UNDECIDABILITY

Syrgkanis Vasileios

Outline

- Universal Turing Machine (UMT)
- Recursive(R) and Recursively Enumerable(RE)
- Undecidability
- The Halting Problem
- R and RE Theorems
- Rice Theorem

Why a Universal Turing Machine

- Proving Undecidability Theorems has at its essence the action of giving a Turing Machine as input to another
- The above needs a formal method for encoding a Turing Machine as an input
- And making another TM (the Universal) simulate the first

Turing Machines (TM) Notation

- Given a TM, $M = (K, \Sigma, \delta, s)$
 - K = Set of States
 - $\Sigma =$ Set of Symbols
 - $\delta = \text{Transition Function}, K \cup \Sigma \rightarrow (K \cup \{h, "yes", "no"\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$
 - s = Initial State
- If a TM halts on input x, we define the output of M on x as M(x)
 - If M accepts or rejects x, then M(x)="yes" or "no"
 - If h state was reached then M(x) is the string of M at the time of halting

TM Binary Encoding(1)

- $\Sigma = \{1, 2, \dots, |\Sigma|\}$
- $K = \{ |\Sigma| + 1, |\Sigma| + 2, ..., |\Sigma| + |K| \}$
- $s = |\Sigma| + 1$
- $|\mathbf{K}| + |\Sigma| + 1, \dots, |\mathbf{K}| + |\Sigma| + 6 = \leftarrow, \rightarrow, -, h,$ "yes", "no"
- $\lceil \log(|K| + |\Sigma| + 6) \rceil$ bits to encode each of the above entities

TM Binary Encoding(2)

• Encode the transition function as $((q,\sigma),(p,\rho,D))$ $q, p \in K \cup \{h, "yes", "no"\}$ $\sigma, \rho \in \Sigma$ $D \in \{\leftarrow, \rightarrow, -\}$

A Simple Example(1)

• Suppose the following TM

$$\Sigma = \{a, b\} \cup \{\triangleright, _\}$$
$$K = \{s\}$$
$$\delta(s, a) = (s, b, \rightarrow)$$
$$\delta(s, b) = (s, a, \rightarrow)$$
$$\delta(s, _) = (h, _, -)$$

A Simple Example(2)

- |K|=1
- |Σ|=4
- 4 bits for each entity
- Construct encoding according to previous formal description

$a \rightarrow$	0001
$a \rightarrow b \rightarrow $	0010
ightarrow ightarrow	0011
$ _ \rightarrow $	0100
$s \rightarrow$	0101
$\rightarrow \rightarrow$	0110
\longleftrightarrow	0111
$- \rightarrow$	1000
$h \rightarrow$	1001
" yes	" \rightarrow 1010
" no "	→ 1011

A Simple Example(2)

• The binary encoding of the TM is:

0001,0010, ((0101,0001), (0101,0010,0110)) ((0101,0010), (0101,0001,0110)) ((0101,0100), (1001,0000,1000))

 $a \rightarrow 0001$ $b \rightarrow 0010$ $\triangleright \rightarrow 0011$ \rightarrow 0100 $s \rightarrow 0101$ $\rightarrow \rightarrow 0110$ $\leftrightarrow \rightarrow 0111$ $- \rightarrow 1000$ $h \rightarrow 1001$ " yes " \rightarrow 1010 " no " \rightarrow 1011

Universal TM (UTM)

- A TM U that interprets each input as a concatenation of a description of another TM and a description of an input for that TM
 - The binary description of x is the binary description of each symbol of x separated by ","

U(M; x)=M(x)

- Introduced by Turing
- Resembles the von Neumann architecture

An Implementation

- 2-string TM
- 1^{st} string contains the binary description M
- 2nd string contains the binary description of current configuration of simulation (w,q,u)

UTM Description(1)

• Initially the 2 strings have the following content:

Binary Description of M

		Initial State (s) binary description	,	Input (x) binary description
--	--	---	---	---------------------------------

UTM Description(2)

Simple Example Simulation

Recursive and Recursively Enumerable

Basic Definitions

Recursive (R) Language

- L is a recursive language if there exist a TM M that **decides** L.
- That is: for any string x:
 - If x is in L then M(x)="yes" (TM *halts* at the "yes" state)
 - If x is not in L then M(x)="no" (TM *halts* at the "no" state)
- Hence, Not Recursive means Undecidable

Recursively Enumerable (RE) Language

- L is a recursive language if there exist a TM M that **accepts** L.
- That is: for any string x:
 - If x is in L then M(x)="yes" (TM *halts* at the "yes" state)
 - If x is not in L then M(x) doesn't halt
- Only useful for categorizing problems, not an algorithmic concept

RE Language(2)

- If L is in RE then there is TM that enumerates all its elements without repeating any of them
- Let M_L the TM that accepts L
- Run M for all possible strings of the symbols of L (e.g. in lexicographic order)
- When a string is accepted output it

RE Language(3)

• Do it the following way:

- Eventually all s_i in L would be enumerated

Language Classes

Undecidability

Undecidability(1)

- Undecidable problem
 - A problem with no algorithm
- Undecidable language
 - A language that is not recursive
- Universal TM immediately led to prove that some problems are undecidable

Undecidability(2)

- It is an immediate consequence of the following two facts
 - Languages are not enumerable (using diagonalization)
 - Turing machines are enumerable (binary encoding described in first part is a valid encoding from TMs to natural numbers)
- Hence, there must be languages that cannot be decided by a TM

Undecidability(3)

- First undecidable problems/languages introduced in 1936
 - April: Church introduced an undecidable problem in lambda calculus
 - May: Turing introduced the halting problem
- Strong connection with Godel's incompleteness theorems (1931)
 - Similar proofs used in both theories
 - A weaker form of First Incompleteness Theorem is an immediate consequence of the Halting Problem

The Halting Problem

Not just any recursively enumerable language

HALTING (H)

- Given the description of a TM M and its input x Will M halt on x ?
- H is a language on the alphabet of UTM $\{M; x : M(x) \neq \uparrow\}$
- H is **Recursively Enumerable**
 - Proof #1 Outline: The UMT accepts H with a slight modification

Recursively Enumerable Complete

- Suppose a TM $\rm M_{\rm H}$ could decide HALTING
- Then deciding any recursively enumerable language L accepted by a TM M could be reduced to M_H
- Just check if M;x is accepted by M_H
- Similar concept to NP-Completeness though here we have a proof that H is not in R so we know that R≠RE

H is Not Recursive (Undecidable)

- H is not recursive
- Proof Outline: Diagonalization
- Use the program
 - D(M): if $M_H(M;M)$ ="yes" then \uparrow else "yes"
- And produce a contradiction
- Hence there is no $\rm M_{\rm H}$ that decides H

Diagonalization

	<m<sub>1></m<sub>	<m<sub>2></m<sub>	<m<sub>3></m<sub>	<m<sub>4></m<sub>	•••	<d></d>	•••
M ₁	accepts	rejects	accepts	accepts		accepts	
M ₂	rejects	accepts	rejects	rejects		accepts	
\mathbf{M}_{3}	accepts	rejects	rejects	accepts			
M_4	accepts	rejects	accepts	accepts		accepts	
•••							
D	accepts	rejects	accepts	accepts		?	
•••							

D(M): if $M_H(M;M)$ ="yes" then \uparrow else "yes"

Other Non Recursive Languages

- L1 = {M: M halts on all inputs}
- L2 = {M;x : there is a y such that M(x)=y}
- L3 = {M;x : the computation M on input x uses all states of M}
- L4 = {M;x;y: M(x)=y}

R and RE Theorems

R and RE Theorems(1)

- If L is in R, then so is $\neg L$
- L is in R if and only if both L and ¬L are in RE
 Corollary: ¬H is not even in RE
- L is in RE iff there is a TM M such that L = E(M)
 L is enumerated by M (dovetailing)

Revision of Language Classes

Rice's Theorem

35

It isn't just HALTING the problem

Rice Theorem

- Suppose C is a proper, non-empty subset of the set of all RE languages.
- Then the following problem is undecidable:
 Given a TM M, is L(M) in C
- In other words:
 - Any non-trivial property of TMs represents an undecidable problem

Proof

Fix Point in C

• main(){char q=34, n=10,*a="main()
 {char q=34,n=10,*a=%c%s%c;
 printf(a,q,a,q,n);}%c";printf(a,q,a,q,n);}