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Outline

• Universal Turing Machine (UMT)

• Recursive(R) and Recursively Enumerable(RE)

• Undecidability
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• Undecidability

• The Halting Problem

• R and RE Theorems

• Rice Theorem
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Why a Universal Turing Machine

• Proving Undecidability Theorems has at its 
essence the action of giving a Turing Machine as 
input to another

4

input to another

• The above needs a formal method for encoding a 
Turing Machine as an input 

• And making another  TM (the Universal) 
simulate the first



Turing Machines (TM) Notation

• Given a TM, M=(Κ, Σ, δ, s)
▫ K = Set of States
▫ Σ = Set of Symbols
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▫ Σ = Set of Symbols
▫ δ = Transition Function, 
▫ s = Initial State

• If a TM halts on input x, we define the output of M 
on x as M(x)
▫ If M accepts or rejects x, then M(x)=“yes” or “no”
▫ If h state was reached then M(x) is the string of M at 

the time of halting
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TM Binary Encoding(1)

• Σ = {1, 2, ... , |Σ|}

• Κ = {|Σ|+1, |Σ|+2, ... , |Σ|+|Κ|}

• s = |Σ|+1
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• s = |Σ|+1

• |Κ|+|Σ|+1, ... , |Κ|+|Σ|+6 = ←, →, –, h, “yes”, 

“no”

• bits to encode each of the above 

entities

( ) 6log +Σ+K



TM Binary Encoding(2)

• Encode the transition function as ((q,σ),(p,ρ,D))
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A Simple Example(1)

• Suppose the following TM
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A Simple Example(2)

• |K|=1

• |Σ|=4

• 4 bits for each entity
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• 4 bits for each entity

• Construct encoding according 
to previous formal description
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A Simple Example(2)

• The binary encoding of the TM 
is:
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Universal TM (UTM)

• A TM U that interprets each input as a 
concatenation of a description of another TM 
and a description of an input for that TM 
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and a description of an input for that TM 
▫ The binary description of x is the binary description of each symbol of x 

separated by “,”

• Introduced by Turing

• Resembles the von Neumann architecture

U(M; x)=M(x)



An Implementation

• 2-string TM
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• 1st string contains the binary description M 

• 2nd string contains the binary description of 

current configuration of simulation (w,q,u)



UTM Description(1)

• Initially the 2 strings have the following content:
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,
Initial State (s) binary 
description

,
Input (x) binary 
description>

Binary Description of M



UTM Description(2)
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Search 1st string to find an integer corresponding to State 
(between |Σ|+1 and |Σ|+|K|)

Search 2nd string to find the same integer in the place of q Search 2 string to find the same integer in the place of q 
of some rule ((q,σ),(p,ρ,D))

Move to the next log(|Σ|+|Κ|+6) bit word of the 1st string 

Yes

No

Does that word match that of the symbol that triggers the rule

Activate Rule:Activate Rule:
1. Change the current state in the 2nd string
2. If Next State is |K|+|Σ|+4 = h then halt
3. Change the current symbol in 2nd string
4. Move the binary description of the state on word left or right or 
not according to D symbol of rule  



Simple Example Simulation
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Basic Definitions
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Basic Definitions



Recursive (R) Language

• L is a recursive language if there exist a TM M 
that decides L. 

• That is: for any string x:
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• That is: for any string x:

▫ If x is in L then M(x)=“yes” (TM halts at the “yes” 
state)

▫ If x is not in L then M(x)=“no” (TM halts at the 
“no” state)

• Hence, Not Recursive means Undecidable



Recursively Enumerable (RE) Language

• L is a recursive language if there exist a TM M 
that accepts L. 

• That is: for any string x:
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• That is: for any string x:

▫ If x is in L then M(x)=“yes” (TM halts at the “yes” 
state)

▫ If x is not in L then M(x) doesn’t halt

• Only useful for categorizing problems, not an 
algorithmic concept



RE Language(2)

• If L is in RE then there is TM that enumerates all 

its elements without repeating any of them
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its elements without repeating any of them

• Let ML the TM that accepts L 

• Run M for all possible strings of the symbols of L 

(e.g. in lexicographic order)

• When a string is accepted output it



RE Language(3)

• Do it the following way:
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…

s1 s2 s3 s4 s5 …

• Eventually all si in L would be enumerated

…

…

…

…

…

… Dovetailing



Language Classes
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RE

R

Context-free

Regular
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Undecidability(1)

• Undecidable problem  

▫ A problem with no algorithm

• Undecidable language
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• Undecidable language

▫ A language that is not recursive

• Universal TM immediately led to prove that 
some problems are undecidable



Undecidability(2)

• It is an immediate consequence of the following 
two facts

▫ Languages are not enumerable (using diagonalization)
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▫ Languages are not enumerable (using diagonalization)

▫ Turing machines are enumerable (binary encoding described 

in first part is a valid encoding from TMs to natural numbers)

• Hence, there must be languages that cannot be 
decided by a TM



Undecidability(3)

• First undecidable problems/languages introduced in 
1936
▫ April: Church introduced an undecidable problem in 
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▫ April: Church introduced an undecidable problem in 
lambda calculus

▫ May: Turing introduced the halting problem

• Strong connection with Godel’s incompleteness 
theorems (1931)
▫ Similar proofs used in both theories
▫ A weaker form of First Incompleteness Theorem is an 

immediate consequence of the Halting Problem



Not just any recursively enumerable language
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Not just any recursively enumerable language



HALTING (H)

• Given the description of a TM M and its input x

Will M halt on x ?
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• H is a language on the alphabet of UTM

• H is Recursively Enumerable

▫ Proof #1 Outline: The UMT accepts H with 
a slight modification

( ){ }≠↑xMxM :;



Recursively Enumerable Complete

• Suppose a TM MH could decide HALTING

• Then deciding any recursively enumerable language 
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• Then deciding any recursively enumerable language 
L accepted by a TM M could be reduced to MH 

• Just check if M;x is accepted by MH

• Similar concept to NP-Completeness though here we 
have a proof that H is not in R so we know that 
R≠RE



H is Not Recursive (Undecidable)

• H is not recursive

• Proof Outline: Diagonalization
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• Proof Outline: Diagonalization

• Use the program 

▫ D(M): ifMH(M;M)=“yes” then else “yes“

• And produce a contradiction

• Hence there is no MH that decides H

↑



Diagonalization

<M1> <M2> <M3> <M4> … <D> …

M1 accepts rejects accepts accepts accepts

M rejects accepts rejects rejects accepts
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M2 rejects accepts rejects rejects accepts

M3 accepts rejects rejects accepts

M4 accepts rejects accepts accepts accepts

…

D accepts rejects accepts accepts

…

?

D(M): ifMH(M;M)=“yes” then else “yes“↑



Other Non Recursive Languages

• L1 = {M: M halts on all inputs}

• L2 = {M;x : there is a y such that M(x)=y}
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• L2 = {M;x : there is a y such that M(x)=y}

• L3 = {M;x : the computation M on input x uses 

all states of M}

• L4 = {M;x;y: M(x)=y}
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R and RE Theorems(1)

• If L is in R, then so is ¬L

• L is in R if and only if both L and ¬L are in RE
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• L is in R if and only if both L and ¬L are in RE

▫ Corollary: ¬H is not even in RE

• L is in RE iff there is a TM M such that L = E(M) 

▫ L is enumerated by M (dovetailing)



Revision of Language Classes
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REcoRE

R

Context-free

Regular
? : We’ll see in 
logic chapters



It isn’t just HALTING the problem
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It isn’t just HALTING the problem



Rice Theorem

• Suppose C is a proper, non-empty subset of the 
set of all RE languages. 

• Then the following problem is undecidable:
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• Then the following problem is undecidable:

▫ Given a TM M, is L(M) in C

• In other words:

▫ Any non-trivial property of TMs represents an 
undecidable problem

Proof 



Fix Point in C

• main(){char q=34, n=10,*a="main() 
{char q=34,n=10,*a=%c%s%c; 
printf(a,q,a,q,n);}%c";printf(a,q,a,q,n);}
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printf(a,q,a,q,n);}%c";printf(a,q,a,q,n);}


