
Parallel Computation

Karousatou Christina

Computational Complexity

January 18, 2010

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 1 / 59

Parallel Algorithms Parallel Computers

Layout
1 Parallel Algorithms

Parallel Computers
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Maximum Flow
The Traveling Salesman Problem
Determinants and Inverses

2 Parallel Models of Computation
Boolean Circuits
Parallel Random Access Machines

3 The Class NC
The Family of Subclasses of NC
P-completeness

4 RNC Algorithms
RNC Algorithms
Small Capacities

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 2 / 59

Parallel Algorithms Parallel Computers

A parallel computer has a large number of independent processors.

Each processor can execute its own program, and can communicate
with other processors instantaneously and synchronously through a
large shared memory.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 3 / 59

Parallel Algorithms Matrix Multiplication

Layout
1 Parallel Algorithms

Parallel Computers
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Maximum Flow
The Traveling Salesman Problem
Determinants and Inverses

2 Parallel Models of Computation
Boolean Circuits
Parallel Random Access Machines

3 The Class NC
The Family of Subclasses of NC
P-completeness

4 RNC Algorithms
RNC Algorithms
Small Capacities

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 4 / 59

Parallel Algorithms Matrix Multiplication

Given two n × n matrices A and B, we wish to compute their product
C = A · B. In fact, we wish to compute all n2 sums of the form

Cij =
n∑

k=1

Aik · Bkj , i , j = 1, . . . , n

Sequentially this problem can be solved in O(n3) arithmetic
operations, in the obvious way.

One satisfactory parallel algorithm for this problem is computing all
the n3 products Aik · Bkj by different processors independently,
assuming that we have n3 processors.

The total time required is n arithmetic operations on n3 processors.
This algorithm has brought down the complexity from n3 to n, which
is a significant reduction, but it is not the improvement that would
make multiprocessors worth building. What we want to see is some
exponential drop in the time required, or at least polylogarithmic
parallel time like log3 n.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 5 / 59

Parallel Algorithms Matrix Multiplication

Given two n × n matrices A and B, we wish to compute their product
C = A · B. In fact, we wish to compute all n2 sums of the form

Cij =
n∑

k=1

Aik · Bkj , i , j = 1, . . . , n

Sequentially this problem can be solved in O(n3) arithmetic
operations, in the obvious way.

One satisfactory parallel algorithm for this problem is computing all
the n3 products Aik · Bkj by different processors independently,
assuming that we have n3 processors.

The total time required is n arithmetic operations on n3 processors.
This algorithm has brought down the complexity from n3 to n, which
is a significant reduction, but it is not the improvement that would
make multiprocessors worth building. What we want to see is some
exponential drop in the time required, or at least polylogarithmic
parallel time like log3 n.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 5 / 59

Parallel Algorithms Matrix Multiplication

Given two n × n matrices A and B, we wish to compute their product
C = A · B. In fact, we wish to compute all n2 sums of the form

Cij =
n∑

k=1

Aik · Bkj , i , j = 1, . . . , n

Sequentially this problem can be solved in O(n3) arithmetic
operations, in the obvious way.

One satisfactory parallel algorithm for this problem is computing all
the n3 products Aik · Bkj by different processors independently,
assuming that we have n3 processors.

The total time required is n arithmetic operations on n3 processors.
This algorithm has brought down the complexity from n3 to n, which
is a significant reduction, but it is not the improvement that would
make multiprocessors worth building. What we want to see is some
exponential drop in the time required, or at least polylogarithmic
parallel time like log3 n.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 5 / 59

Parallel Algorithms Matrix Multiplication

Given two n × n matrices A and B, we wish to compute their product
C = A · B. In fact, we wish to compute all n2 sums of the form

Cij =
n∑

k=1

Aik · Bkj , i , j = 1, . . . , n

Sequentially this problem can be solved in O(n3) arithmetic
operations, in the obvious way.

One satisfactory parallel algorithm for this problem is computing all
the n3 products Aik · Bkj by different processors independently,
assuming that we have n3 processors.

The total time required is n arithmetic operations on n3 processors.
This algorithm has brought down the complexity from n3 to n, which
is a significant reduction, but it is not the improvement that would
make multiprocessors worth building. What we want to see is some
exponential drop in the time required, or at least polylogarithmic
parallel time like log3 n.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 5 / 59

Parallel Algorithms Matrix Multiplication

One way to achieve that decrement is to organize the processors to
perform a binary tree of additions. This way, we can add the results
in only logn parallel steps, and have the exponential drop that we
hoped to have.

Another important factor, we haven’t counted, is that we must have a
polynomial number of processors, because an exponential number of
processors is even less feasible than exponential sequential time.

In order to find out the optimum number of processors we can use to
achieve the optimum parallel time, there is a general principle that we
must keep in mind:
The amount of work done by a parallel algorithm can be no smaller
than the time complexity of the best sequential algorithm (by
”amount of work” we mean the steps executed by each processor,
summed over all processors).

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 6 / 59

Parallel Algorithms Matrix Multiplication

One way to achieve that decrement is to organize the processors to
perform a binary tree of additions. This way, we can add the results
in only logn parallel steps, and have the exponential drop that we
hoped to have.

Another important factor, we haven’t counted, is that we must have a
polynomial number of processors, because an exponential number of
processors is even less feasible than exponential sequential time.

In order to find out the optimum number of processors we can use to
achieve the optimum parallel time, there is a general principle that we
must keep in mind:
The amount of work done by a parallel algorithm can be no smaller
than the time complexity of the best sequential algorithm (by
”amount of work” we mean the steps executed by each processor,
summed over all processors).

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 6 / 59

Parallel Algorithms Matrix Multiplication

One way to achieve that decrement is to organize the processors to
perform a binary tree of additions. This way, we can add the results
in only logn parallel steps, and have the exponential drop that we
hoped to have.

Another important factor, we haven’t counted, is that we must have a
polynomial number of processors, because an exponential number of
processors is even less feasible than exponential sequential time.

In order to find out the optimum number of processors we can use to
achieve the optimum parallel time, there is a general principle that we
must keep in mind:
The amount of work done by a parallel algorithm can be no smaller
than the time complexity of the best sequential algorithm (by
”amount of work” we mean the steps executed by each processor,
summed over all processors).

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 6 / 59

Parallel Algorithms Matrix Multiplication

Back to our example. Any algorithm that does work at least n3 and
achieves the optimum parallel time logn requires at least n3

logn
processors.

Question: How can we decrease our processor requirement from n3 to
the optimum n3

logn without increasing the parallel time too much?

Answer: We compute the n3 products not in a single step, but rather
in logn ”shifts” using d n3

logne processors at each shift. We use shifts of

the same d n3

logne processors to compute the first loglogn parallel
addition steps. The total number of parallel steps is now no more
than 2logn, with n3

logn processors, thus rendering our parallelization of

the O(n3) sequential algorithm optimal in all respects.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 7 / 59

Parallel Algorithms Matrix Multiplication

Back to our example. Any algorithm that does work at least n3 and
achieves the optimum parallel time logn requires at least n3

logn
processors.

Question: How can we decrease our processor requirement from n3 to
the optimum n3

logn without increasing the parallel time too much?

Answer: We compute the n3 products not in a single step, but rather
in logn ”shifts” using d n3

logne processors at each shift. We use shifts of

the same d n3

logne processors to compute the first loglogn parallel
addition steps. The total number of parallel steps is now no more
than 2logn, with n3

logn processors, thus rendering our parallelization of

the O(n3) sequential algorithm optimal in all respects.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 7 / 59

Parallel Algorithms Matrix Multiplication

Back to our example. Any algorithm that does work at least n3 and
achieves the optimum parallel time logn requires at least n3

logn
processors.

Question: How can we decrease our processor requirement from n3 to
the optimum n3

logn without increasing the parallel time too much?

Answer: We compute the n3 products not in a single step, but rather
in logn ”shifts” using d n3

logne processors at each shift. We use shifts of

the same d n3

logne processors to compute the first loglogn parallel
addition steps. The total number of parallel steps is now no more
than 2logn, with n3

logn processors, thus rendering our parallelization of

the O(n3) sequential algorithm optimal in all respects.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 7 / 59

Parallel Algorithms Matrix Multiplication

The technique, we just used, of bringing down the processor
requirement to the optimum value (for given work and parallel time)
by using ”shifts of processors” is quite general and valuable and is
known as Brent’s Principle.

Expressing processor requirements as a function of n may seem
bizarre, because any parallel machine has a given and fixed number of
processors. But once we have an algorithm that achieves optimal
parallel time using as many processors as it takes, we can now scale
back our algorithm to the available hardware. In our previous example
if we had P available processors, we could organize them so that they

execute each parallel step of our algorithm in dn
3/logn
P e shifts, where

each shift employs P processors. The total time is 2n3

P , which is
obviously the fastest that this algorithm can be parallelized on P
processors.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 8 / 59

Parallel Algorithms Matrix Multiplication

The technique, we just used, of bringing down the processor
requirement to the optimum value (for given work and parallel time)
by using ”shifts of processors” is quite general and valuable and is
known as Brent’s Principle.

Expressing processor requirements as a function of n may seem
bizarre, because any parallel machine has a given and fixed number of
processors. But once we have an algorithm that achieves optimal
parallel time using as many processors as it takes, we can now scale
back our algorithm to the available hardware. In our previous example
if we had P available processors, we could organize them so that they

execute each parallel step of our algorithm in dn
3/logn
P e shifts, where

each shift employs P processors. The total time is 2n3

P , which is
obviously the fastest that this algorithm can be parallelized on P
processors.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 8 / 59

Parallel Algorithms Graph Reachability

Layout
1 Parallel Algorithms

Parallel Computers
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Maximum Flow
The Traveling Salesman Problem
Determinants and Inverses

2 Parallel Models of Computation
Boolean Circuits
Parallel Random Access Machines

3 The Class NC
The Family of Subclasses of NC
P-completeness

4 RNC Algorithms
RNC Algorithms
Small Capacities

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 9 / 59

Parallel Algorithms Graph Reachability

The search algorithm we have seen for REACHABILITY cannot be
parallelized in any obvious way. Thus, we have to try a different
approach to the solution.

One solution is using Matrix multiplication.

Suppose that A is the adjacency matrix of the graph, where all
self-loops are added : Aii = 1 for all i . We compute now the Boolean
product of A with it self A2 = A · A, where

A2
ij =

n∨
k=1

Aik ∧ Akj

A hint to the solution is that A2
ij = 1 if and only if there is a path of

length 2 or less from node i to node j .

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 10 / 59

Parallel Algorithms Graph Reachability

The search algorithm we have seen for REACHABILITY cannot be
parallelized in any obvious way. Thus, we have to try a different
approach to the solution.

One solution is using Matrix multiplication.

Suppose that A is the adjacency matrix of the graph, where all
self-loops are added : Aii = 1 for all i . We compute now the Boolean
product of A with it self A2 = A · A, where

A2
ij =

n∨
k=1

Aik ∧ Akj

A hint to the solution is that A2
ij = 1 if and only if there is a path of

length 2 or less from node i to node j .

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 10 / 59

Parallel Algorithms Graph Reachability

The search algorithm we have seen for REACHABILITY cannot be
parallelized in any obvious way. Thus, we have to try a different
approach to the solution.

One solution is using Matrix multiplication.

Suppose that A is the adjacency matrix of the graph, where all
self-loops are added : Aii = 1 for all i . We compute now the Boolean
product of A with it self A2 = A · A, where

A2
ij =

n∨
k=1

Aik ∧ Akj

A hint to the solution is that A2
ij = 1 if and only if there is a path of

length 2 or less from node i to node j .

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 10 / 59

Parallel Algorithms Graph Reachability

The search algorithm we have seen for REACHABILITY cannot be
parallelized in any obvious way. Thus, we have to try a different
approach to the solution.

One solution is using Matrix multiplication.

Suppose that A is the adjacency matrix of the graph, where all
self-loops are added : Aii = 1 for all i . We compute now the Boolean
product of A with it self A2 = A · A, where

A2
ij =

n∨
k=1

Aik ∧ Akj

A hint to the solution is that A2
ij = 1 if and only if there is a path of

length 2 or less from node i to node j .

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 10 / 59

Parallel Algorithms Graph Reachability

This way, computing A4, we get all paths of length 4 or less, and so
on. After dlogne Boolean matrix multiplications, we get A2dlogne ,
which is the adjacency matrix of the transitive closure of A. That is,
the concentrated answers to all possible REACHABILITY instances
on the given graph.

We achieved computing the transitive closure of a graph in O(log2n)
parallel steps with O(n3logn) total work.
Exactly what we wanted, polylogarithmic parallel time and polynomial
amount of total work.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 11 / 59

Parallel Algorithms Graph Reachability

This way, computing A4, we get all paths of length 4 or less, and so
on. After dlogne Boolean matrix multiplications, we get A2dlogne ,
which is the adjacency matrix of the transitive closure of A. That is,
the concentrated answers to all possible REACHABILITY instances
on the given graph.

We achieved computing the transitive closure of a graph in O(log2n)
parallel steps with O(n3logn) total work.
Exactly what we wanted, polylogarithmic parallel time and polynomial
amount of total work.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 11 / 59

Parallel Algorithms Arithmetic Operations

Layout
1 Parallel Algorithms

Parallel Computers
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Maximum Flow
The Traveling Salesman Problem
Determinants and Inverses

2 Parallel Models of Computation
Boolean Circuits
Parallel Random Access Machines

3 The Class NC
The Family of Subclasses of NC
P-completeness

4 RNC Algorithms
RNC Algorithms
Small Capacities

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 12 / 59

Parallel Algorithms Arithmetic Operations

One problem of Arithmetic Operations is the prefix sums problem.
Given n integers x1, . . . , xn, we wish to compute all sums of the form∑j

i=1 xi , j = 1, . . . , n.

Sequentially is solved with n − 1 additions.

In parallel we use, once more, a different approach to the solution.
Assuming that n is a power of 2 , we first compute the sums
(x1 + x2), (x3 + x4), . . . , (xn−1 + xn) (one parallel step), and then we
recursively compute the prefix sums of this sequence. It follows that
the total number of parallel steps is 2logn and the amount of work
needed is n + n

2 + n
4 + . . . ≤ 2n. And by Brent’s principle, the number

of processors needed is only n
logn .

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 13 / 59

Parallel Algorithms Arithmetic Operations

One problem of Arithmetic Operations is the prefix sums problem.
Given n integers x1, . . . , xn, we wish to compute all sums of the form∑j

i=1 xi , j = 1, . . . , n.

Sequentially is solved with n − 1 additions.

In parallel we use, once more, a different approach to the solution.
Assuming that n is a power of 2 , we first compute the sums
(x1 + x2), (x3 + x4), . . . , (xn−1 + xn) (one parallel step), and then we
recursively compute the prefix sums of this sequence. It follows that
the total number of parallel steps is 2logn and the amount of work
needed is n + n

2 + n
4 + . . . ≤ 2n. And by Brent’s principle, the number

of processors needed is only n
logn .

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 13 / 59

Parallel Algorithms Arithmetic Operations

One problem of Arithmetic Operations is the prefix sums problem.
Given n integers x1, . . . , xn, we wish to compute all sums of the form∑j

i=1 xi , j = 1, . . . , n.

Sequentially is solved with n − 1 additions.

In parallel we use, once more, a different approach to the solution.
Assuming that n is a power of 2 , we first compute the sums
(x1 + x2), (x3 + x4), . . . , (xn−1 + xn) (one parallel step), and then we
recursively compute the prefix sums of this sequence. It follows that
the total number of parallel steps is 2logn and the amount of work
needed is n + n

2 + n
4 + . . . ≤ 2n. And by Brent’s principle, the number

of processors needed is only n
logn .

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 13 / 59

Parallel Algorithms Arithmetic Operations

In other arithmetic operations we conclude that

We can compute the sum of two n-bit binary integers in O(logn)
parallel time and O(n) work.

We can multiply two n-bit binary integers in O(logn) parallel time
and O(n2logn) work.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 14 / 59

Parallel Algorithms Maximum Flow

Layout
1 Parallel Algorithms

Parallel Computers
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Maximum Flow
The Traveling Salesman Problem
Determinants and Inverses

2 Parallel Models of Computation
Boolean Circuits
Parallel Random Access Machines

3 The Class NC
The Family of Subclasses of NC
P-completeness

4 RNC Algorithms
RNC Algorithms
Small Capacities

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 15 / 59

Parallel Algorithms Maximum Flow

The sequential algorithm we have seen for the MAX FLOW problem
works in stages. At each stage, we start with a flow f , and try to
improve it. To this end, we construct a new network N(f), reflecting
the improvement potential of the arcs of N with respect to f , and try
to find a path from the source s to the sink t in N(f).If we succeed,
we improve the flow. If we fail, the current flow is maximum.

In parallel, with enough hardware, we can construct N(f) in a single
parallel step. Previously, we learned how to find paths in parallel
quickly. Thus, each stage can be done in O(log2n) parallel time and
O(n2) total work, where n is the number of nodes in the network.

The problem that comes up, is that stages need to be carried out one
after the other, and the number of stages may be very large (certainly
more than polylogarithmic n).

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 16 / 59

Parallel Algorithms Maximum Flow

The sequential algorithm we have seen for the MAX FLOW problem
works in stages. At each stage, we start with a flow f , and try to
improve it. To this end, we construct a new network N(f), reflecting
the improvement potential of the arcs of N with respect to f , and try
to find a path from the source s to the sink t in N(f).If we succeed,
we improve the flow. If we fail, the current flow is maximum.

In parallel, with enough hardware, we can construct N(f) in a single
parallel step. Previously, we learned how to find paths in parallel
quickly. Thus, each stage can be done in O(log2n) parallel time and
O(n2) total work, where n is the number of nodes in the network.

The problem that comes up, is that stages need to be carried out one
after the other, and the number of stages may be very large (certainly
more than polylogarithmic n).

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 16 / 59

Parallel Algorithms Maximum Flow

The sequential algorithm we have seen for the MAX FLOW problem
works in stages. At each stage, we start with a flow f , and try to
improve it. To this end, we construct a new network N(f), reflecting
the improvement potential of the arcs of N with respect to f , and try
to find a path from the source s to the sink t in N(f).If we succeed,
we improve the flow. If we fail, the current flow is maximum.

In parallel, with enough hardware, we can construct N(f) in a single
parallel step. Previously, we learned how to find paths in parallel
quickly. Thus, each stage can be done in O(log2n) parallel time and
O(n2) total work, where n is the number of nodes in the network.

The problem that comes up, is that stages need to be carried out one
after the other, and the number of stages may be very large (certainly
more than polylogarithmic n).

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 16 / 59

Parallel Algorithms Maximum Flow

We may try to develop alternative approaches to the problem, as we
have done before, and reduce the number of stages to n, or even

√
n,

but still not to a polylogarithmic number.

With this problem we saw that parallelism has limitations and that
MAX FLOW is a polynomial-time solvable problem that seems to be
inherently sequential.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 17 / 59

Parallel Algorithms Maximum Flow

We may try to develop alternative approaches to the problem, as we
have done before, and reduce the number of stages to n, or even

√
n,

but still not to a polylogarithmic number.

With this problem we saw that parallelism has limitations and that
MAX FLOW is a polynomial-time solvable problem that seems to be
inherently sequential.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 17 / 59

Parallel Algorithms The Traveling Salesman Problem

Layout
1 Parallel Algorithms

Parallel Computers
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Maximum Flow
The Traveling Salesman Problem
Determinants and Inverses

2 Parallel Models of Computation
Boolean Circuits
Parallel Random Access Machines

3 The Class NC
The Family of Subclasses of NC
P-completeness

4 RNC Algorithms
RNC Algorithms
Small Capacities

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 18 / 59

Parallel Algorithms The Traveling Salesman Problem

According to our last problem we can make a conclusion that parallel
computation is not the answer to NP-completeness. And furthermore, is
not the technological breakthrough that could make exponential
algorithms feasible. The obstacle is the equation

work = parallel time× number of processors

If the fastest sequential algorithm that we know for a problem requires
exponential time, then in any parallel algorithm either the parallel time
must be exponential, or the number of processors must be exponential (or
both).
The final conclusion is not that parallel computers are useless in solving
hard problems. Parallel computation, along with clever exponential
algorithms, fast processors, and smart techniques do help solve exactly
larger and larger instances of NP-complete problems. The point is that as
we said before parallelism is not the absolute solution of NP-completeness
and exponentiality.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 19 / 59

Parallel Algorithms Determinants and Inverses

Layout
1 Parallel Algorithms

Parallel Computers
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Maximum Flow
The Traveling Salesman Problem
Determinants and Inverses

2 Parallel Models of Computation
Boolean Circuits
Parallel Random Access Machines

3 The Class NC
The Family of Subclasses of NC
P-completeness

4 RNC Algorithms
RNC Algorithms
Small Capacities

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 20 / 59

Parallel Algorithms Determinants and Inverses

Although the problem of computing the determinant of an integer matrix
may seem inherently sequential, as the problem of MAX FLOW, there is a
rather sophisticated approach which succeeds in providing a fast parallel
algorithm.
This alternative approach solves this problem by merging it with another
difficult problem, matrix inversion, and then solving both.
The result of this algorithm is that we can compute the determinant of an
n × n matrix with b-bit integer entries in parallel time
O(log3n(logn + logb)), and O(n8b2) total work. Although unrealistically
large, these bounds still conform to our theoretical requirements of
polylogarithmic parallel time and polynomial work in the size of the input.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 21 / 59

Parallel Models of Computation Boolean Circuits

Layout
1 Parallel Algorithms

Parallel Computers
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Maximum Flow
The Traveling Salesman Problem
Determinants and Inverses

2 Parallel Models of Computation
Boolean Circuits
Parallel Random Access Machines

3 The Class NC
The Family of Subclasses of NC
P-completeness

4 RNC Algorithms
RNC Algorithms
Small Capacities

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 22 / 59

Parallel Models of Computation Boolean Circuits

Boolean circuits will be our basic model of parallel algorithms. We consider
families of Boolean circuits with one different circuit for each input size.

A circuit family is a sequence C = (C0,C1, . . .) of Boolean circuits,
such that Ci has i inputs.

Additionally, we only consider families of circuits that are uniform.
That is, there is a logarithmic space-bounded Turing machine which
on input 1n outputs Cn (intuitively, this implies that all the circuits in
the family represent the same algorithm).

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 23 / 59

Parallel Models of Computation Boolean Circuits

Boolean circuits will be our basic model of parallel algorithms. We consider
families of Boolean circuits with one different circuit for each input size.

A circuit family is a sequence C = (C0,C1, . . .) of Boolean circuits,
such that Ci has i inputs.

Additionally, we only consider families of circuits that are uniform.
That is, there is a logarithmic space-bounded Turing machine which
on input 1n outputs Cn (intuitively, this implies that all the circuits in
the family represent the same algorithm).

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 23 / 59

Parallel Models of Computation Boolean Circuits

Boolean circuits will be our basic model of parallel algorithms. We consider
families of Boolean circuits with one different circuit for each input size.

A circuit family is a sequence C = (C0,C1, . . .) of Boolean circuits,
such that Ci has i inputs.

Additionally, we only consider families of circuits that are uniform.
That is, there is a logarithmic space-bounded Turing machine which
on input 1n outputs Cn (intuitively, this implies that all the circuits in
the family represent the same algorithm).

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 23 / 59

Parallel Models of Computation Boolean Circuits

Definition 1

Let C be a Boolean circuit, that is, a directed acyclic graph where each
node is a gate, of one of the possible sorts and matching indegree.(C
could have more than one output, in which case it computes a function
from {0, 1}n to {0, 1}m, not a predicate). The size of C is, as always, the
total number of gates in it. The depth of C is the number of nodes in the
longest path in C .
Let now C = (C0,C1, . . .) be a uniform family of circuits, and let f (n) and
g(n) be functions from the integers to integers. We say that the parallel
time of C is at most f (n) if for all n the depth of Cn is at most f (n). We
say that the total work of C is at most g(n) if for all n ≥ 0 the size of Cn

is at most g(n).

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 24 / 59

Parallel Models of Computation Boolean Circuits

Definition 1 (continued)

Finally define PT/WK(f (n), g(n)) to be the class of all languages
L ⊆ {0, 1}∗ such that there is a uniform family of circuits C deciding L
with O(f (n)) parallel time and O(g(n)) work. �

Example 1

In the previous section we saw an algorithm for computing the transitive
closure.This algorithm can be easily rendered as a uniform family of
circuits as follows: First, consider, for each n, a cirquit Q with n2 inputs
and n2 outputs, and such that the output Boolean matrix is the square of
the input one. Now the circuit of the transitive closure is simply the
composition of dlogne copies of Q, connected in tandem so that the
outputs of one coincide with the inputs of the next. We call the resulting
family C2.
The uniform family of circuits C1 for REACHABILITY shows that
REACHABILITY ∈ PT/WK(n, n3). On the other hand the family C2
establishes that REACHABILITY ∈ PT/WK(log2n, n3logn). �

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 25 / 59

Parallel Models of Computation Parallel Random Access Machines

Layout
1 Parallel Algorithms

Parallel Computers
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Maximum Flow
The Traveling Salesman Problem
Determinants and Inverses

2 Parallel Models of Computation
Boolean Circuits
Parallel Random Access Machines

3 The Class NC
The Family of Subclasses of NC
P-completeness

4 RNC Algorithms
RNC Algorithms
Small Capacities

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 26 / 59

Parallel Models of Computation Parallel Random Access Machines

RAM program (Random Access Machine):

Finite sequence Π = (π1, . . . , πm) of instructions (READ, ADD,
LOAD, JUMP, etc.).

Input registers I = (i1, . . . , im).

Register 0 the accumulator of the RAM.

Program counter κ, pointing the instruction to be executed.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 27 / 59

Parallel Models of Computation Parallel Random Access Machines

PRAM program (Parallel Random Access Machine):
Sequence of RAM programs P = (Π1,Π2, . . . ,Πq).

Each machine executes its own program.

Has its own program counter.

Has its own accumulator (accumulator of RAM i is Register i).

Each RAM can read and write the accumulators of the other RAMs.

The number q of RAMs is actually a function q(m, n), where m is the
number of integers in the input I , and n = `(I) is the total length of these
integers.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 28 / 59

Parallel Models of Computation Parallel Random Access Machines

PRAM program (Parallel Random Access Machine):
Sequence of RAM programs P = (Π1,Π2, . . . ,Πq).

Each machine executes its own program.

Has its own program counter.

Has its own accumulator (accumulator of RAM i is Register i).

Each RAM can read and write the accumulators of the other RAMs.

The number q of RAMs is actually a function q(m, n), where m is the
number of integers in the input I , and n = `(I) is the total length of these
integers.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 28 / 59

Parallel Models of Computation Parallel Random Access Machines

Thus, for each value of m and n we have a different PRAM program Pm,n,
each with a diferrent number of RAMs q(m, n), consisting a
two-dimensional family P = (Pm,n : m, n ≥ 0). Where we consider that
these families are uniform.

A configuration of the PRAM Pm,n is a tuple (κ1, κ2, . . . , κq(m,n),R),
which now contains all the program counters, together with R, a
description of the current contents of the registers.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 29 / 59

Parallel Models of Computation Parallel Random Access Machines

Thus, for each value of m and n we have a different PRAM program Pm,n,
each with a diferrent number of RAMs q(m, n), consisting a
two-dimensional family P = (Pm,n : m, n ≥ 0). Where we consider that
these families are uniform.

A configuration of the PRAM Pm,n is a tuple (κ1, κ2, . . . , κq(m,n),R),
which now contains all the program counters, together with R, a
description of the current contents of the registers.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 29 / 59

Parallel Models of Computation Parallel Random Access Machines

Definition 2

Suppose that F is a function mapping finite sequences of integers to finite
sequences of integers; let P = (Pm,n : m, n ≥ 0), be a uniform family of
PRAM programs; and let f and g be functions from positive integers to
positive integers. We say that P computes F in parallel time f with g
processors if for each m, n ≥ 0 Pm,n has the following property:

First, it has q(m, n) ≤ g(n) processors. Second, if the PRAM program is
executed on input I = (i1, . . . , im) of m integers with total number of bits
`(I) = n, then all q(m, n) RAMs have reached a HALT instruction after at
most f (n) steps, at which point the k ≤ q(m, n) first registers contain the
output F (i1, i2, . . . , im) = (o1, . . . , ok). �

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 30 / 59

Parallel Models of Computation Parallel Random Access Machines

Definition 2

Suppose that F is a function mapping finite sequences of integers to finite
sequences of integers; let P = (Pm,n : m, n ≥ 0), be a uniform family of
PRAM programs; and let f and g be functions from positive integers to
positive integers. We say that P computes F in parallel time f with g
processors if for each m, n ≥ 0 Pm,n has the following property:
First, it has q(m, n) ≤ g(n) processors. Second, if the PRAM program is
executed on input I = (i1, . . . , im) of m integers with total number of bits
`(I) = n, then all q(m, n) RAMs have reached a HALT instruction after at
most f (n) steps, at which point the k ≤ q(m, n) first registers contain the
output F (i1, i2, . . . , im) = (o1, . . . , ok). �

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 30 / 59

Parallel Models of Computation Parallel Random Access Machines

Theorem 1

If L ⊆ {0, 1}∗ is in PT/WK(f (n), g(n)), then there is a uniform PRAM
that computes the corresponding function FL mapping {0, 1}∗ to {0, 1} in

parallel time O(f (n)) using O(g(n)f (n)) processors.

Proof:
Using the logarithmic-space machine that generates the nth circuit Cn, we
will generate equivalent RAM programs. For each gate gi of Cn we have
diferrent RAM Πi .

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 31 / 59

Parallel Models of Computation Parallel Random Access Machines

Theorem 1

If L ⊆ {0, 1}∗ is in PT/WK(f (n), g(n)), then there is a uniform PRAM
that computes the corresponding function FL mapping {0, 1}∗ to {0, 1} in

parallel time O(f (n)) using O(g(n)f (n)) processors.

Proof:
Using the logarithmic-space machine that generates the nth circuit Cn, we
will generate equivalent RAM programs. For each gate gi of Cn we have
diferrent RAM Πi .

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 31 / 59

Parallel Models of Computation Parallel Random Access Machines

The program of Πi :
First, waits for 3d steps, where d is the length of the longest path from
any input gate to gi .

Next, Πi in three steps computes the value of gi and stores it in its
accumulator, Register i . If gi is an AND gate with inputs gj and gk , then
Πi executes the following RAM program :
3d + 1. LOAD j
3d + 2. JZERO 3d + 5
3d + 3. LOAD k
3d + 4. JUMP 3d + 6
3d + 5. LOAD = 0
3d + 6. HALT
Similarly for OR and NOT gates.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 32 / 59

Parallel Models of Computation Parallel Random Access Machines

The program of Πi :
First, waits for 3d steps, where d is the length of the longest path from
any input gate to gi .
Next, Πi in three steps computes the value of gi and stores it in its
accumulator, Register i . If gi is an AND gate with inputs gj and gk , then
Πi executes the following RAM program :

3d + 1. LOAD j
3d + 2. JZERO 3d + 5
3d + 3. LOAD k
3d + 4. JUMP 3d + 6
3d + 5. LOAD = 0
3d + 6. HALT
Similarly for OR and NOT gates.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 32 / 59

Parallel Models of Computation Parallel Random Access Machines

The program of Πi :
First, waits for 3d steps, where d is the length of the longest path from
any input gate to gi .
Next, Πi in three steps computes the value of gi and stores it in its
accumulator, Register i . If gi is an AND gate with inputs gj and gk , then
Πi executes the following RAM program :
3d + 1. LOAD j
3d + 2. JZERO 3d + 5
3d + 3. LOAD k
3d + 4. JUMP 3d + 6
3d + 5. LOAD = 0
3d + 6. HALT

Similarly for OR and NOT gates.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 32 / 59

Parallel Models of Computation Parallel Random Access Machines

The program of Πi :
First, waits for 3d steps, where d is the length of the longest path from
any input gate to gi .
Next, Πi in three steps computes the value of gi and stores it in its
accumulator, Register i . If gi is an AND gate with inputs gj and gk , then
Πi executes the following RAM program :
3d + 1. LOAD j
3d + 2. JZERO 3d + 5
3d + 3. LOAD k
3d + 4. JUMP 3d + 6
3d + 5. LOAD = 0
3d + 6. HALT
Similarly for OR and NOT gates.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 32 / 59

Parallel Models of Computation Parallel Random Access Machines

By induction on d , is proved that, after executing these instructions,
Register i will contain the correct value of gate i . The output gate must
be g1 so that the final answer is left on Register 1.

For a better number of processors, we employ Brent’s principle. We first
compute q(n) = dg(n)f (n) e. For each value of d we make a list of the gates
for which d is the length of the longest path from any input gate. We then
assign these gates to the q(n) processors as equitably as possible. �

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 33 / 59

Parallel Models of Computation Parallel Random Access Machines

By induction on d , is proved that, after executing these instructions,
Register i will contain the correct value of gate i . The output gate must
be g1 so that the final answer is left on Register 1.
For a better number of processors, we employ Brent’s principle. We first
compute q(n) = dg(n)f (n) e. For each value of d we make a list of the gates
for which d is the length of the longest path from any input gate. We then
assign these gates to the q(n) processors as equitably as possible. �

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 33 / 59

Parallel Models of Computation Parallel Random Access Machines

Theorem 2

Suppose that a function F can be computed by a uniform PRAM in
parallel time f (n) with g(n) processors, where f (n) and g(n) can be
computed from 1n in logarithmic space. Then there is a uniform family of
circuits of depth O(log f (n) + log n) and size
O(g(n)(nk f (n) + g(n))(log f (n) + log n)) which computes the binary
representation of F , where nk is the time bound of the logarithmic-space
Turing machine which on input 1n outputs the nth PRAM in the family.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 34 / 59

Parallel Models of Computation Parallel Random Access Machines

Proof: For fixed size n of the binary representation there are at most g(n)
processors in the corresponding PRAM.

PRAM’s registers contain integers of length bounded by
`(n) = n + f (n) + b, where b is the length of the longest integer referred
to in an instruction of the program, at most nk .
The number of instructions in each RAM program is bounded by a
polynomial n.
At most f (n)g(n) registers will be affected during the computation.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 35 / 59

Parallel Models of Computation Parallel Random Access Machines

Proof: For fixed size n of the binary representation there are at most g(n)
processors in the corresponding PRAM.
PRAM’s registers contain integers of length bounded by
`(n) = n + f (n) + b, where b is the length of the longest integer referred
to in an instruction of the program, at most nk .

The number of instructions in each RAM program is bounded by a
polynomial n.
At most f (n)g(n) registers will be affected during the computation.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 35 / 59

Parallel Models of Computation Parallel Random Access Machines

Proof: For fixed size n of the binary representation there are at most g(n)
processors in the corresponding PRAM.
PRAM’s registers contain integers of length bounded by
`(n) = n + f (n) + b, where b is the length of the longest integer referred
to in an instruction of the program, at most nk .
The number of instructions in each RAM program is bounded by a
polynomial n.

At most f (n)g(n) registers will be affected during the computation.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 35 / 59

Parallel Models of Computation Parallel Random Access Machines

Proof: For fixed size n of the binary representation there are at most g(n)
processors in the corresponding PRAM.
PRAM’s registers contain integers of length bounded by
`(n) = n + f (n) + b, where b is the length of the longest integer referred
to in an instruction of the program, at most nk .
The number of instructions in each RAM program is bounded by a
polynomial n.
At most f (n)g(n) registers will be affected during the computation.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 35 / 59

Parallel Models of Computation Parallel Random Access Machines

Hence, the configuration C = (κ1, κ2, . . . , κq(m,n),R) can be encoded in
O(g(n)f (n)logn) bits. R encodes the contents of the memory, given as
pairs of the form (location, contents).

All integers are in binary.
Thus, C is a sequence of bits, where it is a priori known which bit
correspond to the ith program counter, and which bits encode the rth
location-contents pair in R.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 36 / 59

Parallel Models of Computation Parallel Random Access Machines

Hence, the configuration C = (κ1, κ2, . . . , κq(m,n),R) can be encoded in
O(g(n)f (n)logn) bits. R encodes the contents of the memory, given as
pairs of the form (location, contents).
All integers are in binary.

Thus, C is a sequence of bits, where it is a priori known which bit
correspond to the ith program counter, and which bits encode the rth
location-contents pair in R.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 36 / 59

Parallel Models of Computation Parallel Random Access Machines

Hence, the configuration C = (κ1, κ2, . . . , κq(m,n),R) can be encoded in
O(g(n)f (n)logn) bits. R encodes the contents of the memory, given as
pairs of the form (location, contents).
All integers are in binary.
Thus, C is a sequence of bits, where it is a priori known which bit
correspond to the ith program counter, and which bits encode the rth
location-contents pair in R.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 36 / 59

Parallel Models of Computation Parallel Random Access Machines

We can now compute the encoding of the next configuration from that of
the current configuration. We will show in example.

Suppose we know that the current instruction of RAM i is “t: ADD j”. As
said before, we know the precise bits in the encoding of the configuration
where the contents of Registers i and j are encoded.
We get the following algorithm, for each r ≤ f (n)g(n):

“If program counter κi is t, and if the r th pair in the encoding R of the
register contents is of the form (j , x) then Register i is incremented by x .”

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 37 / 59

Parallel Models of Computation Parallel Random Access Machines

We can now compute the encoding of the next configuration from that of
the current configuration. We will show in example.
Suppose we know that the current instruction of RAM i is “t: ADD j”. As
said before, we know the precise bits in the encoding of the configuration
where the contents of Registers i and j are encoded.

We get the following algorithm, for each r ≤ f (n)g(n):

“If program counter κi is t, and if the r th pair in the encoding R of the
register contents is of the form (j , x) then Register i is incremented by x .”

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 37 / 59

Parallel Models of Computation Parallel Random Access Machines

We can now compute the encoding of the next configuration from that of
the current configuration. We will show in example.
Suppose we know that the current instruction of RAM i is “t: ADD j”. As
said before, we know the precise bits in the encoding of the configuration
where the contents of Registers i and j are encoded.
We get the following algorithm, for each r ≤ f (n)g(n):

“If program counter κi is t, and if the r th pair in the encoding R of the
register contents is of the form (j , x) then Register i is incremented by x .”

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 37 / 59

Parallel Models of Computation Parallel Random Access Machines

This algorithm can be implemented easily by circuits of depth log ` and
size O(`).

We must have such a circuit for each instruction in each RAM program,
end for each (location, contents) pair, a total of O(nk f (n)g(n)) circuits.
There are also, g(n)2 integer comparisons, each of log `(n) depth, we have
to do, because of the problem that comes up when more than one RAMs
try to write in the same Register i .

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 38 / 59

Parallel Models of Computation Parallel Random Access Machines

This algorithm can be implemented easily by circuits of depth log ` and
size O(`).
We must have such a circuit for each instruction in each RAM program,
end for each (location, contents) pair, a total of O(nk f (n)g(n)) circuits.

There are also, g(n)2 integer comparisons, each of log `(n) depth, we have
to do, because of the problem that comes up when more than one RAMs
try to write in the same Register i .

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 38 / 59

Parallel Models of Computation Parallel Random Access Machines

This algorithm can be implemented easily by circuits of depth log ` and
size O(`).
We must have such a circuit for each instruction in each RAM program,
end for each (location, contents) pair, a total of O(nk f (n)g(n)) circuits.
There are also, g(n)2 integer comparisons, each of log `(n) depth, we have
to do, because of the problem that comes up when more than one RAMs
try to write in the same Register i .

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 38 / 59

Parallel Models of Computation Parallel Random Access Machines

We conclude that there is a circuit of depth O(log `) = O(log f (n) + log n)
and of size O(g(n)(nk f (n) + g(n))(log f (n) + log n)), which given the
encoding of a PRAM configuration, computes the encoding of the next
one. �

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 39 / 59

The Class NC The Family of Subclasses of NC

Layout
1 Parallel Algorithms

Parallel Computers
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Maximum Flow
The Traveling Salesman Problem
Determinants and Inverses

2 Parallel Models of Computation
Boolean Circuits
Parallel Random Access Machines

3 The Class NC
The Family of Subclasses of NC
P-completeness

4 RNC Algorithms
RNC Algorithms
Small Capacities

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 40 / 59

The Class NC The Family of Subclasses of NC

We define
NC = PT/WK(logk n, nk)

NC is the class of languages decided by PRAMs in polylogarithmic
parallel time with polynomially many processors.

NC is closed under reductions.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 41 / 59

The Class NC The Family of Subclasses of NC

We define
NC = PT/WK(logk n, nk)

NC is the class of languages decided by PRAMs in polylogarithmic
parallel time with polynomially many processors.

NC is closed under reductions.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 41 / 59

The Class NC The Family of Subclasses of NC

We define
NC = PT/WK(logk n, nk)

NC is the class of languages decided by PRAMs in polylogarithmic
parallel time with polynomially many processors.

NC is closed under reductions.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 41 / 59

The Class NC The Family of Subclasses of NC

Is NC the parallel version of P (problems satisfactorily solved by parallel
computers)?

In sequential computation the diferrence between polynomial and
exponential algorithms is real and obvious (2n is much larger than n3

for accesible values, say n = 20).

In parallel, although log3 n is in theory asymptotically much smaller
than

√
n, the difference starts to become felt only when n = 1012.

Furthermore, we defined NC to be a class of languages. Which is a
problem, since in parallel computation the more interesting problems
require substantial output.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 42 / 59

The Class NC The Family of Subclasses of NC

Is NC the parallel version of P (problems satisfactorily solved by parallel
computers)?

In sequential computation the diferrence between polynomial and
exponential algorithms is real and obvious (2n is much larger than n3

for accesible values, say n = 20).

In parallel, although log3 n is in theory asymptotically much smaller
than

√
n, the difference starts to become felt only when n = 1012.

Furthermore, we defined NC to be a class of languages. Which is a
problem, since in parallel computation the more interesting problems
require substantial output.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 42 / 59

The Class NC The Family of Subclasses of NC

Is NC the parallel version of P (problems satisfactorily solved by parallel
computers)?

In sequential computation the diferrence between polynomial and
exponential algorithms is real and obvious (2n is much larger than n3

for accesible values, say n = 20).

In parallel, although log3 n is in theory asymptotically much smaller
than

√
n, the difference starts to become felt only when n = 1012.

Furthermore, we defined NC to be a class of languages. Which is a
problem, since in parallel computation the more interesting problems
require substantial output.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 42 / 59

The Class NC The Family of Subclasses of NC

Is NC the parallel version of P (problems satisfactorily solved by parallel
computers)?

In sequential computation the diferrence between polynomial and
exponential algorithms is real and obvious (2n is much larger than n3

for accesible values, say n = 20).

In parallel, although log3 n is in theory asymptotically much smaller
than

√
n, the difference starts to become felt only when n = 1012.

Furthermore, we defined NC to be a class of languages. Which is a
problem, since in parallel computation the more interesting problems
require substantial output.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 42 / 59

The Class NC The Family of Subclasses of NC

We define now, the family of important subclasses of NC:

NCj = PT/WK(logj n, nk)

That is, NCj is the subset of NC in which the parallel time is O(logj n).
The free parameter k means that we allow any degree in the polynomial
accounting fot the total work.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 43 / 59

The Class NC The Family of Subclasses of NC

It is clear that NC ⊆ P. But is NC = P?

This question is equivalent to the P
?
= NP, in sequential computation.

Intuition and experience suggest a negative answer. In addition, persistent
failures to develop NC algorithms for some fairly simple problems in P
seem to imply that there are problems that are inherently sequential so,
NC 6= P.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 44 / 59

The Class NC The Family of Subclasses of NC

It is clear that NC ⊆ P. But is NC = P?

This question is equivalent to the P
?
= NP, in sequential computation.

Intuition and experience suggest a negative answer. In addition, persistent
failures to develop NC algorithms for some fairly simple problems in P
seem to imply that there are problems that are inherently sequential so,
NC 6= P.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 44 / 59

The Class NC The Family of Subclasses of NC

It is clear that NC ⊆ P. But is NC = P?

This question is equivalent to the P
?
= NP, in sequential computation.

Intuition and experience suggest a negative answer. In addition, persistent
failures to develop NC algorithms for some fairly simple problems in P
seem to imply that there are problems that are inherently sequential so,
NC 6= P.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 44 / 59

The Class NC P-completeness

Layout
1 Parallel Algorithms

Parallel Computers
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Maximum Flow
The Traveling Salesman Problem
Determinants and Inverses

2 Parallel Models of Computation
Boolean Circuits
Parallel Random Access Machines

3 The Class NC
The Family of Subclasses of NC
P-completeness

4 RNC Algorithms
RNC Algorithms
Small Capacities

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 45 / 59

The Class NC P-completeness

Theorem 3

If L reduces to L′ ∈ NC, then L ∈ NC.

Proof:
Let R be the logarithmic reduction from L to L′. There is a logarithmic
space-bounded Turing machine R ′ which accepts input (x , i) if and only if
the ith bit of R(x) is one.
We solve the reachability problem for the configuration graph of R ′ on
input (x , i), in parallel by NC2 circuits, to compute all bits of R(x).
Once we have R(x) we can use the NC circuit for L′ to tell wether x ∈ L,
all in NC. �

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 46 / 59

The Class NC P-completeness

Theorem 3

If L reduces to L′ ∈ NC, then L ∈ NC.

Proof:
Let R be the logarithmic reduction from L to L′. There is a logarithmic
space-bounded Turing machine R ′ which accepts input (x , i) if and only if
the ith bit of R(x) is one.

We solve the reachability problem for the configuration graph of R ′ on
input (x , i), in parallel by NC2 circuits, to compute all bits of R(x).
Once we have R(x) we can use the NC circuit for L′ to tell wether x ∈ L,
all in NC. �

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 46 / 59

The Class NC P-completeness

Theorem 3

If L reduces to L′ ∈ NC, then L ∈ NC.

Proof:
Let R be the logarithmic reduction from L to L′. There is a logarithmic
space-bounded Turing machine R ′ which accepts input (x , i) if and only if
the ith bit of R(x) is one.
We solve the reachability problem for the configuration graph of R ′ on
input (x , i), in parallel by NC2 circuits, to compute all bits of R(x).

Once we have R(x) we can use the NC circuit for L′ to tell wether x ∈ L,
all in NC. �

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 46 / 59

The Class NC P-completeness

Theorem 3

If L reduces to L′ ∈ NC, then L ∈ NC.

Proof:
Let R be the logarithmic reduction from L to L′. There is a logarithmic
space-bounded Turing machine R ′ which accepts input (x , i) if and only if
the ith bit of R(x) is one.
We solve the reachability problem for the configuration graph of R ′ on
input (x , i), in parallel by NC2 circuits, to compute all bits of R(x).
Once we have R(x) we can use the NC circuit for L′ to tell wether x ∈ L,
all in NC. �

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 46 / 59

The Class NC P-completeness

Corollary

If L reduces to L′ ∈ NCj , where j ≥ 2, then L ∈ NCj .

We have seen that computing the maximum flow in a network, is a task
that seems to be inherently sequential.

Theorem 4

ODD MAX FLOW is P-complete.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 47 / 59

The Class NC P-completeness

Corollary

If L reduces to L′ ∈ NCj , where j ≥ 2, then L ∈ NCj .

We have seen that computing the maximum flow in a network, is a task
that seems to be inherently sequential.

Theorem 4

ODD MAX FLOW is P-complete.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 47 / 59

The Class NC P-completeness

Corollary

If L reduces to L′ ∈ NCj , where j ≥ 2, then L ∈ NCj .

We have seen that computing the maximum flow in a network, is a task
that seems to be inherently sequential.

Theorem 4

ODD MAX FLOW is P-complete.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 47 / 59

RNC Algorithms RNC Algorithms

Layout
1 Parallel Algorithms

Parallel Computers
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Maximum Flow
The Traveling Salesman Problem
Determinants and Inverses

2 Parallel Models of Computation
Boolean Circuits
Parallel Random Access Machines

3 The Class NC
The Family of Subclasses of NC
P-completeness

4 RNC Algorithms
RNC Algorithms
Small Capacities

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 48 / 59

RNC Algorithms RNC Algorithms

RNC is the randomized version of NC

Definition 3

A language L is in RNC if there is a uniform family of NC circuits, with
the following additional properties: First, the circuit Cn specializing in
strings of length n has now n + m(n) input gates, where m(n) is a
polynomial. If a string x of length n is in L, then at least half of the 2m(n)

bit strings y of length m(n) the circuit Cn outputs true on input x ; y . If
x /∈ L, Cn outputs false on x ; y for all y . �

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 49 / 59

RNC Algorithms RNC Algorithms

RNC is the randomized version of NC

Definition 3

A language L is in RNC if there is a uniform family of NC circuits, with
the following additional properties: First, the circuit Cn specializing in
strings of length n has now n + m(n) input gates, where m(n) is a
polynomial. If a string x of length n is in L, then at least half of the 2m(n)

bit strings y of length m(n) the circuit Cn outputs true on input x ; y . If
x /∈ L, Cn outputs false on x ; y for all y . �

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 49 / 59

RNC Algorithms RNC Algorithms

So far, we have seen for decision problems, given an efficient algorithm
that decides whether a solution exists, there is a general “dynamic
programming technique” that actually computes the desired solution, if of
course it exists.

The catch is that this method is inherently sequential.
Fortunately, there is a clever trick that works for the matching problem.
Which is best explained in terms of a more general problem, the
minimum-weight perfect matching problem.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 50 / 59

RNC Algorithms RNC Algorithms

So far, we have seen for decision problems, given an efficient algorithm
that decides whether a solution exists, there is a general “dynamic
programming technique” that actually computes the desired solution, if of
course it exists.
The catch is that this method is inherently sequential.

Fortunately, there is a clever trick that works for the matching problem.
Which is best explained in terms of a more general problem, the
minimum-weight perfect matching problem.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 50 / 59

RNC Algorithms RNC Algorithms

So far, we have seen for decision problems, given an efficient algorithm
that decides whether a solution exists, there is a general “dynamic
programming technique” that actually computes the desired solution, if of
course it exists.
The catch is that this method is inherently sequential.
Fortunately, there is a clever trick that works for the matching problem.
Which is best explained in terms of a more general problem, the
minimum-weight perfect matching problem.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 50 / 59

RNC Algorithms RNC Algorithms

Suppose that each edge (ui , vj) ∈ E has a weight wij associated with it.
We are seeking the perfect matching π that minimizes
w(π) =

∑n
i=1 wi ,π(i).

There is an NC algorithm for this problem, which works under two
conditions:

The weights must be small, polynomial in n.

The minimum-weight matching must be unique.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 51 / 59

RNC Algorithms RNC Algorithms

Suppose that each edge (ui , vj) ∈ E has a weight wij associated with it.
We are seeking the perfect matching π that minimizes
w(π) =

∑n
i=1 wi ,π(i).

There is an NC algorithm for this problem, which works under two
conditions:

The weights must be small, polynomial in n.

The minimum-weight matching must be unique.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 51 / 59

RNC Algorithms RNC Algorithms

Suppose that each edge (ui , vj) ∈ E has a weight wij associated with it.
We are seeking the perfect matching π that minimizes
w(π) =

∑n
i=1 wi ,π(i).

There is an NC algorithm for this problem, which works under two
conditions:

The weights must be small, polynomial in n.

The minimum-weight matching must be unique.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 51 / 59

RNC Algorithms RNC Algorithms

We define a matrix AG ,w whose i , jth element is 2wij if (ui , uj) is an edge
and 0 otherwise. We know that the determinant of AG ,w is computed by

detAG ,w =
∑
π

σ(π)
n∏

i=1

AG ,w
i ,π(i)

The summation ranges over all perfect matchings. Also, detAG ,w is a sum
of powers of two, where the exponents are the weights of the perfect
matchings.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 52 / 59

RNC Algorithms RNC Algorithms

We have assumed that the minimum-weight perfect matching is unique,
suppose its weight is w∗.
We get that detAG ,w = 2w

∗
(1 + 2k) for some integer k .

Thus 2w
∗

is the highest power of two that divides detAG ,w .
Based on this fact, we can compute w∗ by calculating detAG ,w , and then
counting the trailing zeros in the binary representation of detAG ,w , which
is w∗.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 53 / 59

RNC Algorithms RNC Algorithms

Once we have w∗, we test whether an edge (ui , vj) is in the
minimum-weight perfect matching by deleting this edge and its nodes
from G and computing the minimum-weight in the resulting graph.

Edge (ui , vj) is in the minimum-weight matching of G if and only if the
new minimum-weight is precisely w∗ − wij . We test all edges in parallel.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 54 / 59

RNC Algorithms RNC Algorithms

Conclusion, if the minimum-weight perfect match exists and is unique,
then it can be computed efficiently in parallel.

Is the minimum-weight matching unique?

Lemma 1 (The Isolating Lemma)

Suppose that the edges in E are assigned independently and randomly
weights between 1 and 2|E |. If a perfect matching exists, then with
probability at least 1

2 the minimum-weight perfect matching is unique.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 55 / 59

RNC Algorithms RNC Algorithms

Conclusion, if the minimum-weight perfect match exists and is unique,
then it can be computed efficiently in parallel.

Is the minimum-weight matching unique?

Lemma 1 (The Isolating Lemma)

Suppose that the edges in E are assigned independently and randomly
weights between 1 and 2|E |. If a perfect matching exists, then with
probability at least 1

2 the minimum-weight perfect matching is unique.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 55 / 59

RNC Algorithms RNC Algorithms

Conclusion, if the minimum-weight perfect match exists and is unique,
then it can be computed efficiently in parallel.

Is the minimum-weight matching unique?

Lemma 1 (The Isolating Lemma)

Suppose that the edges in E are assigned independently and randomly
weights between 1 and 2|E |. If a perfect matching exists, then with
probability at least 1

2 the minimum-weight perfect matching is unique.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 55 / 59

RNC Algorithms RNC Algorithms

Proof:
Call an edge bad if it is on one minimum-weight matching but not in
another.

Consider an edge e = (ui , vj), and suppose that all weights have been
assigned except for e’s.
w∗[ē] is the smallest weight among all perfect matchings that do not
contain e.
w∗[e] is the smallest weight among all perfect matchings that contain e,
but not counting the weight of e.
Define ∆ = w∗[ē]− w∗[e].
We next draw the weight wij of e.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 56 / 59

RNC Algorithms RNC Algorithms

Proof:
Call an edge bad if it is on one minimum-weight matching but not in
another.
Consider an edge e = (ui , vj), and suppose that all weights have been
assigned except for e’s.
w∗[ē] is the smallest weight among all perfect matchings that do not
contain e.
w∗[e] is the smallest weight among all perfect matchings that contain e,
but not counting the weight of e.
Define ∆ = w∗[ē]− w∗[e].

We next draw the weight wij of e.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 56 / 59

RNC Algorithms RNC Algorithms

Proof:
Call an edge bad if it is on one minimum-weight matching but not in
another.
Consider an edge e = (ui , vj), and suppose that all weights have been
assigned except for e’s.
w∗[ē] is the smallest weight among all perfect matchings that do not
contain e.
w∗[e] is the smallest weight among all perfect matchings that contain e,
but not counting the weight of e.
Define ∆ = w∗[ē]− w∗[e].
We next draw the weight wij of e.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 56 / 59

RNC Algorithms RNC Algorithms

If wij < ∆ then e is in every minimum-weight perfect matching.

If wij > ∆ then e is included in no minimum-weight matching.

If wij = ∆ then e is bad.

It follows that prob[e is bad] ≤ 1
2|E | .

Therefore the probability that there is some bad edge among the |E |
ones is at most |E | times that bound, and thus no more than half. �

Back to our algorithm, if a perfect matching exists, with probability
at least 1

2 this algorithm will return one.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 57 / 59

RNC Algorithms RNC Algorithms

If wij < ∆ then e is in every minimum-weight perfect matching.

If wij > ∆ then e is included in no minimum-weight matching.

If wij = ∆ then e is bad.

It follows that prob[e is bad] ≤ 1
2|E | .

Therefore the probability that there is some bad edge among the |E |
ones is at most |E | times that bound, and thus no more than half. �

Back to our algorithm, if a perfect matching exists, with probability
at least 1

2 this algorithm will return one.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 57 / 59

RNC Algorithms RNC Algorithms

If wij < ∆ then e is in every minimum-weight perfect matching.

If wij > ∆ then e is included in no minimum-weight matching.

If wij = ∆ then e is bad.

It follows that prob[e is bad] ≤ 1
2|E | .

Therefore the probability that there is some bad edge among the |E |
ones is at most |E | times that bound, and thus no more than half. �

Back to our algorithm, if a perfect matching exists, with probability
at least 1

2 this algorithm will return one.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 57 / 59

RNC Algorithms RNC Algorithms

If wij < ∆ then e is in every minimum-weight perfect matching.

If wij > ∆ then e is included in no minimum-weight matching.

If wij = ∆ then e is bad.

It follows that prob[e is bad] ≤ 1
2|E | .

Therefore the probability that there is some bad edge among the |E |
ones is at most |E | times that bound, and thus no more than half. �

Back to our algorithm, if a perfect matching exists, with probability
at least 1

2 this algorithm will return one.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 57 / 59

RNC Algorithms RNC Algorithms

If wij < ∆ then e is in every minimum-weight perfect matching.

If wij > ∆ then e is included in no minimum-weight matching.

If wij = ∆ then e is bad.

It follows that prob[e is bad] ≤ 1
2|E | .

Therefore the probability that there is some bad edge among the |E |
ones is at most |E | times that bound, and thus no more than half. �

Back to our algorithm, if a perfect matching exists, with probability
at least 1

2 this algorithm will return one.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 57 / 59

RNC Algorithms Small Capacities

Layout
1 Parallel Algorithms

Parallel Computers
Matrix Multiplication
Graph Reachability
Arithmetic Operations
Maximum Flow
The Traveling Salesman Problem
Determinants and Inverses

2 Parallel Models of Computation
Boolean Circuits
Parallel Random Access Machines

3 The Class NC
The Family of Subclasses of NC
P-completeness

4 RNC Algorithms
RNC Algorithms
Small Capacities

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 58 / 59

RNC Algorithms Small Capacities

Finally, because matching problem is a special case of MAX FLOW with
unit capacities, we conclude that there is an RNC algorithm for MAX
FLOW when the capacities are expressed in unary. In fact, it leads to an
RNC-approximation scheme.

Karousatou Christina (Computational Complexity) Parallel Computation January 18, 2010 59 / 59

	Parallel Algorithms
	Parallel Computers
	Matrix Multiplication
	Graph Reachability
	Arithmetic Operations
	Maximum Flow
	The Traveling Salesman Problem
	Determinants and Inverses

	Parallel Models of Computation
	Boolean Circuits
	Parallel Random Access Machines

	The Class NC
	The Family of Subclasses of NC
	P-completeness

	RNC Algorithms
	RNC Algorithms
	Small Capacities

