NP-Complete Problems

Max Bisection Is NP-Complete

- max cut becomes max bisection if we require that $|\mathrm{S}|=|\mathrm{V}-\mathrm{S}|$.
- We shall reduce the more general max cut to max bisection.
- Add |V | isolated nodes to G to yield G^{\prime}.
- G' has $2 \times|V|$ nodes.
- As the new nodes have no edges, moving them around contributes nothing to the cut.

The Proof (concluded)

- Every cut (S, V - S) of G = (V, E) can be made into a bisection by appropriately allocating the new nodes between S and $\mathrm{V}-\mathrm{S}$.
- Hence each cut of G can be made a cut of G' of the same size, and vice versa.

Bisection Width

- bisection width is like max bisection except that it asks if there is a bisection of size at most K (sort of min bisection).
- Unlike min cut, bisection width remainsNPcomplete.
- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, where $|\mathrm{V}|=2 \mathrm{n}$, has a bisection of size K if and only if the complement of G has a bisection of size $\mathrm{n}^{2}-K$.
- So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq \mathrm{n}^{2}-\mathrm{K}$.

Illustration

Hamiltonian Path is NP. Complete

- Given an undirected graph, the question whether it has a Hamiltonian path is NPcomplete.
- Karp (1972)
- Hamiltonian Path is in NP (easy)
- Hamiltonian Path is in NP-Hard

Hamiltonian Path is in NP-Hard

- We reduce 3SAT to HP
- Given a 3-SAT formula φ we construct a directed graph G where a HP exists iff φ is satisfiable.
- $\varphi=(a 1 \vee b 1 \vee c 1) \ldots(a k \vee b k \vee c k)$-contains k clauses
- Each variable xi is represanted with a diamond Di
- Each clause with a single node ci

The chains

- Each diamond contains a horizontal chain
- The nodes of the chain are grouped in pairs one pair for each clause + separation nodes
- If a variable appears on a clause we connect the clause-pair to the clause-node

xi appears on Cj

gig-2ag

rag-pgg

Ф satisfiable \Rightarrow G has a HP

- HP: s->t
- If x is true the path zig-zags otherwise it zagzigs
- To include the clause nodes we detour on one of the literals that is assigned to be true
- If the literal $\neg x$ is evaluated true we can still detour as we connected with the clause node accordingly

G has an HP $\Rightarrow \varphi$ Satisfiable

- HP is normal = Traverses the diamonds top to bottom (s->t)
- From a normal HP we obtain the sat assignment
- An HP can only be normal beacause of the seperator nodes
a2 not visitable

TSP (D) Is NP-Complete

- Consider a graph G with n nodes.
- Define dij $=1$ if $[i, j] \in G$ and $\operatorname{dij}=2$ if $[i, j]$ Inotin G.
- Set the budget $B=n+1$.
- Suppose G has no Hamiltonian paths.

Then every tour on the new graph must contain at least two edges with weight 2.

- Otherwise, by removing up to one edge with weight 2, one obtains a Hamiltonian path, a contradiction.

TSP (D) Is NP-Complete (concluded)

- The total cost is then at least $(\mathrm{n}-2)+2 \cdot 2=n$ $+2>B$.
- On the other hand, suppose G has Hamiltonian paths.
- Then there is a tour on the new graph containing at most one edge with weight 2.
- The total cost is then at most $(n-1)+2=n+1$ = B .
- We conclude that there is a tour of length B or less if and only if G has a Hamiltonian path.

Graph Coloring

- k-coloring asks if the nodes of a graph can be colored with $\leq \mathrm{k}$ colors such that no two adjacent nodes have the same color.
- 2-coloring is in P (find an odd circle).
- But 3-coloring is NP-complete (see next page).
- k -coloring is NP-complete for $\mathrm{k} \geq 3$.

3-coloring Is NP-Complete

- We will reduce NAESAT to 3-coloring.
- We are given a set of clauses C1, C2 , . . . , Cm each with 3 literals.
- The boolean variables are x1, x2, . . ., xn .
- We shall construct a graph G such that it can be colored with colors $\{0,1,2\}$ if and only if all the clauses can be NAE-satisfied.

The Proof (continued)

- Every variable xi is involved in a triangle [a, xi , $\neg x i]$ with a common node a.
- Each clause $\mathrm{Ci}=(\mathrm{ci} 1 \mathrm{~V}$ ci2 V ci3 $)$ is also represented by a triangle [ci1 , ci2 , ci3].
- Node cij with the same label as one in some triangle [a, xk , 7 xk] represent distinct nodes.
- There is an edge between cij and the node that represents the jth literal of Ci .

Construction for $\cdots \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge \cdots$

The Proof (continued)

Suppose the graph is 3 -colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of xi and $7 x i$ must take the color 0 and the other 1 .

The Proof (continued)

- Treat 1 as true and 0 as false
- We were dealing only with those triangles with the a node, not the clause triangles.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0 , the clauses are NAE-satisfied.

The Proof (continued)

Suppose the clauses are nae-satisfiable.

- Color node a with color 2.
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
- We were dealing only with those triangles with the a node, not the clause triangles.

The Proof (concluded)

- For each clause triangle:
- Pick any two literals with opposite truth values.
- Color the corresponding nodes with 0 if the literal is true and 1 if it is false.
- Color the remaining node with color 2.
- The coloring is legitimate.
- If literal w of a clause triangle has color 2, then its color will never be an issue.
- If literal w of a clause triangle has color 1, then it must be connected up to literal w with color 0 .
- If literal w of a clause triangle has color 0 , then it must be connected up to literal w with color 1 .

Tripartite Matching

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- Tripartite Matching asks if there is a set of n triples in T , none of which has a component in common.
- Each element in B is matched to a different element in G and different element in H .
- Tripartite Matching is NP-complete

Related Problems

- We are given a family $\mathrm{F}=\{\mathrm{S} 1, \mathrm{~S} 2, \ldots, \mathrm{Sn}\}$ of subsets of a finite set U and a budget B.
- Set Covering asks if there exists a set of B sets in F whose union is U.
- Set Packing asks if there are B disjoint sets in F
- Assume $|\mathrm{U}|=3 \mathrm{~m}$ for some $\mathrm{m} \in \mathrm{N}$ and $|\mathrm{Si}|=3$ for all i.
- Exact Cover by 3-sets asks if there are m sets in F that are disjoint and have U as their union.
- Set Covering, Set Packing, and Exact Cover by 3sets are all NP-complete.

SET PACKING

The Knapsack Problem

- There is a set of n items.
- Item i has value $v_{i} \in Z+$ and weight wi $\in Z+$.
- We are given $K \in Z+$ and $W \in Z+$.
- Knapsack asks if there exists a subset $S \subseteq\{1$, $2, \ldots, n\}$ such that $\sum_{i \in s} w_{i} \leq W$ and $\Sigma_{i \in s} v_{i} \geq K$.
- We want to achieve the maximum satisfaction within the budget

Knapsack Is NP-Complete

- Knapsack \in NP: Guess an S and verify the constraints.
- We assume vi = wi for all i and $K=W$.
- Knapsack now asks if a subset of \{v1, v2, ..., vn \} adds up to exactly K.
- We shall reduce exact cover by 3-sets to knapsack.

The Proof (continued)

- We are given a family $\mathrm{F}=\{\mathrm{S} 1, \mathrm{~S} 2, \ldots, \mathrm{Sn}\}$ of size-3 subsets of $U=\{1,2, \ldots, 3 m\}$.
- Exact Cover by 3-sets asks if there are m disjoint sets in F that cover the set U.
- Think of a set as a bit vector in $\{0,1\}^{3 m}$.
- 001100010 means the set $\{3,4,8\}$, and
- 110010000 means the set $\{1,2,5\}$.
- Our goal is $11 \cdots 1 .(3 \mathrm{~m}$ bits)

The Proof (continued)

- A bit vector can also be considered as a binary number.
- Set union resembles addition.
- $001100010+110010000=111110010$, which denotes the set $\{1,2,3,4,5,8\}$, as desired.
- Trouble occurs when there is carry.
- $001100010+001110000=010010010$, which denotes the set $\{2,5,8\}$, not the desired $\{3,4,5,8\}$

The Proof (continued)

- Carry may also lead to a situation where we obtain our solution $11 \cdots 1$ with more than m sets in F.
- $001100010+001110000+101100000+$ $000001101=111111111$.
- But this "solution" $\{1,3,4,5,6,7,8,9\}$ does not correspond to an exact cover.
- And it uses 4 sets instead of the required 3
- To fix this problem, we enlarge the base just enough so that there are no carries.
- Because there are n vectors in total, we change the base from 2 to $\mathrm{n}+1$.

The Proof (continued)

- Set v_{i} to be the $(n+1)$-ary number corresponding to bit vector encoding Si .
- Now in base $\mathrm{n}+1$, if there is a set S such that
- $\Sigma_{\text {vi } \in s}$ vi $=11 \cdots 1$, then every bit position must be contributed by exactly one vi and $|S|=m$.
- Finally, set
- $K=\sum_{j=0}^{3 m-1}(n+1) j=11 \cdots 1($ base $n+1)$.

The Proof (continued)

- Suppose F admits an exact cover, say \{S1, S2 , . . . Sm \}.
- Then picking $S=\{v 1$, v2 , . . , vm $\}$ clearly results in $\mathrm{v} 1+\mathrm{v} 2+\cdots+\mathrm{vm}=11 \cdots 1$.
- It is important to note that the meaning of addition $(+)$ is independent of the base
- It is just regular addition.

The Proof (concluded)

- On the other hand, suppose there exists an S such that $\sum_{\text {vi } \in s} v i=11 \cdots 1$ in base $n+1$.
- The no-carry property implies that |S| = m and $\{S i: v i \in S\}$ is an exact cover.

An Example

- Let $\mathrm{m}=3, \mathrm{U}=\{1,2,3,4,5,6,7,8,9\}$, and S1 $=\{1,3,4\}$,
S2 $=\{2,3,4\}$, S3 $=\{2,5,6\}$, S4 $=\{6,7,8\}$, S5 $=\{7,8,9\}$.
- Note that $\mathrm{n}=5$, as there are 5 Si 's.

An Example (concluded)

- Our reduction produces

$$
\begin{aligned}
K & =\Sigma 6^{j}=11 \cdots 1 \quad(\text { base } 6) \\
v 1 & =101100000 \\
v 2 & =011100000 \\
v 3 & =010011000 \\
v 4 & =000001110 \\
v 5 & =000000111
\end{aligned}
$$

- Note v1 + v3 + v5 = K.
- Indeed, S1 U S3 U S5 = \{1, 2, 3, 4, 5, 6, 7, 8, $9\}$, an exact cover by 3-sets.

