
  

NP-Complete Problems



  

 Max Bisection Is NP-Complete

 max cut becomes max bisection if we require 
that  |S| = |V − S|.

 We shall reduce the more general max cut to 
max bisection.

 Add |V | isolated nodes to G to yield G′ .
 G′ has 2 × |V | nodes.
 As the new nodes have no edges, moving them 

around contributes nothing to the cut.



  

The Proof (concluded)

  Every cut (S, V − S) of G = (V, E) can be made 
into a bisection by appropriately allocating the 
new nodes between S and V − S.

 Hence each cut of G can be made a cut of G′ of 
the same size, and vice versa.



  

Bisection Width

 bisection width is like max bisection except that 
it asks if there is a bisection of size at most K 
(sort of min bisection).

 Unlike min cut, bisection width remainsNP-
complete.
 A graph G = (V, E), where |V | = 2n, has a bisection 

of size K if and only if the complement of G has a 
bisection of size n2 − K.

 So G has a bisection of size ≥ K if and only if its 
complement has a bisection of size ≤ n2 − K.



  



  

    Hamiltonian Path is NP-
Complete

   
 Given an undirected graph, the question 

whether it has a Hamiltonian path is NP-
complete.
   Karp (1972)

 Hamiltonian Path is in NP (easy)
 Hamiltonian Path is in NP-Hard



  

Hamiltonian Path is in NP-Hard

 We reduce 3SAT to HP
 Given a 3-SAT formula φ we construct a 

directed graph G where a HP exists iff φ is 
satisfiable.

 φ=(a1 v b1 v c1)...(ak v bk v ck) -contains k 
clauses

 Each variable xi is represanted with a diamond 
Di

 Each clause with a single node ci



  



  



  

The chains

 Each diamond contains a horizontal chain
 The nodes of the chain are grouped in pairs 

one pair for each clause + separation nodes
 If a variable appears on a clause we connect 

the clause-pair to the clause-node



  

xi appears on Cj

¬xi appears on cj



  



  

Φ satisfiable => G has a HP

 HP: s->t
 If x is true the path zig-zags otherwise it zag-

zigs
 To include the clause nodes we detour on one 

of the literals that is assigned to be true
 If  the literal ¬x is evaluated true we can still 

detour as we connected with the clause node 
accordingly



  

G has an HP => φ Satisfiable

 HP is normal = Traverses the diamonds top to 
bottom (s->t)

 From a normal HP we obtain the sat 
assignment

 An HP can only be normal beacause of the 
seperator nodes



  

a2 not visitable



  

 TSP (D) Is NP-Complete

 Consider a graph G with n nodes.
  Define dij = 1 if [ i, j ]  G and dij = 2 if [ i, j ] ∈

\notin G.
  Set the budget B = n + 1.
  Suppose G has no Hamiltonian paths.
  Then every tour on the new graph must 

contain at least two edges with weight 2.
  Otherwise, by removing up to one edge with weight 

  2, one obtains a Hamiltonian path, a contradiction.



  



  

TSP (D) Is NP-Complete 
(concluded)

 The total cost is then at least (n − 2) + 2 · 2 = n 
+ 2 > B.

 On the other hand, suppose G has Hamiltonian 
paths.

 Then there is a tour on the new graph 
containing at most one edge with weight 2.

 The total cost is then at most (n − 1) + 2 = n + 1 
= B.

  We conclude that there is a tour of length B or 
less if and only if G has a Hamiltonian path.



  

  Graph Coloring

 k-coloring asks if the nodes of a graph can be 
colored with ≤ k colors such that no two 
adjacent nodes have the same color.

 2-coloring is in P (find an odd circle).
 But 3-coloring is NP-complete (see next page).
 k-coloring is NP-complete for k ≥ 3.



  

 3-coloring Is NP-Complete

 We will reduce NAESAT to 3-coloring.
 We are given a set of clauses C1 , C2 , . . . ,Cm 

each with 3 literals.
 The boolean variables are x1 , x2 , . . . , xn .
 We shall construct a graph G such that it can 

be colored with colors {0, 1, 2} if and only if all 
the clauses can be NAE-satisfied.



  

 The Proof (continued)

 Every variable xi is involved in a triangle [ a, xi , 
¬xi ] with a common node a.

 Each clause Ci = (ci1  ci2  ci3 ) is also ∨ ∨
represented by a triangle [ ci1 , ci2 , ci3 ].
 Node cij with the same label as one in some 

triangle [ a, xk , ¬xk ] represent distinct nodes.

 There is an edge between cij and the node that 
represents the jth literal of Ci .



  



  

The Proof (continued)

Suppose the graph is 3-colorable.
 Assume without loss of generality that node a 

takes the color 2.
 A triangle must use up all 3 colors.
 As a result, one of xi and ¬xi must take the 

color 0 and the other 1.



  

The Proof (continued)

 Treat 1 as true and 0 as false
 We were dealing only with those triangles with the a 

node, not the clause triangles.

 The resulting truth assignment is clearly 
contradiction free.

 As each clause triangle contains one color 1 
and one color 0, the clauses are NAE-satisfied.



  

The Proof (continued)

Suppose the clauses are nae-satisfiable.
 Color node a with color 2.
 Color the nodes representing literals by their 

truth values (color 0 for false and color 1 for 
true).
 We were dealing only with those triangles with the a 

node, not the clause triangles.



  

The Proof (concluded)

 For each clause triangle:
 Pick any two literals with opposite truth values.
 Color the corresponding nodes with 0 if the literal is 

true and 1 if it is false.
 Color the remaining node with color 2.

 The coloring is legitimate.
 If literal w of a clause triangle has color 2, then its 

color will never be an issue.
 If literal w of a clause triangle has color 1, then it 

must be connected up to literal w with color 0.
 If literal w of a clause triangle has color 0, then it 

must be connected up to literal w with color 1.



  

Tripartite Matching

 We are given three sets B, G, and H, each 
containing n elements.

 Let T  B × G × H be a ternary relation.⊆
 Tripartite Matching asks if there is a set of n 

triples in T , none of which has a component in 
common.
 Each element in B is matched to a di erent ff

element in G and di erent element in H.ff
 Tripartite Matching is NP-complete



  

Related Problems

 We are given a family F = {S1 , S2 , . . . , Sn } 
of subsets of a finite set U and a budget B.

 Set Covering asks if there exists a set of B sets 
in F whose union is U .

 Set Packing asks if there are B disjoint sets in F 
 Assume |U | = 3m for some m  N and |Si | = 3 ∈

for all i.
 Exact Cover by 3-sets asks if there are m sets 

in F that are disjoint and have U as their union.
 Set Covering, Set Packing, and Exact Cover by 3-

sets are all NP-complete.



  



  

The Knapsack Problem

 There is a set of n items.

 Item i has value v
i
  Z+ and weight wi  Z+ .∈ ∈

 We are given K  Z+ and W  Z+ .∈ ∈
 Knapsack asks if there exists a subset S  {1, ⊆

2, . . . , n} such that Σ
i S∈  w

i
 ≤ W and Σ

i S∈  v
i
 ≥ K.

 We want to achieve the maximum satisfaction 
within the budget



  

 Knapsack Is NP-Complete

 Knapsack  NP: Guess an S and verify the ∈
constraints.

 We assume vi = wi for all i and K = W .
 Knapsack now asks if a subset of {v1 , v2 , . . . , 

vn } adds up to exactly K.
 We shall reduce exact cover by 3-sets to 

knapsack.



  

The Proof (continued)

 We are given a family F = {S1 , S2 , . . . , Sn } 
of size-3 subsets of U = {1, 2, . . . , 3m}.

 Exact Cover by 3-sets asks if there are m 
disjoint sets in F that cover the set U .

 Think of a set as a bit vector in {0, 1}3m .
 001100010 means the set {3, 4, 8}, and 
 110010000 means the set {1, 2, 5}.

 Our goal is 11 · · · 1.(3m bits)



  

The Proof (continued)

 A bit vector can also be considered as a binary 
number.

 Set union resembles addition.
 001100010 + 110010000 = 111110010, which 

denotes the set {1, 2, 3, 4, 5, 8}, as desired.

 Trouble occurs when there is carry.
 001100010 + 001110000 = 010010010, which 

denotes the set {2, 5, 8}, not the desired {3, 4, 5, 8}



  

The Proof (continued)

 Carry may also lead to a situation where we 
obtain our solution 11 · · · 1 with more than m 
sets in F .
 001100010 + 001110000 + 101100000 + 

000001101 = 111111111.
 But this “solution” {1, 3, 4, 5, 6, 7, 8, 9} does not 

correspond to an exact cover.
 And it uses 4 sets instead of the required 3

 To fix this problem, we enlarge the base just 
enough so that there are no carries.

 Because there are n vectors in total, we change 
the base from 2 to n + 1.



  

The Proof (continued)

 Set v
i
 to be the (n+1)-ary number 

corresponding to bit vector encoding Si .
 Now in base n + 1, if there is a set S such that

 Σ
vi S∈

 vi = 11 · · · 1, then every bit position must 

be contributed by exactly one vi and |S| = m.
 Finally, set               

 K= Σ
j=0

3m-1(n + 1)j = 11 · · · 1 (base n + 1).



  

The Proof (continued)

 Suppose F admits an exact cover, say {S1 , 
S2 , . . . , Sm }.

 Then picking S = {v1 , v2 , . . . , vm } clearly 
results in v1 + v2 + · · · + vm = 11 · · · 1 .
 It is important to note that the meaning of addition 

(+) is independent of the base
 It is just regular addition.



  

The Proof (concluded)

 On the other hand, suppose there exists an S 
such that Σ

vi S∈
 vi = 11 · · · 1 in base n + 1.

 The no-carry property implies that |S| = m and 
{Si : vi  S} is an exact cover.∈



  

An Example

 Let m = 3, U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and
                      S1    = {1, 3, 4},
                      S2    = {2, 3, 4},
                      S3    = {2, 5, 6},
                      S4    = {6, 7, 8},
                      S5    = {7, 8, 9}.
 Note that n = 5, as there are 5 Si ’s.



  

An Example (concluded)

 Our reduction produces
               K    = Σ6j = 11 · · · 1  (base 6)
               v1   = 101100000,
               v2   = 011100000,
               v3   = 010011000,
               v4   = 000001110,
               v5   = 000000111.
 Note v1 + v3 + v5 = K.
 Indeed, S1  S3  S5 = {1, 2, 3, 4, 5, 6, 7, 8, ∪ ∪

9}, an exact cover by 3-sets.
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