UNDECIDABILITY

Syrgkanis Vasileios \square

Outline

- Universal Turing Machine (UMT)
- Recursive(R) and Recursively Enumerable(RE)
- Undecidability
- The Halting Problem
- R and RE Theorems
- Rice Theorem

Universal

Why a Universal Turing Machine

- Proving Undecidability Theorems has at its essence the action of giving a Turing Machine as input to another
- The above needs a formal method for encoding a Turing Machine as an input
- And making another TM (the Universal) simulate the first

Turing Machines (TM) Notation

- Given a TM, $\mathrm{M}=(\mathrm{K}, \Sigma, \delta, \mathrm{s})$
\therefore K = Set of States
- $\Sigma=$ Set of Symbols
- $\delta=$ Transition Function, $K \cup \Sigma \rightarrow\left(K \cup\left\{h, " y e s ", " n d^{\prime \prime}\right\}\right) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$
- $\mathrm{S}=$ Initial State
- If a TM halts on input x, we define the output of M on x as $M(x)$
- If M accepts or rejects x , then $\mathrm{M}(\mathrm{x})=$ "yes" or "no"
- If h state was reached then $\mathrm{M}(\mathrm{x})$ is the string of M at the time of halting

TM Binary Encoding(1)

- $\Sigma=\{1,2, \ldots,|\Sigma|\}$
- K = \{| $\Sigma|+1,|\Sigma|+2, \ldots,|\Sigma|+|K|\}$
- $\mathrm{s}=|\Sigma|+1$
- $|K|+|\Sigma|+1, \ldots,|K|+|\Sigma|+6=\leftarrow, \rightarrow,-, h, " y e s "$, "no"
- $\lceil\log (|K|+|\Sigma|+6)\rceil$ bits to encode each of the above entities

TM Binary Encoding(2)

- Encode the transition function as ((q, $\sigma),(p, \rho, D))$
$q, p \in K \cup\{h, " y e s ", " n o "\}$
$\sigma, \rho \in \Sigma$
$D \in\{\leftarrow, \rightarrow,-\}$

A Simple Example(1)

- Suppose the following TM

$$
\begin{aligned}
& \Sigma=\{a, b\} \cup\{\triangleright,-\} \\
& K=\{s\} \\
& \delta(s, a)=(s, b, \rightarrow) \\
& \delta(s, b)=(s, a, \rightarrow) \\
& \delta\left(s,,_{-}\right)=(h,,-)
\end{aligned}
$$

A Simple Example(2)

- $|\mathrm{K}|=1$
- $|\Sigma|=4$
- 4 bits for each entity
- Construct encoding according to previous formal description

$$
\left[\begin{array}{lll}
a & \rightarrow & 0001 \\
b & \rightarrow & 0010 \\
\triangleright & \rightarrow & 0011 \\
- & \rightarrow & 0100 \\
s & \rightarrow & 0101 \\
\rightarrow \rightarrow & 0110 \\
\leftarrow \rightarrow & 0111 \\
-\rightarrow & 1000 \\
h & \rightarrow & 1001 \\
" \text { yes " } \rightarrow 1010 \\
" n o ~ & \rightarrow 1011
\end{array}\right.
$$

A Simple Example(2)

- The binary encoding of the TM is:

$\begin{array}{l}0001,0010, \\ ((0101,0001),(0101,0010,0110)) \\ ((0101,0010),(0101,0001,0110)) \\ ((0101,0100),(1001,0000,1000))\end{array}$

$$
\left[\begin{array}{lll}
a & \rightarrow & 0001 \\
b & \rightarrow & 0010 \\
\triangleright & \rightarrow & 0011 \\
- & \rightarrow & 0100 \\
s \rightarrow & 0101 \\
\rightarrow \rightarrow & 0110 \\
\leftarrow \rightarrow & 0111 \\
-\rightarrow & 1000 \\
h \rightarrow & 1001 \\
" \text { yes } & \prime & 1010 \\
\prime n o & \prime & 1011
\end{array}\right.
$$

Universal TM (UTM)

- A TM U that interprets each input as a concatenation of a description of another TM and a description of an input for that TM
- The binary description of x is the binary description of each symbol of x separated by ","

$$
\mathrm{U}(\mathrm{M} ; \mathrm{x})=\mathrm{M}(\mathrm{x})
$$

- Introduced by Turing
- Resembles the von Neumann architecture

An Implementation

- 2-string TM
- $1^{\text {st }}$ string contains the binary description M
- $2^{\text {nd }}$ string contains the binary description of
current configuration of simulation (w,q,u)

UTM Description(1)

- Initially the 2 strings have the following content:

Binary Description of M

- , Initial State (s) binary

Input (x) binary
description
description

UTM Description(2)

Simple Example Simulation

Recursive and Recursively Enumerable
 Basic Definitions

Recursive (R) Language

- L is a recursive language if there exist a TM M that decides L.
- That is: for any string x:
- If x is in L then $M(x)=$ "yes" (TM halts at the "yes" state)
- If x is not in L then $\mathrm{M}(\mathrm{x})=$ "no" (TM halts at the "no" state)
- Hence, Not Recursive means Undecidable

Recursively Enumerable (RE) Language

- L is a recursive language if there exist a TM M that accepts L.
- That is: for any string x :
- If x is in L then $M(x)=$ "yes" (TM halts at the "yes" state)
- If x is not in L then $\mathrm{M}(\mathrm{x})$ doesn't halt
- Only useful for categorizing problems, not an algorithmic concept

RE Language(2)

- If L is in RE then there is TM that enumerates all its elements without repeating any of them
- Let M_{L} the TM that accepts L
- Run M for all possible strings of the symbols of L (e.g. in lexicographic order)
- When a string is accepted output it

RE Language(3)

- Do it the following way:

- Eventually all s_{i} in L would be enumerated

Language Classes

Undecidaboillity

Undecidability(1)

- Undecidable problem
- A problem with no algorithm
- Undecidable language
- A language that is not recursive
- Universal TM immediately led to prove that some problems are undecidable

Undecidability(2)

- It is an immediate consequence of the following two facts
- Languages are not enumerable (using diagonalization)
- Turing machines are enumerable (binary encoding described in first part is a valid encoding from TMs to natural numbers)
- Hence, there must be languages that cannot be decided by a TM

Undecidability(3)

- First undecidable problems/languages introduced in 1936
- April: Church introduced an undecidable problem in lambda calculus
- May: Turing introduced the halting problem
- Strong connection with Godel's incompleteness theorems (1931)
- Similar proofs used in both theories
- A weaker form of First Incompleteness Theorem is an immediate consequence of the Halting Problem

The Halting Problem

Not just any recursively enumerable language

HALTING (H)

- Given the description of a TM M and its input x Will M halt on x ?
- H is a language on the alphabet of UTM

$$
\{M ; x: M(x) \neq \uparrow\}
$$

- H is Recursively Enumerable
- Proof \#1 Outline: The UMT accepts H with a slight modification

Recursively Enumerable Complete

- Suppose a TM M_{H} could decide HALTING
- Then deciding any recursively enumerable language L accepted by a TM M could be reduced to M_{H}
- Just check if M ; x is accepted by M_{H}
- Similar concept to NP-Completeness though here we have a proof that H is not in R so we know that $R \neq R E$

H is Not Recursive (Undecidable)

- H is not recursive
- Proof Outline: Diagonalization
- Use the program
- $D(M)$: if $M_{H}(M ; M)=" y e s "$ then \uparrow else "yes"
- And produce a contradiction
- Hence there is no M_{H} that decides H

Diagonalization

	$<\mathrm{M}_{1}>$	$<\mathrm{M}_{2}>$	$<\mathrm{M}_{3}>$	$<\mathrm{M}_{4}>$...	<D>	\cdots
M_{1}	accepts	rejects	accepts	accepts		accepts	
M_{2}	rejects	accepts	rejects	rejects		accepts	
M_{3}	accepts	rejects	rejects	accepts			
M_{4}	accepts	rejects	accepts	accepts		accepts	
\cdots							
D	accepts	rejects	accepts	accepts		?	
...							

$D(M)$: if $M_{H}(M ; M)=$ "yes" then \uparrow else "yes"

Other Non Recursive Languages

- $\mathrm{L} 1=\{\mathrm{M}: \mathrm{M}$ halts on all inputs $\}$
- $\mathrm{L} 2=\{\mathrm{M} ; \mathrm{x}$: there is a y such that $\mathrm{M}(\mathrm{x})=\mathrm{y}\}$
- L3 $=\{\mathrm{M} ; \mathrm{x}$: the computation M on input x uses all states of M \}
- $\mathrm{L} 4=\{\mathrm{M} ; \mathrm{x} ; \mathrm{y}: \mathrm{M}(\mathrm{x})=\mathrm{y}\}$

R and Re Theorems

R and RE Theorems(1)

- If L is in R, then so is $\neg L$
- L is in R if and only if both L and $\neg \mathrm{L}$ are in RE - Corollary: $\neg H$ is not even in RE
- L is in $R E$ iff there is a TM M such that $L=E(M)$
${ }^{\circ} \mathrm{L}$ is enumerated by M (dovetailing)

Revision of Language Classes

Rice"s Theorem

It isn't just HALTING the problem

Rice Theorem

- Suppose C is a proper, non-empty subset of the set of all RE languages.
- Then the following problem is undecidable:
- Given a TM M, is L(M) in C
- In other words:
- Any non-trivial property of TMs represents an undecidable problem

Fix Point in C

- main() \{char $q=34, n=10,{ }^{*} \mathbf{a}=$ "main() $\{\operatorname{char} \mathbf{q}=34, \mathbf{n}=10, * \mathbf{a}=\% \mathbf{c \% s \%}$; printf(a,q,a,q,n);\}\%c";printf(a,q,a,q,n);\}

