T̂ .

Properties of t(i):

- t(0) = 0

- t(n) ≤ t(n − 1) + 1

- t(i) ≤ 1
2(t(i − 1) + 1) + 1

2(t(i + 1) + 1)
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We will prove that t(i) ≤ n2 and we will use the following Lemma
to complete the proof:

Lemma 2
If x is a random variable taking nonnegative integer values, E(x) is
the expected value of x, then ∀k > 0 P[x ≥ k · E(x)] ≤ 1

k .

Proof:
Let pi = P[x = i ]. Then,

E(x) =
∑
i

ipi =
∑

i≤k·E(x)

ipi +
∑

i>k·E(x)

ipi > k ·E(x) ·P[x > k ·E(x)].
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Now we are ready to prove the Theorem:

Theorem’s Proof:
Define x(i) with the following properties:

- x(0) = 0

- x(n) = x(n − 1)

- x(i) = 1
2(x(i − 1) + 1) + 1

2(x(i + 1) + 1)

Obviously, x(i) ≥ t(i).
Adding together all x(i)’s we get x(1) = 2n− 1 and continuing like
this we get x(i) = 2in − i2. When i = n, x(n) = n2.
Thus, the expected number of repetitions needed to find a
satisfying truth assignment is t(i) ≤ x(i) ≤ x(n) = n2. Now using
Lemma 2, with k = 2, we complete the proof.
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The Fermat Test

Theorem 2 (Fermat’s Theorem)

If N is a prime number, then for all 0 < a < N, aN−1 = 1modN.

• If aN−1 6= 1modN then we know that N is composite.

• If aN−1 = 1modN then we can’t tell if N is a prime.

Consider the algorithm suggested by Fermat’s Theorem:

Pick a random residue a modulo N.

If aN−1 6= 1modN answer "N is composite".

If aN−1 = 1modN answer "N is probably prime".
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This algorithm would be a polynomial Monte Carlo algorithm if it
was true that for any N not prime aN−1 6= 1modN for at least half
of its nonzero residues.

But this hypothesis is false: there are some numbers for which
aN−1 = 1modN for all of their residues a but still these numbers
are composite (Carmichael numbers).
(e.g. 561 is not a prime number but still all residues in Φ(561)
pass the Fermat test.)

• The Fermat’s test gives a false answer for a Carmichael
number.

• There are infinitely many Carmichael numbers.
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To overcome this difficulty, we will need the followings:

Definition 1
Let p be an odd prime and a 6= 0modp. Then we define the
Legendre Symbol (a|p):

(a|p) =

{
+1, a is a quadratic residue modulo p
−1, a is not a quadratic residue modulo p

Properties:

- (a|p) = a
p−1
2 modp.

- (a|p)(b|p) = (ab|p).

- (p|q)(q|p) = (−1)
p−1
2

q−1
2 , p, q odd primes (Legendre’s Law of

Quadratic Reciprocity).
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Definition 2
Let M,N be not prime integers and N =

∏n
i=1 qi where the qi ’s

are all odd primes. We define the Jacobi Symbol to be
(M|N) =

∏n
i=1(M|qi ).

Properties:

- (M1M2|N) = (M1|N)(M2|N).

- (M + N|N) = (M|N).

- If both M,N are odd then (M|N)(N|M) = (−1)
M−1
2

N−1
2 .

- (2|M) = (−1)
M2−1

8 .

Lemma 3
If dlogMNe = l, then (M|N) can be computed in O(l3) time.
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Lemma 4
If (M|N) = M

N−1
2 modN ∀M ∈ Φ(N), then N is a prime.

Theorem 3
If N is an odd composite, then for at least half of M ∈ Φ(N),

(M|N) 6= M
N−1
2 modN.

These two results suggest a Monte Carlo algorithm for
compositeness. Given an odd integer N, this is the algorithm:

Generate a random integer M between 2 and N − 1
and calculate (M,N).

If (M,N) > 1, reply "N is a composite".

Otherwise calculate (M|N), M
N−1
2 modN and

compare;

if they are not equal, reply "N is a composite",

otherwise reply "N is probably a prime".
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Randomized Complexity Classes

Definition 3
Let N be a polynomial-time bounded nondeterministic Turing
machine. For all of its computations on input x it halts after the
same number of steps, a polynomial in |x |. Assume that at each
step there are exactly two nondeterministic choices.
Now, let L be a language. A polynomial Monte Carlo Turing
machine for L is a Turing machine, as above, with

• p(n) steps in each computation on an input of length n and

• for each string x,

- if x ∈ L, then at least half of the 2p(|x|) computations halt with
”yes” and

- if x /∈ L, then all computations halt with ”no”.
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The class RP
(Randomized Polynomial)

- L ∈ RP if:
• x ∈ L ⇒ P(N(x) = ”yes”) ≥ 1

2 + ε
• x /∈ L ⇒ P(N(x) = ”no”) = 1

- P ⊆ RP ⊆ NP

- There can be false negatives but no false positives.

- Similarly we define coRP:
L ∈ coRP if:

• x /∈ L ⇒ P(N(x) = ”no”) ≥ 1
2 + ε

• x ∈ L ⇒ P(N(x) = ”yes”) = 1

- In coRP there can be false positives but no false negatives.

- PRIMES ∈ coRP.
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The class ZPP
(Zero-error Probabilistic Polynomial)

- ZPP=RP ∩ coRP

- A problem in ZPP has two Monte Carlo algorithms: one with
no false positives and one with no false negatives.

- If we execute both algorithms k times independently, the
probability of no definite answer is 1

2k
.

- L ∈ ZPP if:
• x ∈ L ⇒ P(N(x) = ”no”) = 0
• x /∈ L ⇒ P(N(x) = ”yes”) = 0
• ∃ ε > 0: P(N(x) = UNK) < ε

- ZPP algorithms are called Las Vegas algorithms.
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The class PP

- L ∈ PP if, ∀x , ∃ ε > 0:
• x ∈ L ⇒ P(N(x) = ”yes”) ≥ 1

2 + ε
• x /∈ L ⇒ P(N(x) = ”no”) ≥ 1

2 + ε

- We say that N decides L ”by majority”.

- ε > 0 depends on the input x .

- Even if we run it polynomially many times, we can’t decrease
the error probability.

- MAJSAT is PP-complete.

- PP is closed under complement.
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Theorem 4
NP ⊆ PP.

Proof:
Let L ∈ NP, decided by a N.D.T.M. N. Construct a Turing
machine N ′: N ′ is identical to N except that it has a new initial
state and a nondeterministic choice out of it. One choice gets us
to the ordinary computation of N. The other choice gets us to a
computation that always accepts (with the same number of steps).
On input x , N produces 2p(|x |) computations (p(|x |) steps). N ′

produces 2p(|x |)+1 computations. At least half of them halt with
”yes”. Thus, x ∈ L ⇐⇒ there is at least one computation of N
that accepts ⇐⇒ N ′ accepts L by majority ⇐⇒ L ∈ PP.
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The class BPP
(Bounded Probabilistic Polynomial)

• Suppose that you have a biased coin (one side has probability
1
2 + ε to appear).

• How would you detect which of the two sides is more likely to
appear?

• Flip the coin many times.

• How many times do you have to flip it in order to guess
correctly with high probability?
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Lemma 5 (The Chernoff Bound)

x1, . . . , xn independent random variables taking the values 0 and 1
with probabilities 1− p and p respectively. X =

∑n
i=1 xi . Then

∀ 0 ≤ θ ≤ 1, P(X ≥ (1 + θ)pn) ≤ e−
θ2

3
pn.

Now by the Chernoff Bound, with p = 1
2 + ε and taking θ = ε

ε+ 1
2

we have that P(X ≤ n
2 ) ≤ e−

ε2n
6 .

Thus, we can detect which side is more likely to appear by flipping
the coin about 1

ε2
times and taking the majority.
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- L ∈ BPP if, ∀x :
• x ∈ L ⇒ P(N(x) = ”yes”) ≥ 3

4
• x /∈ L ⇒ P(N(x) = ”no”) ≥ 3

4

- Equivalently, L ∈ PP if, ∃ ε > 0, ∀x :
• x ∈ L ⇒ P(N(x) = ”yes”) ≥ 1

2 + ε
• x /∈ L ⇒ P(N(x) = ”no”) ≥ 1

2 + ε

- In fact, we can take any number strictly between 0 and 1
2

(e.g. 2
3 , 3

5 , . . . ).

- In this class, ε is not allowed to depend on the input x .

- We say that N decides L by ”clear majority”.

- After repeating polynomially many times we can decrease the
error probability.

- BPP = coBPP
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Class Overview

?

PP

BPP

RP

NP

ZPP

coRP

• P ⊆ RP ⊆ NP

• NP ⊆ PP

• RP ⊆ BPP ⊆ PP

• BPP
?
⊆ NP
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Random Sources

Definition 4
A perfect random source is a random variable with values that
are infinite sequences (x1, x2, . . .) of bits such that ∀ n > 0 and
∀ (y1, . . . , yn) ∈ {0, 1}n we have P[xi = yi , i = 1, . . . , n] = 2−n.

• A perfect random source must have indpendence and fairness.

• There are no perfect random sources in nature.

• The outcome of any physical random source tends to be
affected by its previous outcomes.
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Slightly Random Sources

Definition 5
Let 0 < δ < 1

2 and a function p : {0, 1}∗ → [δ, 1− δ]. A δ-random
source is a random variable with values that are infinite sequences
and the probability that (x1, . . . , xn) = (y1, . . . , yn) is given by

n∏
i=1

(yip(y1 . . . yi−1)) + (1− yi )(1− p(y1 . . . yi−1)).

• p is a function completely unknown to us.

• If δ = 1
2 then we have a perfect random source.

• If δ < 1
2 then we say we have a slightly random source.
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Since we know nothing about p we can’t let a slightly random
source run a randomized algorithm. But they can simulate any
randomized algorithm with polynomial loss of efficiency.

Definition 6
Let N be a Turing machine, standardized as previously, and
0 < δ < 1

2 . A δ-assignment F to N(x) is a mapping from the
edges of N(x) to [δ, 1− δ], such that the two edges leaving each
internal node are assigned numbers adding up to 1.

For each leaf l, the probability of l is
∏

a∈P[l]F (a), where P[l] is the
path from root to leaf l.
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Example: Computation tree and 0.1 assignment

0.6 0.4

0.9 0.1 0.5 0.5

0.8 0.2 0.7 0.3 0.1 0.9 0.4 0.6

no yes no no no yes yes no

P(N(x) = ”yes”) = 0.6 · 0.9 · 0.2 + 0.4 · 0.5 · 0.9 + 0.4 · 0.5 · 0.4
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Definition 7
A language L is in δ-RP if there is a N.D.T.M. N, as above, such
that:

• x ∈ L ⇒ P(N(x) = ”yes”|F ) ≥ 1
2 and

• x /∈ L ⇒ P(N(x) = ”yes”|F ) = 0, for all δ-assignments F .

A language L is in δ-BPP if there is a N.D.T.M. N, as above, such
that:

• x ∈ L ⇒ P(N(x) = ”yes”|F ) ≥ 3
4 and

• x /∈ L ⇒ P(N(x) = ”no”|F ) ≥ 3
4 , for all δ-assignments F .
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• 0-RP=0-BPP=P

• 1
2 -RP=RP

• 1
2 -BPP=BPP

Theorem 5
For any δ > 0, δ-BPP=BPP.

Corollary 1

For any δ > 0, δ-RP=RP.
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Circuit Complexity

Definition 8

1. Size of a circuit: the numbers of gates in it.

2. Family of circuits: an infinite sequence C = (C0,C1, . . .) of
Boolean circuits: Cn has n input variables.

3. L ⊆ {0, 1}∗ has polynomial circuit: ∃ C = (C0,C1, . . .):

a) the size of Cn is at most p(n), p fixed polynomial,
b) ∀ x ∈ {0, 1}∗, x ∈ L iff C|x|’s output is true.

What kinds of languages have polynomial circuits?

REACHABILITY has a polynomial circuit.
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Proposition 1

All languages in P have polynomial circuits.

Proof:
For each L ∈ P decided in time p(n) and for each input x there is
a variable-free circuit with O(p(|x |)2) gates: output is true iff
x ∈ L (Theorem 8.1). When L ⊆ {0, 1}∗, we can modify the input
gates so that they are variables reflecting the symbols of x .

The converse fails:
There are undecidable languages that have polynomial circuits.
(e.g. L ⊆ {0, 1}∗ undecidable, U ⊆ {1}∗,
U = {1n : binary expansion of n in L}. U is undecidable but has
a polynomial circuit.)
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Definition 9

• C = (C0,C1, . . .) is uniform: there is a logn-space bounded
Turing machine which on input 1n outputs Cn.

• L has uniformly polynomial circuits: there is a uniform
family C that decides L.

Theorem 6
L has uniformly polynomial circuits iff L ∈ P.

Proof:
(⇐) If L ∈ P, the construction of Cn can be done in O(logn)
space (Theorem 8.1).
(⇒) If L has a uniformly polynomial family of circuits, then we can
build C|x | in log|x | space, hence in polynomial time. Then we can
evaluate it in polynomial time.
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The last Theorem relates to the P
?
= NP problem. Indeed, the

P 6= NP conjecture is equivalent to:

A NP-complete problems have no uniformly polynomial circuits.

B NP-complete problems have no polynomial circuits.

Thus, showing that a specific NP-complete problem has no
polynomial circuits implies P 6= NP.

The last result suggests that circuits are useless in proving that
P 6= BPP:

Theorem 7
All languages in BPP have polynomial circuits.
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Proof idea:
Let L ∈ BPP. ∀ n we can construct Cn based on a sequence
An = (a1, . . . , am), ai ∈ {0, 1}p(n), p(n) the lenght of the
computations of N.D.T.M. N that decides L by clear majority,
m = 12(n + 1). Each ai represents a possible sequence of choices
for N. Cn simulates N with each ai and takes the majority of the
outcomes.
It can be proven that: ∀ n > 0, ∃ a set An of m = 12(n + 1)
bitstrings: ∀ input x , |x | = n, fewer than half of the choices in An

are bad.
Now, given such an An we can build a circuit Cn with O(n2p2(n))
gates that simulate N and then takes the majority of the outcomes.
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