
Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Randomized Computation

Matoula Petrolia

December 10, 2009

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Randomized Algorithms
Symbolic Determinants
Random Walks
The Fermat Test

Randomized Complexity Classes
The class RP
The class ZPP
The class PP
The class BPP
Class Overview

Random Sources
Slightly Random Sources

Circuit Complexity

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Randomized Algorithms

Randomized Algorithms: algorithms that can ”flip a coin”.

Many computational problems seem to be more easily solvable by
randomized algorithms.

Some examples:

1. Symbolic Determinants

2. Random Walks

3. The Fermat Test

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Symbolic Determinants

• We may need to find out whether the determinant of a matrix
A is identically zero or not.
(For example in the bipartite matching problem, consider the
matrix AG of a graph G - where aij = xij if there is an edge
connecting nodes i , j and aij = 0 otherwise. Then G has a
perfect matching iff detA 6= 0.)

• We can calculate the determinant of a matrix using Gaussian
elimination in polynomial time.

• Using the same method to calculate the determinant of a
symbolic matrix can be much harder.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

A simple example of a symbolic Gaussian elimination:

 x w z
z x w
y z 0

⇒
 x w z

0 x2−zw
x

wx−z2
x

0 zx−wy
x − zy

x



⇒

 x w z

0 x2−zw
x

wx−z2
x

0 0 − yz(xz−xw)+(zx−wy)(wx−z2)
x(x2−zw)



Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Idea: Substitute arbitrary integers for the variables.

• We now get a numerical matrix whose determinant we can
calculate in polynomial time.

• If this determinant is not zero then we know that the symbolic
determinant is not identically zero.

• But we may be unlucky and choose the wrong numbers. That
is, the numerical determinant may be zero although the
symbolic one is not.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

The following Lemma reassures us that choosing the ”wrong
numbers” is a very unlikely event.

Lemma 1
Let π(x1, x2, . . . , xm) be a polynomial, not identically zero, in m
variables each of degree at most d in it and let M > 0 be an
integer. Then the number of m-tuples
(x1, x2, . . . , xm) ∈ {0, 1, . . . ,M − 1}m such that
π(x1, x2, . . . , xm) = 0 is at most mdMm−1.

Proof:
By reduction on the number of variables, m.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

The above lemma suggests a randomized algorithm for deciding if
a graph G has a perfect matching, that is, if the determinant of
the matrix AG is identically zero.

• AG (x1, . . . , xm) = AG with its m variables.

• det(AG (x1, . . . , xm)) is a polynomial in m variables each of
degree at most 1 in it.

Choose m random integers i1, i2, . . . , im between 0 and

M = 2m.

Compute detAG (x1, . . . , xm)) by Gaussian elimination.

If detAG (x1, . . . , xm)) 6= 0, reply "G has a perfect

matching".

If detAG (x1, . . . , xm)) = 0, reply "G probably has no

perfect matching".

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

• If the algorithm finds that a matching exists, then we know it
does.

• If the algorithm answers ”G probably has no perfect
matching”, then there is a possibility of a false negative. The
probability of a false negative is no more than 1

2 .

Such algorithms, that can have false negatives with a bounded
probability, but no false positives, are called Monte Carlo
algorithms.

If we perform many independent experiments we can reduce the
chance of false negatives: if we repeat k times, then our
confidence on the outcome that there is no perfect matching for G
increases to 1− (12)k .

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Random Walks

This is a randomized algorithm for SAT:

Start with any truth assignment T, and repeat the
following r times:

If there is no unsatisfied clause, then reply

"formula is satisfiable" and halt.

Otherwise, take any unsatisfied clause; pick any

of its literals at random and flip it, updating

T.

After r repetitions reply "formula is probably

unsatisfiable".

This is the random walk algorithm.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Again, for this algorithm we have that

• if the algorithm finds that the formula is satisfiable, then we
know it is (no false positives) and

• if the algorithm finds that the formula is probably
unsatisfiable, then there is a possibility of a false negative.

In other words

• if the formula is unsatisfiable then our algorithm will give us a
correct answer but

• if the formula is satisfiable then there is a possibility that a
satisfying truth assignment won’t be discovered.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

The random walk algorithm may perform badly for even a simple
satisfiable instance of 3SAT.
But when it comes to 2SAT, the algorithm performs quite decently:

Theorem 1
If the random walk algorithm is applied to a satisfiable instance of
2SAT with n variables, for r = 2n2, then the probability that a
satisfying truth assignment will be discoverd is at least 1

2 .

This Theorem implies that the random walk algorithm with
r = 2n2 is a Monte Carlo algorithm for 2SAT.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

To prove this consider:

T̂ is a truth assignment that satisfies the given instance of
2SAT.

The starting assignment T differs from T̂ in i values.

t(i) is the expected number of repetitions of the flipping step
until a satisfying truth assignment is discovered.

Notice that every time the algorithm flips a randomly chosen
literal, we have at least 1

2 chance of moving closer to T̂ .

Properties of t(i):

- t(0) = 0

- t(n) ≤ t(n − 1) + 1

- t(i) ≤ 1
2(t(i − 1) + 1) + 1

2(t(i + 1) + 1)

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

We will prove that t(i) ≤ n2 and we will use the following Lemma
to complete the proof:

Lemma 2
If x is a random variable taking nonnegative integer values, E(x) is
the expected value of x, then ∀k > 0 P[x ≥ k · E(x)] ≤ 1

k .

Proof:
Let pi = P[x = i]. Then,

E(x) =
∑
i

ipi =
∑

i≤k·E(x)

ipi +
∑

i>k·E(x)

ipi > k ·E(x) ·P[x > k ·E(x)].

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Now we are ready to prove the Theorem:

Theorem’s Proof:
Define x(i) with the following properties:

- x(0) = 0

- x(n) = x(n − 1)

- x(i) = 1
2(x(i − 1) + 1) + 1

2(x(i + 1) + 1)

Obviously, x(i) ≥ t(i).
Adding together all x(i)’s we get x(1) = 2n− 1 and continuing like
this we get x(i) = 2in − i2. When i = n, x(n) = n2.
Thus, the expected number of repetitions needed to find a
satisfying truth assignment is t(i) ≤ x(i) ≤ x(n) = n2. Now using
Lemma 2, with k = 2, we complete the proof.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

The Fermat Test

Theorem 2 (Fermat’s Theorem)

If N is a prime number, then for all 0 < a < N, aN−1 = 1modN.

• If aN−1 6= 1modN then we know that N is composite.

• If aN−1 = 1modN then we can’t tell if N is a prime.

Consider the algorithm suggested by Fermat’s Theorem:

Pick a random residue a modulo N.

If aN−1 6= 1modN answer "N is composite".

If aN−1 = 1modN answer "N is probably prime".

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

This algorithm would be a polynomial Monte Carlo algorithm if it
was true that for any N not prime aN−1 6= 1modN for at least half
of its nonzero residues.

But this hypothesis is false: there are some numbers for which
aN−1 = 1modN for all of their residues a but still these numbers
are composite (Carmichael numbers).
(e.g. 561 is not a prime number but still all residues in Φ(561)
pass the Fermat test.)

• The Fermat’s test gives a false answer for a Carmichael
number.

• There are infinitely many Carmichael numbers.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

To overcome this difficulty, we will need the followings:

Definition 1
Let p be an odd prime and a 6= 0modp. Then we define the
Legendre Symbol (a|p):

(a|p) =

{
+1, a is a quadratic residue modulo p
−1, a is not a quadratic residue modulo p

Properties:

- (a|p) = a
p−1
2 modp.

- (a|p)(b|p) = (ab|p).

- (p|q)(q|p) = (−1)
p−1
2

q−1
2 , p, q odd primes (Legendre’s Law of

Quadratic Reciprocity).

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Definition 2
Let M,N be not prime integers and N =

∏n
i=1 qi where the qi ’s

are all odd primes. We define the Jacobi Symbol to be
(M|N) =

∏n
i=1(M|qi).

Properties:

- (M1M2|N) = (M1|N)(M2|N).

- (M + N|N) = (M|N).

- If both M,N are odd then (M|N)(N|M) = (−1)
M−1
2

N−1
2 .

- (2|M) = (−1)
M2−1

8 .

Lemma 3
If dlogMNe = l, then (M|N) can be computed in O(l3) time.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Lemma 4
If (M|N) = M

N−1
2 modN ∀M ∈ Φ(N), then N is a prime.

Theorem 3
If N is an odd composite, then for at least half of M ∈ Φ(N),

(M|N) 6= M
N−1
2 modN.

These two results suggest a Monte Carlo algorithm for
compositeness. Given an odd integer N, this is the algorithm:

Generate a random integer M between 2 and N − 1
and calculate (M,N).

If (M,N) > 1, reply "N is a composite".

Otherwise calculate (M|N), M
N−1
2 modN and

compare;

if they are not equal, reply "N is a composite",

otherwise reply "N is probably a prime".

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Randomized Complexity Classes

Definition 3
Let N be a polynomial-time bounded nondeterministic Turing
machine. For all of its computations on input x it halts after the
same number of steps, a polynomial in |x |. Assume that at each
step there are exactly two nondeterministic choices.
Now, let L be a language. A polynomial Monte Carlo Turing
machine for L is a Turing machine, as above, with

• p(n) steps in each computation on an input of length n and

• for each string x,

- if x ∈ L, then at least half of the 2p(|x|) computations halt with
”yes” and

- if x /∈ L, then all computations halt with ”no”.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

The class RP
(Randomized Polynomial)

- L ∈ RP if:
• x ∈ L ⇒ P(N(x) = ”yes”) ≥ 1

2 + ε
• x /∈ L ⇒ P(N(x) = ”no”) = 1

- P ⊆ RP ⊆ NP

- There can be false negatives but no false positives.

- Similarly we define coRP:
L ∈ coRP if:

• x /∈ L ⇒ P(N(x) = ”no”) ≥ 1
2 + ε

• x ∈ L ⇒ P(N(x) = ”yes”) = 1

- In coRP there can be false positives but no false negatives.

- PRIMES ∈ coRP.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

The class ZPP
(Zero-error Probabilistic Polynomial)

- ZPP=RP ∩ coRP

- A problem in ZPP has two Monte Carlo algorithms: one with
no false positives and one with no false negatives.

- If we execute both algorithms k times independently, the
probability of no definite answer is 1

2k
.

- L ∈ ZPP if:
• x ∈ L ⇒ P(N(x) = ”no”) = 0
• x /∈ L ⇒ P(N(x) = ”yes”) = 0
• ∃ ε > 0: P(N(x) = UNK) < ε

- ZPP algorithms are called Las Vegas algorithms.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

The class PP

- L ∈ PP if, ∀x , ∃ ε > 0:
• x ∈ L ⇒ P(N(x) = ”yes”) ≥ 1

2 + ε
• x /∈ L ⇒ P(N(x) = ”no”) ≥ 1

2 + ε

- We say that N decides L ”by majority”.

- ε > 0 depends on the input x .

- Even if we run it polynomially many times, we can’t decrease
the error probability.

- MAJSAT is PP-complete.

- PP is closed under complement.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Theorem 4
NP ⊆ PP.

Proof:
Let L ∈ NP, decided by a N.D.T.M. N. Construct a Turing
machine N ′: N ′ is identical to N except that it has a new initial
state and a nondeterministic choice out of it. One choice gets us
to the ordinary computation of N. The other choice gets us to a
computation that always accepts (with the same number of steps).
On input x , N produces 2p(|x |) computations (p(|x |) steps). N ′

produces 2p(|x |)+1 computations. At least half of them halt with
”yes”. Thus, x ∈ L ⇐⇒ there is at least one computation of N
that accepts ⇐⇒ N ′ accepts L by majority ⇐⇒ L ∈ PP.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

The class BPP
(Bounded Probabilistic Polynomial)

• Suppose that you have a biased coin (one side has probability
1
2 + ε to appear).

• How would you detect which of the two sides is more likely to
appear?

• Flip the coin many times.

• How many times do you have to flip it in order to guess
correctly with high probability?

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Lemma 5 (The Chernoff Bound)

x1, . . . , xn independent random variables taking the values 0 and 1
with probabilities 1− p and p respectively. X =

∑n
i=1 xi . Then

∀ 0 ≤ θ ≤ 1, P(X ≥ (1 + θ)pn) ≤ e−
θ2

3
pn.

Now by the Chernoff Bound, with p = 1
2 + ε and taking θ = ε

ε+ 1
2

we have that P(X ≤ n
2) ≤ e−

ε2n
6 .

Thus, we can detect which side is more likely to appear by flipping
the coin about 1

ε2
times and taking the majority.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

- L ∈ BPP if, ∀x :
• x ∈ L ⇒ P(N(x) = ”yes”) ≥ 3

4
• x /∈ L ⇒ P(N(x) = ”no”) ≥ 3

4

- Equivalently, L ∈ PP if, ∃ ε > 0, ∀x :
• x ∈ L ⇒ P(N(x) = ”yes”) ≥ 1

2 + ε
• x /∈ L ⇒ P(N(x) = ”no”) ≥ 1

2 + ε

- In fact, we can take any number strictly between 0 and 1
2

(e.g. 2
3 , 3

5 , . . .).

- In this class, ε is not allowed to depend on the input x .

- We say that N decides L by ”clear majority”.

- After repeating polynomially many times we can decrease the
error probability.

- BPP = coBPP

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Class Overview

?

PP

BPP

RP

NP

ZPP

coRP

• P ⊆ RP ⊆ NP

• NP ⊆ PP

• RP ⊆ BPP ⊆ PP

• BPP
?
⊆ NP

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Random Sources

Definition 4
A perfect random source is a random variable with values that
are infinite sequences (x1, x2, . . .) of bits such that ∀ n > 0 and
∀ (y1, . . . , yn) ∈ {0, 1}n we have P[xi = yi , i = 1, . . . , n] = 2−n.

• A perfect random source must have indpendence and fairness.

• There are no perfect random sources in nature.

• The outcome of any physical random source tends to be
affected by its previous outcomes.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Slightly Random Sources

Definition 5
Let 0 < δ < 1

2 and a function p : {0, 1}∗ → [δ, 1− δ]. A δ-random
source is a random variable with values that are infinite sequences
and the probability that (x1, . . . , xn) = (y1, . . . , yn) is given by

n∏
i=1

(yip(y1 . . . yi−1)) + (1− yi)(1− p(y1 . . . yi−1)).

• p is a function completely unknown to us.

• If δ = 1
2 then we have a perfect random source.

• If δ < 1
2 then we say we have a slightly random source.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Since we know nothing about p we can’t let a slightly random
source run a randomized algorithm. But they can simulate any
randomized algorithm with polynomial loss of efficiency.

Definition 6
Let N be a Turing machine, standardized as previously, and
0 < δ < 1

2 . A δ-assignment F to N(x) is a mapping from the
edges of N(x) to [δ, 1− δ], such that the two edges leaving each
internal node are assigned numbers adding up to 1.

For each leaf l, the probability of l is
∏

a∈P[l]F (a), where P[l] is the
path from root to leaf l.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Example: Computation tree and 0.1 assignment

0.6 0.4

0.9 0.1 0.5 0.5

0.8 0.2 0.7 0.3 0.1 0.9 0.4 0.6

no yes no no no yes yes no

P(N(x) = ”yes”) = 0.6 · 0.9 · 0.2 + 0.4 · 0.5 · 0.9 + 0.4 · 0.5 · 0.4

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Definition 7
A language L is in δ-RP if there is a N.D.T.M. N, as above, such
that:

• x ∈ L ⇒ P(N(x) = ”yes”|F) ≥ 1
2 and

• x /∈ L ⇒ P(N(x) = ”yes”|F) = 0, for all δ-assignments F .

A language L is in δ-BPP if there is a N.D.T.M. N, as above, such
that:

• x ∈ L ⇒ P(N(x) = ”yes”|F) ≥ 3
4 and

• x /∈ L ⇒ P(N(x) = ”no”|F) ≥ 3
4 , for all δ-assignments F .

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

• 0-RP=0-BPP=P

• 1
2 -RP=RP

• 1
2 -BPP=BPP

Theorem 5
For any δ > 0, δ-BPP=BPP.

Corollary 1

For any δ > 0, δ-RP=RP.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Circuit Complexity

Definition 8

1. Size of a circuit: the numbers of gates in it.

2. Family of circuits: an infinite sequence C = (C0,C1, . . .) of
Boolean circuits: Cn has n input variables.

3. L ⊆ {0, 1}∗ has polynomial circuit: ∃ C = (C0,C1, . . .):

a) the size of Cn is at most p(n), p fixed polynomial,
b) ∀ x ∈ {0, 1}∗, x ∈ L iff C|x|’s output is true.

What kinds of languages have polynomial circuits?

REACHABILITY has a polynomial circuit.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Proposition 1

All languages in P have polynomial circuits.

Proof:
For each L ∈ P decided in time p(n) and for each input x there is
a variable-free circuit with O(p(|x |)2) gates: output is true iff
x ∈ L (Theorem 8.1). When L ⊆ {0, 1}∗, we can modify the input
gates so that they are variables reflecting the symbols of x .

The converse fails:
There are undecidable languages that have polynomial circuits.
(e.g. L ⊆ {0, 1}∗ undecidable, U ⊆ {1}∗,
U = {1n : binary expansion of n in L}. U is undecidable but has
a polynomial circuit.)

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Definition 9

• C = (C0,C1, . . .) is uniform: there is a logn-space bounded
Turing machine which on input 1n outputs Cn.

• L has uniformly polynomial circuits: there is a uniform
family C that decides L.

Theorem 6
L has uniformly polynomial circuits iff L ∈ P.

Proof:
(⇐) If L ∈ P, the construction of Cn can be done in O(logn)
space (Theorem 8.1).
(⇒) If L has a uniformly polynomial family of circuits, then we can
build C|x | in log|x | space, hence in polynomial time. Then we can
evaluate it in polynomial time.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

The last Theorem relates to the P
?
= NP problem. Indeed, the

P 6= NP conjecture is equivalent to:

A NP-complete problems have no uniformly polynomial circuits.

B NP-complete problems have no polynomial circuits.

Thus, showing that a specific NP-complete problem has no
polynomial circuits implies P 6= NP.

The last result suggests that circuits are useless in proving that
P 6= BPP:

Theorem 7
All languages in BPP have polynomial circuits.

Randomized Algorithms Randomized Complexity Classes Random Sources Circuit Complexity

Proof idea:
Let L ∈ BPP. ∀ n we can construct Cn based on a sequence
An = (a1, . . . , am), ai ∈ {0, 1}p(n), p(n) the lenght of the
computations of N.D.T.M. N that decides L by clear majority,
m = 12(n + 1). Each ai represents a possible sequence of choices
for N. Cn simulates N with each ai and takes the majority of the
outcomes.
It can be proven that: ∀ n > 0, ∃ a set An of m = 12(n + 1)
bitstrings: ∀ input x , |x | = n, fewer than half of the choices in An

are bad.
Now, given such an An we can build a circuit Cn with O(n2p2(n))
gates that simulate N and then takes the majority of the outcomes.

	Randomized Algorithms
	Symbolic Determinants
	Random Walks
	The Fermat Test

	Randomized Complexity Classes
	The class RP
	The class ZPP
	The class PP
	The class BPP
	Class Overview

	Random Sources
	Slightly Random Sources

	Circuit Complexity

