The Polynomial Hierarchy

Introduction
The Class DP
Oracle Classes

A.Antonopoulos

18/1/2010

The
Polynomial
Hierarchy
A.Antonopoulo

Outline
Optimization
Problems
Introduction
The Class DP
Oracle Classes
The
Polynomial
Hierarchy
Definition
Basic Theorems BPP and PH
(1) Optimization Problems

- Introduction
- The Class DP
- Oracle Classes
(2) The Polynomial Hierarchy
- Definition
- Basic Theorems
- BPP and PH

Introduction

The
Polynomial Hierarchy
A.Antonopoulos

Outline
Optimization
Problems
Introduction
The Class DP
Oracle Classes
The
Polynomial
Hierarchy
Definition
Basic Theorems
BPP and PH

TSP Versions

- TSP (D)
(2) EXACT TSP
- TSP COST
- TSP
(1) $\leq_{P}(2) \leq_{P}(3) \leq_{P}(4)$

DP Class Definition

Definition

A language L is in the class DP if and only if there are two languages $L_{1} \in \mathbf{N P}$ and $L_{2} \in \operatorname{coNP}$ such that $L=L_{1} \cap L_{2}$.

- DP is not $\mathbf{N P} \cap$ coNP!
- Also, DP is a syntactic class, and so it has complete problems.

DP Class Definition

Definition

A language L is in the class DP if and only if there are two languages $L_{1} \in \mathbf{N P}$ and $L_{2} \in \operatorname{coNP}$ such that $L=L_{1} \cap L_{2}$.

- DP is not $\mathbf{N P} \cap$ coNP!
- Also, DP is a syntactic class, and so it has complete problems.

SAT-UNSAT Definition

Given two Boolean expressions ϕ, ϕ^{\prime}, both in 3CNF. Is it true that ϕ is satisfiable and ϕ^{\prime} is not?

Complete Problems for DP

Outline

Optimization
Problems
Introduction
The Class DP
Oracle Classes

Complete Problems for DP

The
Polynomial
Hierarchy
A.Antonopoulo

Outline
Optimization
Problems
Introduction
The Class DP
Oracle Classes
The
Polynomial
Hierarchy
Definition
Basic Theorems
BPP and PH

Theorem SAT-UNSAT is DP-complete.

Complete Problems for DP

Theorem

SAT-UNSAT is DP-complete.

Proof

- Firstly, we have to show it is in DP.

So, let:
$L_{1}=\left\{\left(\phi, \phi^{\prime}\right): \phi\right.$ is satisfiable $\}$.
$L_{2}=\left\{\left(\phi, \phi^{\prime}\right): \phi^{\prime}\right.$ is unsatisfiable $\}$.
It is easy to see, $L_{1} \in \mathbf{N P}$ and $L_{2} \in$ coNP, thus
$L \equiv L_{1} \cap L_{2} \in \mathbf{D P}$.

- For completeness, let $L \in \mathbf{D P}$. We have to show that $L \leq_{p} S A T-U N S A T . L \in \mathbf{D P} \Rightarrow L=L_{1} \cap L_{2}, L_{1} \in \mathbf{N P}$ and $L_{2} \in c o N P$.
SAT NP-complete $\Rightarrow \exists R_{1}: L_{1} \leq_{p} S A T$ and $R_{2}: \overline{L_{2}} \leq{ }_{p} S A T$. Hence, $L \leq{ }_{P} S A T-U N S A T$, by $R(x)=\left(R_{1}(x), R_{2}(x)\right)$

Complete Problems for DP

Theorem

EXACT TSP is DP-complete.

Proof

- EXACT TSP $\in \mathbf{D P}$, by $L_{1} \equiv T S P \in \mathbf{N P}$ and $L_{2} \equiv T S P$ COMPLEMENT \in coNP
- Completeness: we'll show that $S A T-U N S A T \leq{ }_{p} E X A C T$ TSP. $3 S A T \leq_{p} H P:\left(\phi, \phi^{\prime}\right) \rightarrow\left(G, G^{\prime}\right)$
Broken Hamilton Path (2 node-disjoint paths that cover all nodes)
Almost Satisfying Truth Assignement (satisfies all clauses except for one)

Complete Problems for DP

Proof

We define distances:
(1) If $(i, j) \in \mathrm{E}(\mathrm{G})$ or $\mathrm{E}\left(\mathrm{G}^{\prime}\right): d(i, j) \equiv 1$
(2) If $(i, j) \notin \mathrm{E}(\mathrm{G})$, but i and $\mathrm{j} \in \mathrm{V}(\mathrm{G}): d(i, j) \equiv 2$
(3) Otherwise: $d(i, j) \equiv 4$

Let n be the size of the graph.
(1) If ϕ and ϕ^{\prime} satisfiable, then optCost $=n$
(2) If ϕ and ϕ^{\prime} unsatisfiable, then optCost $=n+3$
(3) If ϕ satisfiable and ϕ^{\prime} not, then optCost $=n+2$
(9) If ϕ^{\prime} satisfiable and ϕ not, then optCost $=n+1$
"yes" instance of SAT-UNSAT \Leftrightarrow optCost $=n+2$
Let $B \equiv n+2$!

Other DP-complete problems

Also:

- CRITICAL SAT: Given a Boolean expression ϕ, is it true that it's unsatisfiable, but deleting any clause makes it satisfiable?
- CRITICAL HAMILTON PATH: Given a graph, is it true that it has no Hamilton path, but addition of any edge creates a Hamilton path?
- CRITICAL 3-COLORABILITY: Given a graph, is it true that it is not 3-colorable, but deletion of any node makes it 3-colorable?
are DP-complete!

The Classes $P^{N P}$ and $F P^{N P}$

Alternative DP Definition

DP is the class of languages that can be decided by an oracle machine which makes 2 queries to a SAT oracle, and accepts iff the 1st answer is yes, and the 2 nd is no.

- $\mathbf{P}^{S A T}$ is the class of languages decided in pol time with a SAT oracle.
- Polynomial number of queries
- Queries computed adaptively
- SAT NP-complete $\Rightarrow \mathbf{P}^{S A T}=\mathbf{P}^{\mathbf{N P}}$
- FP ${ }^{N P}$ is the class of functions that can be computed by a pol-time TM with a SAT oracle.
- Goal: MAX OUTPUT $\leq_{p} M A X-W E I G H T S A T \leq_{p} S A T$
$F P^{N P}$-complete Problems

MAX OUTPUT Definition

Given NTM N, with input 1^{n}, which halts after $\mathcal{O}(n)$, with output a string of length n. Which is the largest output,of any computation of N on 1^{n} ?
$F P^{N P}$-complete Problems

MAX OUTPUT Definition

Given NTM N, with input 1^{n}, which halts after $\mathcal{O}(n)$, with output a string of length n. Which is the largest output,of any computation of N on 1^{n} ?

$F P^{N P}$-complete Problems

MAX OUTPUT Definition

Given NTM N, with input 1^{n}, which halts after $\mathcal{O}(n)$, with output a string of length n. Which is the largest output,of any computation of N on 1^{n} ?

Theorem

MAX OUTPUT is $\mathbf{F P}^{N P}$-complete.

Proof

MAX OUTPUT $\in \mathbf{F P}^{N P}$.
Let $F: \Sigma^{*} \rightarrow \Sigma^{*} \in \mathbf{F P}^{N P} \Rightarrow \exists$ pol-time TM $M^{\text {? }}$, s.t.
$M^{S A T}(x)=F(x)$
We'll show: $F \leq$ MAX OUTPUT!
Reductions R and S (log space computable) s.t.:

- $\forall x, R(x)$ is a instance of MAX OUTPUT
- $S($ max output of $R(x)) \rightarrow F(x)$

$F P^{N P}$-complete Problems

Proof

NTM N:
Let $n=p^{2}(|x|), p(\cdot)$, is the pol bound of SAT.
$N\left(1^{n}\right)$ generates x on a string.
$M^{S A T}$ query state $\left(\phi_{1}\right)$:

- If $z_{1}=0$ (ϕ_{1} unsat), then continue from $q_{N O}$.
- If $z_{1}=1$ (ϕ_{1} sat), then guess assignment T_{1} :
- If test succeeds, continue from $q_{Y E S}$.
- If test fails, output $=0^{n}$ and halt. (Unsuccessful computation)
Continue to all guesses $\left(z_{i}\right)$, and halt, with output $=\underbrace{z_{1} z_{2} \ldots 00}_{n}$
(Successful computation)

$F P^{N P}$-complete Problems

Proof

We claim that the successful computation that outputs the largest integer, correspond to a correct simulation:
Let j the smallest integer,s.t.: $z_{j}=0$, while ϕ_{j} was satisfiable. Then, \exists another successful computation of N, s.t.: $z_{j}=1$. The computations agree to the first $j-1$ digits, \Rightarrow the $2^{\text {nd }}$ represents a larger number.
The S part: $F(x)$ can be read off the end of the largest output of N.
$F P^{N P}$-complete Problems

MAX-WEIGHT SAT Definition

Given a set of clauses, each with an integer weight, find the truth assignment that satisfies a set of clauses with the most total weight.

$F P^{N P}$-complete Problems

MAX-WEIGHT SAT Definition

Given a set of clauses, each with an integer weight, find the truth assignment that satisfies a set of clauses with the most total weight.

Theorem

MAX-WEIGHT SAT is $\mathbf{F P}^{N P}$-complete.

Proof

MAX-WEIGHT SAT is in FP $^{\text {NP }}$: By binary search, and a SAT oracle, we can find the largest possible total weight of satisfied clauses, and then, by setting the variables 1-1, the truth assignment that achieves it.
MAX OUTPUT $\leq M A X-W E I G H T ~ S A T: ~$

$F P^{N P}$-complete Problems

Proof

- $\operatorname{NTMN}\left(1^{n}\right) \rightarrow \phi(N, m):$

Any satisfying truth assignment of $\phi(N, m) \rightarrow$ legal comp. of $N\left(1^{n}\right)$

- Clauses are given a huge weight $\left(2^{n}\right)$, so that any t.a. that aspires to be optimum satisfy all clauses of $\phi(N, m)$.
- Add more clauses: $\left(y_{i}\right): i=1, . . n$ with weight 2^{n-i}.
- Now, optimum t.a. must not represent any legal computation, but this which produces the largest possible output value.
- S part: From optimum t.a. of the resulting expression (or the weight), we can recover the optimum output of $N\left(1^{n}\right)$.

$F P^{N P}$-complete Problems

The
Polynomial
Hierarchy
A.Antonopoulo

Outline
And the main result:
Optimization
Problems
Introduction
The Class DP
Oracle Classes
The
Polynomial
Hierarchy
Definition
Basic Theorems
BPP and PH

Theorem

$T S P$ is $\mathbf{F P}^{\mathbf{N P}}$-complete.

$F P^{N P}$-complete Problems

The
Polynomial
Hierarchy
A.Antonopoulo

Outline
And the main result:
Optimization
Problems
Introduction
The Class DP
Oracle Classes

Theorem

$T S P$ is $\mathbf{F P}^{N P}$-complete.

Corollary

TSP COST is $\mathbf{F P}^{\mathrm{NP}}$-complete.

FP ${ }^{N P}$-complete Problems

The
Polynomial
Hierarchy
A.Antonopoulo

Outline
Optimization
Problems
Introduction
The Class DP
Oracle Classes
The
Polynomial
Hierarchy
Definition
Basic Theorems BPP and PH

Figure: The overall construction (17-2)

The Class $P^{N P[\log n]}$

Definition

$\mathbf{P}^{N P[\operatorname{logn}]}$ is the class of all languages decided by a polynomial time oracle machine, which on input x asks a total of $\mathcal{O}(\log |x|) S A T$ queries.

- $\mathbf{F P}^{N P[\operatorname{logn}]}$ is the corresponding class of functions.

The Class $P^{N P[\log n]}$

Definition

$\mathbf{P}^{N P[\operatorname{logn}]}$ is the class of all languages decided by a polynomial time oracle machine, which on input x asks a total of $\mathcal{O}(\log |x|) S A T$ queries.

- $\mathbf{F P}^{\mathrm{NP}[\operatorname{logn}]}$ is the corresponding class of functions.

CLIQUE SIZE Definition

Given a graph, determine the size of his largest clique.

The Class $P^{N P[\log n]}$

The

Definition

$\mathbf{P}^{N P[\operatorname{logn}]}$ is the class of all languages decided by a polynomial time oracle machine, which on input x asks a total of $\mathcal{O}(\log |x|) S A T$ queries.

- FP ${ }^{N P[\operatorname{logn}]}$ is the corresponding class of functions.

CLIQUE SIZE Definition

Given a graph, determine the size of his largest clique.

Theorem

CLIQUE SIZE is $\mathbf{F P}^{\mathrm{NP}[\operatorname{logn}]}$-complete.

Conclusion

(1) TSP (D) is NP-complete.
(2) EXACT TSP is DP-complete.

- TSP COST is $\mathbf{F P}^{N \mathrm{P}}$-complete.
- $T S P$ is $\mathbf{F P}^{N P}$-complete.

And now,

- $\mathbf{P}^{\mathrm{NP}} \rightarrow \mathrm{NP}^{\mathrm{NP}}$?
- Oracles for $\mathbf{N P}^{\text {NP }}$?

Outline

The
Polynomial
Hierarchy
A.Antonopoulo

Outline
Optimization
Problems
Introduction
The Class DP
Oracle Classes
The
Polynomial
Hierarchy
Definition
Basic Theorems
BPP and PH
(1) Optimization Problems

- Introduction
- The Class DP
- Oracle Classes
(2) The Polynomial Hierarchy
- Definition
- Basic Theorems
- BPP and PH

The Polynomial Hierarchy

The
Polynomial
Hierarchy
A.Antonopoulo

Outline
Optimization
Problems
Introduction
The Class DP
Oracle Classes

The

Polynomial
Hierarchy
Definition
Basic Theorems BPP and PH

Polynomial Hierarchy Definition

- $\Delta_{0} \mathbf{P}=\Sigma_{0} \mathbf{P}=\Pi_{0} \mathbf{P}=\mathbf{P}$
- $\Delta_{i+1} \mathbf{P}=\mathbf{P}^{\Sigma_{i}} \mathbf{P}$
- $\Sigma_{i+1} \mathbf{P}=\mathbf{N} \mathbf{P}^{\Sigma_{i} \mathbf{P}}$
- $\Pi_{i+1} \mathbf{P}=\operatorname{coNP}{ }^{\Sigma_{i} \mathbf{P}}$
-

$$
\mathbf{P H} \equiv \bigcup_{i \geqslant 0} \Sigma_{i} \mathbf{P}
$$

The Polynomial Hierarchy

The
Polynomial
Hierarchy
A.Antonopoulo

Outline
Optimization
Problems
Introduction
The Class DP
Oracle Classes

The

Polynomial
Hierarchy
Definition
Basic Theorems BPP and PH

Polynomial Hierarchy Definition

- $\Delta_{0} \mathbf{P}=\Sigma_{0} \mathbf{P}=\Pi_{0} \mathbf{P}=\mathbf{P}$
- $\Delta_{i+1} \mathbf{P}=\mathbf{P}^{\Sigma_{i}} \mathbf{P}$
- $\Sigma_{i+1} \mathbf{P}=\mathbf{N} \mathbf{P}^{\Sigma_{i} \mathbf{P}}$
- $\Pi_{i+1} \mathbf{P}=\operatorname{coNP}{ }^{\Sigma_{i} \mathbf{P}}$
-

$$
\mathbf{P H} \equiv \bigcup_{i \geqslant 0} \Sigma_{i} \mathbf{P}
$$

The Polynomial Hierarchy

Polynomial Hierarchy Definition

- $\Delta_{0} \mathbf{P}=\Sigma_{0} \mathbf{P}=\Pi_{0} \mathbf{P}=\mathbf{P}$
- $\Delta_{i+1} \mathbf{P}=\mathbf{P}^{\Sigma_{i}} \mathbf{P}$
- $\Sigma_{i+1} \mathbf{P}=\mathbf{N P}^{\Sigma_{i} \mathbf{P}}$
- $\Pi_{i+1} \mathbf{P}=\operatorname{coNP}{ }^{\Sigma_{i} \mathbf{P}}$
-

$$
\mathbf{P H} \equiv \bigcup_{i \geqslant 0} \Sigma_{i} \mathbf{P}
$$

- $\Sigma_{0} \mathbf{P}=\mathbf{P}$
- $\Delta_{1} \mathbf{P}=\mathbf{P}, \Sigma_{1} \mathbf{P}=\mathbf{N P}, \Pi_{1} \mathbf{P}=\operatorname{coNP}$
- $\Delta_{2} \mathbf{P}=\mathbf{P}^{\mathrm{NP}}, \Sigma_{2} \mathbf{P}=\mathbf{N} \mathbf{P}^{\mathrm{NP}}, \Pi_{2} \mathbf{P}=c o N \mathbf{P}^{\mathrm{NP}}$

Basic Theorems

Theorem

Let L be a language, and $i \geq 1 . L \in \sum_{i} \mathbf{P}$ iff there is a polynomially balanced relation R such that the language $\{x ; y:(x, y) \in R\}$ is in $\Pi_{i-1} \mathbf{P}$ and

$$
L=\{x: \exists y, \text { s.t. }:(x, y) \in R\}
$$

Proof (by Induction)

- For $i=1$

$$
\{x ; y:(x, y) \in R\} \in \mathbf{P}, \text { so } L=\{x \mid \exists y:(x, y) \in R\} \in \mathbf{N} \mathbf{P}
$$

- For $i>1$

If $\exists R \in \Pi_{i-1} \mathbf{P}$, we must show that $L \in \Sigma_{i} \mathbf{P} \Rightarrow$
\exists NTM with $\Sigma_{i-1} \mathbf{P}$ oracle: NTM (x) guesses a y and asks $\Sigma_{i-1} \mathbf{P}$ oracle whether $(x, y) \notin R$.

Basic Theorems

Proof

- If $L \in \Sigma_{i} \mathbf{P}$, we must show the existence or R. $L \in \Sigma_{i} \mathbf{P} \Rightarrow \exists$ NTM $M^{K}, K \in \Sigma_{i-1} \mathbf{P}$, which decides L. $K \in \Sigma_{i-1} \mathbf{P} \Rightarrow \exists S \in \Pi_{i-2} \mathbf{P}:(z \in K \Leftrightarrow \exists w:(z, w) \in S)$ We must describe a relation R (we know: $x \in L \Leftrightarrow$ accepting comp of $\left.M^{K}(x)\right)$
Query Steps: "yes" $\rightarrow z_{i}$ has a cerfificate w_{i} st $\left(z_{i}, w_{i}\right) \in S$. So, $R(x)=$ " $(x, y) \in R$ iff y records an accepting computation of $M^{\text {? }}$ on x, together with a certificate w_{i} for each yes query z_{i} in the computation." We must show $\{x ; y:(x, y) \in R\} \in \Pi_{i-1} \mathbf{P}$.

Basic Theorems

The

Corollary

Let L be a language, and $i \geq 1 . L \in \Pi_{i} \mathbf{P}$ iff there is a polynomially balanced relation R such that the language $\{x ; y:(x, y) \in R\}$ is in $\Sigma_{i-1} \mathbf{P}$ and

$$
L=\left\{x: \forall y,|y| \leq|x|^{k} \text {, s.t. }:(x, y) \in R\right\}
$$

Corollary

Let L be a language, and $i \geq 1 . L \in \Sigma_{i} \mathbf{P}$ iff there is a polynomially balanced, polynomially-time decicable ($i+1$)-ary relation R such that:

$$
L=\left\{x: \exists y_{1} \forall y_{2} \exists y_{3} \ldots Q y_{i}, \text { s.t. }:\left(x, y_{1}, \ldots, y_{i}\right) \in R\right\}
$$

where the $i^{\text {th }}$ quantifier Q is \forall, if i is even, and \exists, if i is odd.

Basic Theorems

Theorem

If for some $i \geq 1, \Sigma_{i} \mathbf{P}=\Pi_{i} \mathbf{P}$, then for all $j>i$:

$$
\Sigma_{j} \mathbf{P}=\Pi_{j} \mathbf{P}=\Delta_{j} \mathbf{P}=\Sigma_{i} \mathbf{P}
$$

Or, the polynomial hierarchy collapses to the $i^{\text {th }}$ level.

Proof

It suffices to show that: $\Sigma_{i} \mathbf{P}=\Pi_{i} \mathbf{P} \Rightarrow \Sigma_{i+1} \mathbf{P}=\Sigma_{i} \mathbf{P}$
Let $L \in \Sigma_{i+1} \mathbf{P} \Rightarrow \exists R \in \Pi_{i} \mathbf{P}: L=\{x \mid \exists y:(x, y) \in R\}$
Since $\Pi_{i} \mathbf{P}=\Sigma_{i} \mathbf{P} \Rightarrow R \in \Sigma_{i} \mathbf{P}$
$(x, y) \in R \Leftrightarrow \exists z:(x, y, z) \in S, S \in \Pi_{i-1} \mathbf{P}$.
Thus, $x \in L \Leftrightarrow \exists y ; z:(x, y, z) \in S, S \in \Pi_{i-1} \mathbf{P}$, which means $L \in \Sigma_{i} \mathbf{P}$.

Basic Theorems

The
Polynomial
Hierarchy
A.Antonopoulo

Outline
Optimization
Problems
Introduction
The Class DP
Oracle Classes
The
Polynomial
Hierarchy
Definition
Basic Theorems
BPP and PH

> Corollary
> If $\mathbf{P}=\mathbf{N P}$, or even $\mathbf{N P}=$ coNP, the Polynomial Hierarchy collapses to the first level.

Basic Theorems

Corollary

If $\mathbf{P}=\mathbf{N P}$, or even NP=coNP, the Polynomial Hierarchy collapses to the first level.

MINIMUM CIRCUIT Definition
Given a Boolean Circuit C, is it true that there is no circuit with fewer gates that computes the same Boolean function

Basic Theorems

Corollary

If $\mathbf{P}=\mathbf{N P}$, or even NP=coNP, the Polynomial Hierarchy collapses to the first level.

MINIMUM CIRCUIT Definition
Given a Boolean Circuit C, is it true that there is no circuit with fewer gates that computes the same Boolean function

Basic Theorems

Corollary

If $\mathbf{P}=\mathbf{N P}$, or even $\mathbf{N P}=$ coNP, the Polynomial Hierarchy collapses to the first level.

MINIMUM CIRCUIT Definition

Given a Boolean Circuit C, is it true that there is no circuit with fewer gates that computes the same Boolean function

- MINIMUM CIRCUIT is in $\Pi_{2} \mathbf{P}$, and not known to be in any class below that.
- It is open whether MINIMUM CIRCUIT is $\Pi_{2} \mathbf{P}$-complete.

Basic Theorems

The
Polynomial
Hierarchy
A.Antonopoulo

Outline
Optimization
Problems
Introduction
The Class DP
Oracle Classes
The
Polynomial
Hierarchy
QSAT ${ }_{i}$ Definition
Given expression ϕ, with Boolean variables partitioned into i sets X_{i}, is ϕ satisfied by the overall truth assignment of the expression:

$$
\exists X_{1} \forall X_{2} \exists X_{3} \ldots . . Q X_{i} \phi
$$

, where Q is \exists if i is odd, and \forall if i is even.

Basic Theorems

QSAT $_{i}$ Definition

Given expression ϕ, with Boolean variables partitioned into i sets X_{i}, is ϕ satisfied by the overall truth assignment of the expression:

$$
\exists X_{1} \forall X_{2} \exists X_{3} \ldots . . Q X_{i} \phi
$$

, where Q is \exists if i is odd, and \forall if i is even.

Theorem

For all $i \geq 1 Q S A T_{i}$ is $\Sigma_{i} \mathbf{P}$-complete.

Basic Theorems

Theorem

If there is a PH-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof

Let L is $\mathbf{P H}$-complete. Since $L \in \mathbf{P H}, \exists i \geq 0: L \in \Sigma_{i} \mathbf{P}$.
But any $L^{\prime} \in \Sigma_{i+1} \mathbf{P}$ reduces to L. Since $P H$ is closed under reductions, we imply that $L^{\prime} \in \Sigma_{i} \mathbf{P}$, so $\sum_{i} \mathbf{P}=\Sigma_{i+1} \mathbf{P}$.

Basic Theorems

The

Theorem

If there is a PH-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof

Let L is $\mathbf{P H}$-complete. Since $L \in \mathbf{P H}, \exists i \geq 0: L \in \Sigma_{i} \mathbf{P}$.
But any $L^{\prime} \in \Sigma_{i+1} \mathbf{P}$ reduces to L. Since $P H$ is closed under reductions, we imply that $L^{\prime} \in \Sigma_{i} \mathbf{P}$, so $\sum_{i} \mathbf{P}=\Sigma_{i+1} \mathbf{P}$.

Theorem

PH \subseteq PSPACE

Basic Theorems

The

Theorem

If there is a PH-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof

Let L is $\mathbf{P H}$-complete. Since $L \in \mathbf{P H}, \exists i \geq 0: L \in \Sigma_{i} \mathbf{P}$.
But any $L^{\prime} \in \Sigma_{i+1} \mathbf{P}$ reduces to L. Since $P H$ is closed under reductions, we imply that $L^{\prime} \in \Sigma_{i} \mathbf{P}$, so $\sum_{i} \mathbf{P}=\Sigma_{i+1} \mathbf{P}$.

Theorem

PH \subseteq PSPACE

Basic Theorems

If there is a $\mathbf{P H}$-complete problem, then the polynomial hierarchy collapses to some finite level.

Proof

Let L is $\mathbf{P H}$-complete.
Since $L \in \mathbf{P H}, \exists i \geq 0: L \in \Sigma_{i} \mathbf{P}$.
But any $L^{\prime} \in \Sigma_{i+1} \mathbf{P}$ reduces to L. Since $P H$ is closed under reductions, we imply that $L^{\prime} \in \Sigma_{i} \mathbf{P}$, so $\sum_{i} \mathbf{P}=\sum_{i+1} \mathbf{P}$.

Theorem

PH \subseteq PSPACE

- PH $\stackrel{?}{=}$ PSPACE (Open). If it was, then PH has complete problems, so it collapses to some finite level.

BPP and PH

Theorem

$\mathbf{B P P} \subseteq \Sigma_{2} \mathbf{P} \cap \Pi_{2} \mathbf{P}$

Proof

Because co $\mathbf{B P P}=\mathbf{B P P}$, we prove only $\mathbf{B P P} \subseteq \Sigma_{2} \mathbf{P}$.
Let $L \in \mathbf{B P P}$ (L is accepted by "clear majority"). For $|x|=n$, let $A(x) \subseteq\{0,1\}^{p(n)}$ be the set of accepting computations.
We have:

- $x \in L \Rightarrow|A(x)| \geq 2^{p(n)}\left(1-\frac{1}{2^{n}}\right)$
- $x \notin L \Rightarrow|A(x)| \leq 2^{p(n)}\left(\frac{1}{2^{n}}\right)$

Let U be the set of all bit strings of length $p(n)$.
For $a, b \in U$, let $a \oplus b$ be the XOR:
$a \oplus b=c \Leftrightarrow c \oplus b=a$, so " $\oplus b$ " is 1-1.

BPP and PH

Proof

For $t \in U, A(x) \oplus t=\{a \oplus t: a \in A(x)\}$ (translation of $A(x)$ by t). We imply that: $|A(x) \oplus t|=|A(x)|$
If $x \in L$, consider a random (drawing $p^{2}(n)$ bits) sequence of translations: $t_{1}, t_{2}, . ., t_{p(n)} \in U$.
For $b \in U$, these translations cover b, if $b \in A(x) \oplus t_{j}$, $j \leq p(n)$.
$b \in A(x) \oplus t_{j} \Leftrightarrow b \oplus t_{j} \in A(x) \Rightarrow \operatorname{Pr}\left[b \notin A(x) \oplus t_{j}\right]=\frac{1}{2^{n}}$
$\operatorname{Pr}\left[\mathrm{b}\right.$ is not covered by any $\left.t_{j}\right]=2^{-n p(n)}$
$\operatorname{Pr}[\exists$ point that is not covered $] \leq 2^{-n p(n)}|U|=2^{-(n-1) p(n)}$

BPP and PH

Proof

So, $T=\left(t_{1}, . ., t_{p(n)}\right)$ has a positive probability that it covers all of U.
If $x \notin L,|A(x)|$ is \exp small, and (for large n) there's not T that cover all U.
$(x \in L) \Leftrightarrow(\exists T$ that cover all $U)$
So,
$L=\left\{x \mid \exists\left(T \in\{0,1\}^{p^{2}(n)}\right) \forall(b \in U) \exists(j \leq p(n)): b \oplus t_{j} \in A(x)\right\}$
which is precisely the form of languages in $\Sigma_{2} \mathbf{P}$.
The last existential quantifier $(\exists(j \leq p(n)) \ldots)$ affects only polynomially many possibilities,so it doesn't "count" (can by tested in polynomial time by trying all t_{j} 's).

