The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem BPP and PH

The Polynomial Hierarchy

A.Antonopoulos

18/1/2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Polynomial Hierarchy

A.Antonopoulo

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem BPP and PH

Optimization Problems

- Introduction
- The Class DP
- Oracle Classes

2 The Polynomial Hierarchy

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Definition
- Basic Theorems
- BPP and PH

Introduction

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction

The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem: BPP and PH

TSP Versions

🕚 TSP (D)

- EXACT TSP
- TSP COST

TSP

 $(1)\leq_P(2)\leq_P(3)\leq_P(4)$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

DP Class Definition

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem BPP and PH

Definition

A language *L* is in the class **DP** if and only if there are two languages $L_1 \in \mathbf{NP}$ and $L_2 \in co\mathbf{NP}$ such that $L = L_1 \cap L_2$.

• **DP** is not **NP** ∩ co**NP**!

 Also, DP is a syntactic class, and so it has complete problems.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

DP Class Definition

Definition

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

A language *L* is in the class **DP** if and only if there are two languages $L_1 \in \mathbf{NP}$ and $L_2 \in co\mathbf{NP}$ such that $L = L_1 \cap L_2$.

• **DP** is not $NP \cap coNP!$

• Also, **DP** is a *syntactic* class, and so it has complete problems.

SAT-UNSAT Definition

Given two Boolean expressions ϕ , ϕ' , both in 3CNF. Is it true that ϕ is satisfiable and ϕ' is not?

The Polynomial Hierarchy
Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem BPP and PH

Theorem

SAT-UNSAT is **DP**-complete.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem BPP and PH

Theorem

SAT-UNSAT is **DP**-complete.

Proof

- Firstly, we have to show it is in DP. So, let: L₁={(φ, φ'): φ is satisfiable}. L₂={(φ, φ'): φ' is unsatisfiable}. It is easy to see, L₁ ∈ NP and L₂ ∈ coNP, thus L ≡ L₁ ∩ L₂ ∈ DP.
 For completeness, let L ∈ DP. We have to show that
 - $L \leq_P SAT$ -UNSAT. $L \in \mathbf{DP} \Rightarrow L = L_1 \cap L_2$, $L_1 \in \mathbf{NP}$ and $L_2 \in co\mathbf{NP}$.

SAT **NP**-complete $\Rightarrow \exists R_1: L_1 \leq_P SAT$ and $R_2: \overline{L_2} \leq_P SAT$. Hence, $L \leq_P SAT$ -UNSAT, by $R(x) = (R_1(x), R_2(x))$

The Polynomial Hierarchy

Theorem

A.Antonopoulos

EXACT TSP is **DP**-complete.

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem BPP and PH

Proof

- *EXACT* $TSP \in DP$, by $L_1 \equiv TSP \in NP$ and $L_2 \equiv TSP$ *COMPLEMENT* $\in coNP$
- Completeness: we'll show that *SAT-UNSAT*≤_P*EXACT TSP*.

 $3SAT \leq_P HP: (\phi, \phi') \rightarrow (G, G')$

Broken Hamilton Path (2 node-disjoint paths that cover all nodes)

Almost Satisfying Truth Assignement (*satisfies all clauses* except for one)

The Polynomial Hierarchy

Proof

We define distances:

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem BPP and PH If (i, j) ∈ E(G) or E(G'): d(i, j) ≡ 1
If (i, j) ∉ E(G), but i and j ∈ V(G): d(i, j) ≡ 2

• Otherwise: $d(i,j) \equiv 4$

Let n be the size of the graph.

- If ϕ and ϕ' satisfiable, then optCost = n
- **2** If ϕ and ϕ' **un**satisfiable, then optCost = n + 3
- **③** If ϕ satisfiable and ϕ' not, then optCost = n + 2
- If ϕ' satisfiable and ϕ not, then optCost = n + 1

"yes" instance of SAT-UNSAT \Leftrightarrow optCost = n + 2Let $B \equiv n + 2!$

Other DP-complete problems

The Polynomial Hierarchy

A.Antonopoulos

Also:

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem BPP and PH

- CRITICAL SAT: Given a Boolean expression φ, is it true that it's unsatisfiable, but deleting any clause makes it satisfiable?
- *CRITICAL HAMILTON PATH*: Given a graph, is it true that it has **no** Hamilton path, but addition of any edge creates a Hamilton path?
- *CRITICAL 3-COLORABILITY*: Given a graph, is it true that it is **not** 3-colorable, but deletion of any node makes it 3-colorable?

are **DP**-complete!

The Classes P^{NP} and FP^{NP}

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Alternative DP Definition

DP is the class of languages that can be decided by an oracle machine which makes 2 queries to a *SAT* oracle, and accepts iff the 1st answer is **yes**, and the 2nd is **no**.

- **P**^{SAT} is the class of languages decided in pol time with a SAT oracle.
 - Polynomial number of queries
 - Queries computed adaptively
- SAT NP-complete $\Rightarrow \mathbf{P}^{SAT} = \mathbf{P}^{\mathbf{NP}}$
- **FP**^{NP} is the class of <u>functions</u> that can be computed by a pol-time TM with a *SAT* oracle.
- Goal: MAX OUTPUT≤_PMAX-WEIGHT SAT≤_PSAT

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

MAX OUTPUT Definition

Given NTM N, with input 1^n , which halts after $\mathcal{O}(n)$, with output a string of length n. Which is the largest output, of any computation of N on 1^n ?

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

MAX OUTPUT Definition

Given NTM N, with input 1^n , which halts after $\mathcal{O}(n)$, with output a string of length n. Which is the largest output, of any computation of N on 1^n ?

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

MAX OUTPUT Definition

Given NTM N, with input 1^n , which halts after $\mathcal{O}(n)$, with output a string of length n. Which is the largest output, of any computation of N on 1^n ?

Theorem

MAX OUTPUT is **FP^{NP}**-complete.

Proof $MAX \ OUTPUT \in \mathbf{FP}^{NP}$. Let $F : \Sigma^* \to \Sigma^* \in \mathbf{FP}^{NP} \Rightarrow \exists$ pol-time TM $M^?$, s.t. $M^{SAT}(x) = F(x)$ We'll show: $F \leq MAX \ OUTPUT$! Reductions R and S (log space computable) s.t.: • $\forall x, R(x)$ is a instance of $MAX \ OUTPUT$ • $S(\max \text{ output of } R(x)) \to F(x)$

The Polynomial Hierarchy

A.Antonopoulo

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

NTM N:

Proof

Let $n = p^2(|x|)$, $p(\cdot)$, is the pol bound of SAT.

$N(1^n)$ generates x on a string. M^{SAT} query state (ϕ_1) :

- If $z_1 = 0$ (ϕ_1 unsat), then continue from q_{NO} .
- If $z_1 = 1$ (ϕ_1 sat), then guess assignment T_1 :
 - If test succeeds, continue from q_{YES} .
 - If test fails, output=0ⁿ and halt. (Unsuccessful computation)

Continue to all guesses (z_i) , and **halt**, with output= $\underbrace{z_1 z_2 \dots 00}_{z_1}$

(Successful computation)

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Proof

We claim that the successful computation that outputs the largest integer, correspond to a correct simulation:

Let *j* the smallest integer,s.t.: $z_j = 0$, while ϕ_j was satisfiable. Then, \exists another successful computation of *N*, s.t.: $z_j = 1$. The computations agree to the first j - 1 digits, \Rightarrow the 2^{nd} represents a larger number.

The S part: F(x) can be read off the end of the largest output of N.

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem: BPP and PH

MAX-WEIGHT SAT Definition

Given a set of clauses, each with an integer weight, find the truth assignment that satisfies a set of clauses with the most total weight.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

MAX-WEIGHT SAT Definition

Given a set of clauses, each with an integer weight, find the truth assignment that satisfies a set of clauses with the most total weight.

Theorem

MAX-WEIGHT SAT is **FP^{NP}**-complete.

Proof

MAX-WEIGHT SAT is in **FP**^{NP}: By binary search, and a SAT oracle, we can find the largest possible total weight of satisfied clauses, and then, by setting the variables 1-1, the truth assignment that achieves it. MAX OUTPUT<MAX-WEIGHT SAT:

The Polynomial Hierarchy

Proof

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem: BPP and PH

- NTMN(1ⁿ) → φ(N, m): Any satisfying truth assignment of φ(N, m) → legal comp. of N(1ⁿ)
- Clauses are given a huge weight (2ⁿ), so that any t.a. that aspires to be optimum satisfy all clauses of φ(N, m).
- Add more clauses: (y_i) : i = 1, ...n with weight 2^{n-i} .
- Now, optimum t.a. must *not* represent any legal computation, but this which produces the *largest* possible output value.
- S part: From optimum t.a. of the resulting expression (or the weight), we can recover the optimum output of $N(1^n)$.

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem BPP and PH

And the main result:

Theorem

TSP is $\mathbf{FP}^{\mathbf{NP}}$ -complete.

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

And the main result:

Theorem

TSP is **FP**^{NP}-complete.

Corollary

TSP COST is **FP^{NP}**-complete.

Figure: The overall construction (17-2)

(日)、(四)、(E)、(E)、(E)

The Class $P^{NP[\log n]}$

Definition

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH $\mathbf{P^{NP[logn]}}$ is the class of all languages decided by a polynomial time oracle machine, which on input *x* asks a total of $\mathcal{O}(\log |x|)$ *SAT* queries.

• **FP**^{NP[logn]} is the corresponding class of functions.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Class $P^{NP[\log n]}$

Definition

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH $\mathbf{P^{NP[logn]}}$ is the class of all languages decided by a polynomial time oracle machine, which on input *x* asks a total of $\mathcal{O}(\log |x|)$ *SAT* queries.

• **FP**^{NP[logn]} is the corresponding class of functions.

CLIQUE SIZE Definition

Given a graph, determine the size of his largest clique.

The Class $P^{NP[\log n]}$

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Definition

 $\mathbf{P}^{\mathbf{NP}[\mathbf{logn}]}$ is the class of all languages decided by a polynomial time oracle machine, which on input *x* asks a total of $\mathcal{O}(\log |x|)$ SAT queries.

• **FP**^{NP[logn]} is the corresponding class of functions.

CLIQUE SIZE Definition

Given a graph, determine the size of his largest clique.

Theorem

CLIQUE SIZE is **FP^{NP[logn]}**-complete.

Conclusion

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem: BPP and PH

- TSP (D) is **NP**-complete.
- **2** EXACT TSP is **DP**-complete.
- **3** *TSP COST* is **FP^{NP}**-complete.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• *TSP* is **FP**^{NP}-complete.

And now,

- $\mathbf{P}^{\mathbf{NP}} \rightarrow \mathbf{NP}^{\mathbf{NP}}$?
- \bullet Oracles for $\mathbf{NP}^{\mathbf{NP}}$?

Outline

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy

Definition Basic Theorems BPP and PH

Optimization Problems

- Introduction
- The Class DP
- Oracle Classes

2 The Polynomial Hierarchy

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Definition
- Basic Theorems
- BPP and PH

The Polynomial Hierarchy

The Polynomial Hierarchy

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem BPP and PH

Polynomial Hierarchy Definition

•
$$\Delta_0 \mathbf{P} = \Sigma_0 \mathbf{P} = \Pi_0 \mathbf{P} = \mathbf{P}$$

•
$$\Delta_{i+1}\mathbf{P} = \mathbf{P}^{\Sigma_i\mathbf{P}}$$

•
$$\Sigma_{i+1} \mathbf{P} = \mathbf{N} \mathbf{P}^{\Sigma_i \mathbf{P}}$$

•
$$\Pi_{i+1}\mathbf{P} = co\mathbf{N}\mathbf{P}^{\Sigma_i\mathbf{F}}$$

٩

$$\mathsf{PH} \equiv \bigcup_{i \geqslant 0} \Sigma_i \mathsf{P}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Polynomial Hierarchy

The Polynomial Hierarchy

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem BPP and PH

Polynomial Hierarchy Definition

•
$$\Delta_0 \mathbf{P} = \Sigma_0 \mathbf{P} = \Pi_0 \mathbf{P} = \mathbf{P}$$

•
$$\Delta_{i+1}\mathbf{P} = \mathbf{P}^{\Sigma_i\mathbf{P}}$$

•
$$\Sigma_{i+1} \mathbf{P} = \mathbf{N} \mathbf{P}^{\Sigma_i \mathbf{P}}$$

•
$$\Pi_{i+1}\mathbf{P} = co\mathbf{N}\mathbf{P}^{\Sigma_i\mathbf{F}}$$

٩

$$\mathsf{PH} \equiv \bigcup_{i \geqslant 0} \Sigma_i \mathsf{P}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Polynomial Hierarchy

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem BPP and PH

Polynomial Hierarchy Definition

•
$$\Delta_0 \mathbf{P} = \Sigma_0 \mathbf{P} = \Pi_0 \mathbf{P} = \mathbf{P}$$

•
$$\Delta_{i+1}\mathbf{P} = \mathbf{P}^{\Sigma_i\mathbf{P}}$$

•
$$\Sigma_{i+1} \mathbf{P} = \mathbf{N} \mathbf{P}^{\Sigma_i \mathbf{P}}$$

•
$$\Pi_{i+1}\mathbf{P} = co\mathbf{N}\mathbf{P}^{\Sigma_i\mathbf{F}}$$

٩

$$\mathbf{P}\mathbf{H} \equiv \bigcup_{i \geqslant 0} \Sigma_i \mathbf{P}$$

•
$$\Sigma_0 \mathbf{P} = \mathbf{P}$$

• $\Delta_1 \mathbf{P} = \mathbf{P}$, $\Sigma_1 \mathbf{P} = \mathbf{NP}$, $\Pi_1 \mathbf{P} = co\mathbf{NP}$
• $\Delta_2 \mathbf{P} = \mathbf{P}^{\mathbf{NP}}$, $\Sigma_2 \mathbf{P} = \mathbf{NP}^{\mathbf{NP}}$, $\Pi_2 \mathbf{P} = co\mathbf{NP}^{\mathbf{NP}}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Theorem

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition **Basic Theorems** BPP and PH

Let *L* be a language , and $i \ge 1$. $L \in \Sigma_i \mathbf{P}$ iff there is a polynomially balanced relation *R* such that the language $\{x; y : (x, y) \in R\}$ is in $\prod_{i=1} \mathbf{P}$ and

$$L = \{x : \exists y, s.t. : (x, y) \in R\}$$

Proof (by Induction)

 $\{x; y: (x, y) \in R\} \in \mathbf{P}$, so $L = \{x | \exists y: (x, y) \in R\} \in \mathbf{NP}$

If $\exists R \in \prod_{i=1} \mathbf{P}$, we must show that $L \in \Sigma_i \mathbf{P} \Rightarrow \exists$ NTM with $\Sigma_{i=1} \mathbf{P}$ oracle: NTM(x) guesses a y and asks $\Sigma_{i=1} \mathbf{P}$ oracle whether $(x, y) \notin R$.

Proof

The Polynomial Hierarchy

A.Antonopoulo

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH • If $L \in \Sigma_i \mathbf{P}$, we must show the existence or R. $L \in \Sigma_i \mathbf{P} \Rightarrow \exists \text{ NTM } M^K$. $K \in \Sigma_{i-1} \mathbf{P}$. which decides L. $K \in \Sigma_{i-1} \mathbf{P} \Rightarrow \exists S \in \Pi_{i-2} \mathbf{P} : (z \in K \Leftrightarrow \exists w : (z, w) \in S)$ We must describe a relation R (we know: $x \in L \Leftrightarrow$ accepting comp of $M^{K}(x)$) Query Steps: "yes" $\rightarrow z_i$ has a certificate w_i st $(z_i, w_i) \in S$. So, $R(x) = "(x, y) \in R$ iff y records an accepting computation of $M^{?}$ on x , together with a certificate w_{i} for each yes query z_i in the computation." We must show $\{x; y : (x, y) \in R\} \in \prod_{i=1} \mathbf{P}$.

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Corollary

Let *L* be a language , and $i \ge 1$. $L \in \prod_i \mathbf{P}$ iff there is a polynomially balanced relation *R* such that the language $\{x; y : (x, y) \in R\}$ is in $\sum_{i=1} \mathbf{P}$ and

$$L = \{x : \forall y, |y| \le |x|^k, s.t. : (x, y) \in R\}$$

Corollary

Let *L* be a language , and $i \ge 1$. $L \in \Sigma_i \mathbf{P}$ iff there is a polynomially balanced, polynomially-time decicable (i + 1)-ary relation *R* such that:

$$L = \{x : \exists y_1 \forall y_2 \exists y_3 ... Qy_i, s.t. : (x, y_1, ..., y_i) \in R\}$$

where the i^{th} quantifier Q is \forall , if i is even, and \exists , if i is odd.

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Theorem

If for some
$$i \ge 1$$
, $\Sigma_i \mathbf{P} = \prod_i \mathbf{P}$, then for all $j > i$:

$$\Sigma_j \mathbf{P} = \Pi_j \mathbf{P} = \Delta_j \mathbf{P} = \Sigma_i \mathbf{P}$$

Or, the polynomial hierarchy *collapses* to the *i*th level.

Proof

It suffices to show that: $\Sigma_i \mathbf{P} = \prod_i \mathbf{P} \Rightarrow \Sigma_{i+1} \mathbf{P} = \Sigma_i \mathbf{P}$ Let $L \in \Sigma_{i+1} \mathbf{P} \Rightarrow \exists R \in \prod_i \mathbf{P}$: $L = \{x | \exists y : (x, y) \in R\}$ Since $\prod_i \mathbf{P} = \Sigma_i \mathbf{P} \Rightarrow R \in \Sigma_i \mathbf{P}$ $(x, y) \in R \Leftrightarrow \exists z : (x, y, z) \in S, S \in \prod_{i-1} \mathbf{P}$. Thus, $x \in L \Leftrightarrow \exists y; z : (x, y, z) \in S, S \in \prod_{i-1} \mathbf{P}$, which means $L \in \Sigma_i \mathbf{P}$.

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Corollary

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses to the first level.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Corollary

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses to the first level.

MINIMUM CIRCUIT Definition

Given a Boolean Circuit C, is it true that there is no circuit with fewer gates that computes the same Boolean function

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Corollary

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses to the first level.

MINIMUM CIRCUIT Definition

Given a Boolean Circuit C, is it true that there is no circuit with fewer gates that computes the same Boolean function

Corollary

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses to the first level.

MINIMUM CIRCUIT Definition

Given a Boolean Circuit C, is it true that there is no circuit with fewer gates that computes the same Boolean function

- MINIMUM CIRCUIT is in $\Pi_2 \mathbf{P}$, and not known to be in any class below that.
- It is open whether *MINIMUM CIRCUIT* is $\Pi_2 \mathbf{P}$ -complete.

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

QSAT_i Definition

Given expression ϕ , with Boolean variables partitioned into *i* sets X_i , is ϕ satisfied by the overall truth assignment of the expression:

 $\exists X_1 \forall X_2 \exists X_3 \dots Q X_i \phi$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

, where Q is \exists if *i* is *odd*, and \forall if *i* is even.

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

QSAT_i Definition

Given expression ϕ , with Boolean variables partitioned into *i* sets X_i , is ϕ satisfied by the overall truth assignment of the expression:

$$\exists X_1 \forall X_2 \exists X_3 \dots Q X_i \phi$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

, where Q is \exists if *i* is *odd*, and \forall if *i* is even.

Theorem

For all $i \geq 1$ *QSAT*_i is $\Sigma_i \mathbf{P}$ -complete.

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Theorem

If there is a **PH**-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof

Let *L* is **PH**-complete.

Since $L \in \mathbf{PH}$, $\exists i \geq 0 : L \in \Sigma_i \mathbf{P}$.

But any $L' \in \Sigma_{i+1}\mathbf{P}$ reduces to L. Since PH is closed under reductions, we imply that $L' \in \Sigma_i \mathbf{P}$, so $\Sigma_i \mathbf{P} = \Sigma_{i+1} \mathbf{P}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Theorem

If there is a **PH**-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof

Let *L* is **PH**-complete.

Since $L \in \mathbf{PH}$, $\exists i \geq 0 : L \in \Sigma_i \mathbf{P}$.

But any $L' \in \Sigma_{i+1}\mathbf{P}$ reduces to L. Since PH is closed under reductions, we imply that $L' \in \Sigma_i \mathbf{P}$, so $\Sigma_i \mathbf{P} = \Sigma_{i+1} \mathbf{P}$.

Theorem

$PH \subseteq PSPACE$

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Theorem

If there is a **PH**-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof

Let *L* is **PH**-complete.

Since $L \in \mathbf{PH}$, $\exists i \geq 0 : L \in \Sigma_i \mathbf{P}$.

But any $L' \in \Sigma_{i+1}\mathbf{P}$ reduces to L. Since PH is closed under reductions, we imply that $L' \in \Sigma_i \mathbf{P}$, so $\Sigma_i \mathbf{P} = \Sigma_{i+1} \mathbf{P}$.

Theorem

$PH \subseteq PSPACE$

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Theorem

If there is a **PH**-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof

Let *L* is **PH**-complete.

Since $L \in \mathbf{PH}$, $\exists i \geq 0 : L \in \Sigma_i \mathbf{P}$.

But any $L' \in \Sigma_{i+1}\mathbf{P}$ reduces to L. Since PH is closed under reductions, we imply that $L' \in \Sigma_i \mathbf{P}$, so $\Sigma_i \mathbf{P} = \Sigma_{i+1} \mathbf{P}$.

Theorem

$PH \subseteq PSPACE$

• **PH** $\stackrel{?}{=}$ **PSPACE** (Open). If it was, then **PH** has complete problems, so it collapses to some finite level.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BPP and PH

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Theorem

$\boldsymbol{\mathsf{BPP}}\subseteq \boldsymbol{\Sigma}_2\boldsymbol{\mathsf{P}}\cap \boldsymbol{\Pi}_2\boldsymbol{\mathsf{P}}$

Proof

Because coBPP = BPP, we prove only $BPP \subseteq \Sigma_2 P$. Let $L \in BPP$ (L is accepted by "clear majority"). For |x| = n, let $A(x) \subseteq \{0, 1\}^{p(n)}$ be the set of accepting computations.

We have:

•
$$x \in L \Rightarrow |A(x)| \ge 2^{p(n)} \left(1 - \frac{1}{2^n}\right)$$

• $x \notin L \Rightarrow |A(x)| \le 2^{p(n)} \left(\frac{1}{2^n}\right)$

Let U be the set of all bit strings of length p(n). For $a, b \in U$, let $a \oplus b$ be the XOR: $a \oplus b = c \Leftrightarrow c \oplus b = a$, so " $\oplus b$ " is 1-1.

BPP and PH

The Polynomial Hierarchy

A.Antonopoulo

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorems BPP and PH

Proof For $t \in U$, $A(x) \oplus t = \{a \oplus t : a \in A(x)\}$ (translation of A(x)by t). We imply that: $|A(x) \oplus t| = |A(x)|$ If $x \in L$, consider a random (drawing $p^2(n)$ bits) sequence of translations: $t_1, t_2, ..., t_{p(n)} \in U$. For $b \in U$, these translations cover b, if $b \in A(x) \oplus t_j$, $j \leq p(n)$. $b \in A(x) \oplus t_j \Leftrightarrow b \oplus t_j \in A(x) \Rightarrow \Pr[b \notin A(x) \oplus t_j] = \frac{1}{2^n}$ $\Pr[b \text{ is not covered by any } t_j] = 2^{-np(n)}$ $\Pr[\exists \text{ point that is not covered}] \leq 2^{-np(n)} |U| = 2^{-(n-1)p(n)}$

BPP and PH

The Polynomial Hierarchy

A.Antonopoulos

Outline

Optimization Problems Introduction The Class DP Oracle Classes

The Polynomial Hierarchy Definition Basic Theorem: BPP and PH

Proof

So, $T = (t_1, ..., t_{p(n)})$ has a positive probability that it covers all of U.

If $x \notin L, |A(x)|$ is exp small, and (for large *n*) there's not *T* that cover all *U*.

 $(x \in L) \Leftrightarrow (\exists T \text{ that cover all } U)$

So,

 $L = \{x | \exists (T \in \{0,1\}^{p^2(n)}) \forall (b \in U) \exists (j \leq p(n)) : b \oplus t_j \in A(x)\}$

which is precisely the form of languages in $\Sigma_2 \mathbf{P}$. The last existential quantifier $(\exists (j \leq p(n))...)$ affects only polynomially many possibilities, so it doesn't "count" (can by tested in polynomial time by trying all t_i 's).