
UNDECIDABILITY

1

UNDECIDABILITY
Syrgkanis Vasileios

Outline

• Universal Turing Machine (UMT)

• Recursive(R) and Recursively Enumerable(RE)

• Undecidability

2

• Undecidability

• The Halting Problem

• R and RE Theorems

• Rice Theorem

3

Why a Universal Turing Machine

• Proving Undecidability Theorems has at its
essence the action of giving a Turing Machine as
input to another

4

input to another

• The above needs a formal method for encoding a
Turing Machine as an input

• And making another TM (the Universal)
simulate the first

Turing Machines (TM) Notation

• Given a TM, M=(Κ, Σ, δ, s)
▫ K = Set of States
▫ Σ = Set of Symbols

5

▫ Σ = Set of Symbols
▫ δ = Transition Function,
▫ s = Initial State

• If a TM halts on input x, we define the output of M
on x as M(x)
▫ If M accepts or rejects x, then M(x)=“yes” or “no”
▫ If h state was reached then M(x) is the string of M at

the time of halting

{ }() { }−→←×Σ×∪→Σ∪ ,,"","", noyeshKK

TM Binary Encoding(1)

• Σ = {1, 2, ... , |Σ|}

• Κ = {|Σ|+1, |Σ|+2, ... , |Σ|+|Κ|}

• s = |Σ|+1

6

• s = |Σ|+1

• |Κ|+|Σ|+1, ... , |Κ|+|Σ|+6 = ←, →, –, h, “yes”,

“no”

• bits to encode each of the above

entities

() 6log +Σ+K

TM Binary Encoding(2)

• Encode the transition function as ((q,σ),(p,ρ,D))

7

{ }
Σ∈

∪∈

,

"","",, noyeshKpq

ρσ
{ }−→←∈

Σ∈

,,

,

D

ρσ

A Simple Example(1)

• Suppose the following TM

8

{ } { }_,, ∪=Σ ba >{ } { }
{ }

)_,,(_),(

),,(),(

),,(),(

_,,

−=

→=

→=

=

∪=Σ

hs

asbs

bsas

sK

ba

δ
δ
δ

>

A Simple Example(2)

• |K|=1

• |Σ|=4

• 4 bits for each entity

9

0011

0010

0001

→

→

→

b

a

>

• 4 bits for each entity

• Construct encoding according
to previous formal description

1011""

1010""

1001

1000

0111

0110

0101

0100_

→

→

→

→−

←→

→→

→

→

no

yes

h

s

A Simple Example(2)

• The binary encoding of the TM
is:

10

0011

0010

0001

→

→

→

b

a

>

1011""

1010""

1001

1000

0111

0110

0101

0100_

→

→

→

→−

←→

→→

→

→

no

yes

h

s

() ()()
() ()()
() ()()1000,0000,1001,0100,0101

0110,0001,0101,0010,0101

0110,0010,0101,0001,0101

,0010,0001

Universal TM (UTM)

• A TM U that interprets each input as a
concatenation of a description of another TM
and a description of an input for that TM

11

and a description of an input for that TM
▫ The binary description of x is the binary description of each symbol of x

separated by “,”

• Introduced by Turing

• Resembles the von Neumann architecture

U(M; x)=M(x)

An Implementation

• 2-string TM

12

• 1st string contains the binary description M

• 2nd string contains the binary description of

current configuration of simulation (w,q,u)

UTM Description(1)

• Initially the 2 strings have the following content:

13

,
Initial State (s) binary
description

,
Input (x) binary
description>

Binary Description of M

UTM Description(2)

14

Search 1st string to find an integer corresponding to State
(between |Σ|+1 and |Σ|+|K|)

Search 2nd string to find the same integer in the place of q Search 2 string to find the same integer in the place of q
of some rule ((q,σ),(p,ρ,D))

Move to the next log(|Σ|+|Κ|+6) bit word of the 1st string

Yes

No

Does that word match that of the symbol that triggers the rule

Activate Rule:Activate Rule:
1. Change the current state in the 2nd string
2. If Next State is |K|+|Σ|+4 = h then halt
3. Change the current symbol in 2nd string
4. Move the binary description of the state on word left or right or
not according to D symbol of rule

Simple Example Simulation

15

0 0 0 1 , 0 0 1 0 ,

0011

0010

0001

→

→

→

b

a

>
((0 1 0 1 , 0 0 0 1) , (0 1 0 1 , 0 0 1 0 , 0 1 1 0))

, 0 1 0 1 , 0 0 0 1 , 0 0 1 0 , 0 0 0 1 , 1 0 0 0>
1011""

1010""

1001

1000

0111

0110

0101

0100_

0011

→

→

→

→−

←→

→→

→

→

→

no

yes

h

s

>

TM encoding

s a b a _

((0 1 0 1 , 0 0 1 0) , (0 1 0 1 , 0 0 0 1 , 0 1 1 0))

((0 1 0 1 , 0 1 0 0) , (1 0 0 1 , 0 0 0 0 , 1 0 0 0))

1 00 0 1 0 0 1 0 1

b bs

Basic Definitions

16

Basic Definitions

Recursive (R) Language

• L is a recursive language if there exist a TM M
that decides L.

• That is: for any string x:

17

• That is: for any string x:

▫ If x is in L then M(x)=“yes” (TM halts at the “yes”
state)

▫ If x is not in L then M(x)=“no” (TM halts at the
“no” state)

• Hence, Not Recursive means Undecidable

Recursively Enumerable (RE) Language

• L is a recursive language if there exist a TM M
that accepts L.

• That is: for any string x:

18

• That is: for any string x:

▫ If x is in L then M(x)=“yes” (TM halts at the “yes”
state)

▫ If x is not in L then M(x) doesn’t halt

• Only useful for categorizing problems, not an
algorithmic concept

RE Language(2)

• If L is in RE then there is TM that enumerates all

its elements without repeating any of them

19

its elements without repeating any of them

• Let ML the TM that accepts L

• Run M for all possible strings of the symbols of L

(e.g. in lexicographic order)

• When a string is accepted output it

RE Language(3)

• Do it the following way:

20

…

s1 s2 s3 s4 s5 …

• Eventually all si in L would be enumerated

…

…

…

…

…

… Dovetailing

Language Classes

21

RE

R

Context-free

Regular

22

Undecidability(1)

• Undecidable problem

▫ A problem with no algorithm

• Undecidable language

23

• Undecidable language

▫ A language that is not recursive

• Universal TM immediately led to prove that
some problems are undecidable

Undecidability(2)

• It is an immediate consequence of the following
two facts

▫ Languages are not enumerable (using diagonalization)

24

▫ Languages are not enumerable (using diagonalization)

▫ Turing machines are enumerable (binary encoding described

in first part is a valid encoding from TMs to natural numbers)

• Hence, there must be languages that cannot be
decided by a TM

Undecidability(3)

• First undecidable problems/languages introduced in
1936
▫ April: Church introduced an undecidable problem in

25

▫ April: Church introduced an undecidable problem in
lambda calculus

▫ May: Turing introduced the halting problem

• Strong connection with Godel’s incompleteness
theorems (1931)
▫ Similar proofs used in both theories
▫ A weaker form of First Incompleteness Theorem is an

immediate consequence of the Halting Problem

Not just any recursively enumerable language

26

Not just any recursively enumerable language

HALTING (H)

• Given the description of a TM M and its input x

Will M halt on x ?

27

• H is a language on the alphabet of UTM

• H is Recursively Enumerable

▫ Proof #1 Outline: The UMT accepts H with
a slight modification

(){ }≠↑xMxM :;

Recursively Enumerable Complete

• Suppose a TM MH could decide HALTING

• Then deciding any recursively enumerable language

28

• Then deciding any recursively enumerable language
L accepted by a TM M could be reduced to MH

• Just check if M;x is accepted by MH

• Similar concept to NP-Completeness though here we
have a proof that H is not in R so we know that
R≠RE

H is Not Recursive (Undecidable)

• H is not recursive

• Proof Outline: Diagonalization

29

• Proof Outline: Diagonalization

• Use the program

▫ D(M): ifMH(M;M)=“yes” then else “yes“

• And produce a contradiction

• Hence there is no MH that decides H

↑

Diagonalization

<M1> <M2> <M3> <M4> … <D> …

M1 accepts rejects accepts accepts accepts

M rejects accepts rejects rejects accepts

30

M2 rejects accepts rejects rejects accepts

M3 accepts rejects rejects accepts

M4 accepts rejects accepts accepts accepts

…

D accepts rejects accepts accepts

…

?

D(M): ifMH(M;M)=“yes” then else “yes“↑

Other Non Recursive Languages

• L1 = {M: M halts on all inputs}

• L2 = {M;x : there is a y such that M(x)=y}

31

• L2 = {M;x : there is a y such that M(x)=y}

• L3 = {M;x : the computation M on input x uses

all states of M}

• L4 = {M;x;y: M(x)=y}

32

R and RE Theorems(1)

• If L is in R, then so is ¬L

• L is in R if and only if both L and ¬L are in RE

33

• L is in R if and only if both L and ¬L are in RE

▫ Corollary: ¬H is not even in RE

• L is in RE iff there is a TM M such that L = E(M)

▫ L is enumerated by M (dovetailing)

Revision of Language Classes

34

REcoRE

R

Context-free

Regular
? : We’ll see in
logic chapters

It isn’t just HALTING the problem

35

It isn’t just HALTING the problem

Rice Theorem

• Suppose C is a proper, non-empty subset of the
set of all RE languages.

• Then the following problem is undecidable:

36

• Then the following problem is undecidable:

▫ Given a TM M, is L(M) in C

• In other words:

▫ Any non-trivial property of TMs represents an
undecidable problem

Proof

Fix Point in C

• main(){char q=34, n=10,*a="main()
{char q=34,n=10,*a=%c%s%c;
printf(a,q,a,q,n);}%c";printf(a,q,a,q,n);}

37

printf(a,q,a,q,n);}%c";printf(a,q,a,q,n);}

