
  

CoNP and Function Problems



  

coNP

 By definition, coNP is the class of problems 
whose complement is in NP.

 NP is the class of problems that have succinct 
certificates.

 coNP is therefore the class of problems that 
have succinct disqualifications:
 A “no” instance of a problem in coNP possesses a 

short proof of its being a “no” instance.
 Only “no” instances have such proofs.



  

coNP (continued)

 Suppose L is a coNP problem.
 There exists a polynomial-time nondeterministic 

algorithm M such that:
 If x  L, then M (x) = “yes” for all computation ∈

paths.
 If x  L, then M (x) = “no” for some computation ∈

path.



  



  

 coNP (concluded)

 Clearly P  coNP.⊆
 It is not known if P = NP ∩ coNP.

 Contrast this with R = RE ∩ coRE



  

Some coNP Problems

 VALIDITY  coNP.∈
 If φ is not valid, it can be disqualified very 

succinctly: a truth assignment that does not satisfy 
it.

 SAT complement  coNP.∈
 The disqualification is a truth assignment that 

satisfies it.

 HAMILTONIAN PATH complement  coNP.∈
 The disqualification is a Hamiltonian path.



  

An Alternative Characterization of coNP

 Let L  Σ  be a language. Then L  coNP if ⊆ ∗ ∈
and only if there is a polynomially decidable 
and polynomially balanced relation R such that 
L = {x : \forall y (x, y)  R}.∈

 L' = {x : (x, y)  ∈ ┐R for some y}.
 Because  ┐R remains polynomially balanced, L 

 NP∈
 Hence L  coNP by definition.∈



  

coNP Completeness

 L is NP-complete if and only if its complement 
L' = Σ  − L is coNP-complete.∗

 Proof ( ; the  part is symmetric)⇒ ⇐
 Let L1' be any coNP language.
 Hence L1  NP.∈
 Let R be the reduction from L1 to L.
 So x  L1 if and only if R(x)  L.∈ ∈
 So x  L1' if and only if R(x)  L'.∈ ∈
 R is a reduction from L1' to L'.



  

 Some coNP-Complete Problems

 SAT complement is coNP-complete.
 SAT complement is the complement of sat.

 VALIDITY is coNP-complete.
 φ is valid if and only if ┐φ is not satisfiable.
 The reduction from sat complement to VALIDITY is 

hence easy.

 HAMILTONIAN PATH complement is coNP-
complete.



  

Possible Relations between P, NP, coNP

1. P = NP = coNP.

2. NP = coNP but P ≠ NP.

3. NP ≠ coNP and P ≠ NP.
• This is current “consensus.”



  

coNP Hardness and NP Hardness

 If a coNP-hard problem is in NP, then NP = 
coNP.

 Let L  NP be coNP-hard.∈
 Let PNTM M decide L.
 For any L1  coNP, there is a reduction R from ∈

L1 to L.
 L1  NP as it is decided by PNTM M(R(x)).∈

 Alternatively, NP is closed under complement.

 Hence coNP  NP.⊆
 The other direction NP  coNP is symmetric.⊆



  

   coNP Hardness and NP Hardness (concluded)

 Similarly, If an NP-hard problem is in coNP, 
then NP = coNP.

 Hence NP-complete problems are unlikely to be 
in coNP and coNP-complete problems are 
unlikely to be in NP.



  

 The Primality Problem

 An integer p is prime if p > 1 and all positive 
numbers other than 1 and p itself cannot divide 
it.

 PRIMES asks if an integer N is a prime number
 Dividing N by 2, 3, . . . ,√ N is not e cient.ffi

 The length of N is only log N , but √N = 20.5 log N .

 A polynomial-time algorithm for primes was not 
found until 2002 by Agrawal, Kayal, and 
Saxena!

 We will focus on e cient “probabilistic” ffi
algorithms for primes (used in practice).



  

ΔNP

 ΔNP ≡ NP ∩ coNP is the class of problems that 
have succinct certificates and succinct 
disqualifications.
 Each “yes” instance has a succinct certificate.
 Each “no” instance has a succinct disqualification.
 No instances have both.

 P  ΔNP.⊆
 We will see that primes  DP.∈

 In fact, primes  P as mentioned earlier.∈



  

Primitive Roots in Finite Fields

 Theorem (Lucas and Lehmer (1927)) A number 
p > 1 is prime if and only if there is a number 
1<r<p (called the primitive root or generator) s.t.

 1. r p−1 = 1 mod p, and
 2. r(p−1)/q = 1 mod p for all prime divisors q of 

p−1.
  Proof excluded.



  

Pratt’s Theorem

 (Pratt (1975)) PRIMES  NP ∩ coNP.∈
 primes is in coNP because a succinct 

disqualification is a divisor.
 Suppose p is a prime.
 p’s certificate includes the r in L.L. Theorem
 Use recursive doubling to check if rp−1=1modp 

in time polynomial in the length of the input,   
log p.

 We also need all prime divisors of p − 1: q1 , q2 
, . . . , qk .

 Checking r(p−1)/qi≠1 mod p is also easy.



  

The Proof (concluded)

 Checking q1 , q2 , . . . , qk are all the divisors of 
p − 1 is easy.

 We still need certificates for the primality of the 
qi ’s.

 The complete certificate is recursive and tree-
like: C(p) = (r; q1 , C(q1 ), q2 , C(q2 ), . . . , qk , 
C(qk )).

 C(p) can also be checked in polynomial time.
 We next prove that C(p) is succinct.



  

The Succinctness of the Certificate

 The length of C(p) is at most quadratic at          
5 log2p.

 This claim holds when p = 2 or p = 3.
 In general, p − 1 has k < log p prime divisors    

q1 = 2, q2 , . . . , qk .
 C(p) requires: 2 parentheses and 2k < 2 log p 

separators (length at most 2 log p long), r 
(length at most log p), q1 = 2 and its certificate 
1 (length at most 5 bits), the qi ’s (length at 
most 2 log p), and the C(qi )s.



  

The Proof (concluded)

 C(p) is succinct because

       |C(p)| ≤ 5 log p + 5 + 5 Σ
i=2

k log2 qi       

                 ≤ 5 log p + 5 + 5  (Σ
i=2

klog2 qi)2       

                 ≤ 5 log p + 5 + 5 log (p-1)/2             

                 < 5 log p + 5 + 5(log2 p − 1)2

                 = 5 log2p + 10 − 5 log2 p ≤ 5 log2p

                                                   for p ≥ 4.



  

Function Problems

 Decisions problem are yes/no problems (sat, 
tsp (d),etc.).

 Function problems require a solution (a 
satisfying truth assignment, a best tsp tour, 
etc.).

 Optimization problems are clearly function 
problems.

 What is the relation between function and 
decision problems?

 Which one is harder?



  

Function Problems Cannot Be Easier than 
Decision Problems

 If we know how to generate a solution, we can 
solve the corresponding decision problem.
 If you can find a satisfying truth assignment 

e ciently, then sat is in P.ffi
 If you can find the best tsp tour e ciently, then ffi

tsp(d) is in P.

 But decision problems can be as hard as 
thecorresponding function problems.



  

FSAT

 FSAT is this function problem:
 Let φ(x1 , x2 , . . . , xn ) be a boolean expression.
 If φ is satisfiable, then return a satisfying truth 

assignment.
 Otherwise, return “no.”

 We next show that if SAT  P, then FSAT has ∈
a polynomial-time algorithm.



  

An Algorithm for FSAT Using SAT

 1: t := ε;

 2: if φ  SAT then∈

 3:    for i = 1, 2, . . . , n do

 4:      if φ[ xi = true ]  SAT then∈

 5:         t := t  { xi = true };∪

 6:         φ := φ[ xi = true ];

 7:      else

 8:         t := t  { xi = false };∪

 9:         φ := φ[ xi = false ];

10:      end if

11:    end for

12:    return t;

13: else

14:    return “no”;

15: end if



  

 Analysis

 There are ≤ n + 1 calls to the algorithm for SAT
 Shorter boolean expressions than φ are used in 

each call to the algorithm for sat.
 So if SAT can be solved in polynomial time, so 

can FSAT.
 Hence SAT and FSAT are equally hard (or 

easy).



  

 TSP and TSP (d) Revisited

 We are given n cities 1, 2, . . . , n and integer 
distances dij = dji between any two cities i and j.

 The TSP asks for a tour with the shortest total 
distance (not just the shortest total distance, as 
earlier).
 The shortest total distance must be at most 2| x| 

where x is the input.

 TSP (d) asks if there is a tour with a total 
distance at most B.

 We next show that if TSP (d)  P, then TSP ∈
has a polynomial-time algorithm.



  

An Algorithm for tsp Using tsp (d)

 1: Perform a binary search over interval [ 0, 2| x | ] by 
calling tsp (d) to obtain the shortest distance C;

 2: for i, j = 1, 2, . . . , n do

 3:   Call tsp (d) with B = C and dij = C + 1;

 4:   if “no” then

 5:      Restore dij to old value; {Edge [ i, j ] is critical.}

 6:   end if

 7: end for

 8: return the tour with edges whose dij ≤ C;



  

 Analysis

 An edge that is not on any optimal tour will be 
eliminated, with its dij set to C + 1.

 An edge which is not on all remaining optimal 
tours will also be eliminated.

 So the algorithm ends with n edges which are 
not eliminated.

 There are O(| x | + n2 ) calls to the algorithm for 
tsp (d).

 So if tsp (d) can be solved in polynomial time, 
so can tsp.

 Hence tsp (d) and tsp are equally hard (or 
easy).



  

FNP and FP

 L € NP iff 
there exists poly-time computable RL(x,y) s.t.

X € L    y { |y| ≤ p(|x|) & RL(x,y) }
 Note how RL defines the problem-language L

 The corresponding search problem ΠR(L) € FNP 
is: given an x find any y s.t. RL(x,y) and reply 
“no” if none exist
 Are all FNP problems self-reducible like FSAT? [open?]

 FP is the subclass of FNP where we only 
consider problems for which a poly-time 
algorithm is known



  

FP <?> FNP

 A proof a-la-Cook shows that FSAT is FNP-
complete

 Hence, if FSAT∈FP then FNP = FP
 But we showed self-reducibility for SAT, so the 

theorem follows:
 Theorem: FP = FNP iff P=NP



  

TFNP

 What happens if the relation R is total? 
 i.e., for each x there is at least one y s.t. R(x,y)
 Define TFNP to be the subclass of FNP where 

the relation R is total
 TFNP contains problems that always have a 

solution, e.g. factoring, fix-point theorems, 
graph-theoretic problems, …

 How do we know a solution exists?
By an “inefficient proof of existence”, i.e. non-

(efficiently)-constructive proof
 The idea is to categorize the problems in TFNP 

based on the type of inefficient argument that 
guarantees their solution



  

Properties of TFNP
1. FP TFNP FNP⊆ ⊆
2. TFNP = F(NP ∩ coNP)

 NP = problems with “yes” certificate y s.t. R1(x,y)

 coNP = problems with “no” certificate z s.t. R2(x,y)

 for TFNP    F(NP ∩ coNP) take R = R1 U R2

 for F(NP ∩ coNP)  TFNP take R1 = R and R2 = ø

3. There is an FNP-complete problem in TFNP iff NP = 
coNP

 : If NP = coNP then trivially FNP = TFNP
 : If the FNP-complete problem ΠR is in TFNP then:

FSAT reduces to ΠR via f and g, hence any unsatisfiable 
formula φ has a “no” certificate y, s.t. R(f(φ),y) (y exists since 
ΠR is in TFNP) and g(y)=“no”

4. TFNP is a semantic complexity class  no complete 
problems!

 note how telling whether a relation is total is undecidable (and 
not even RE!!)



  

ANOTHER HC is in TFNP

 Thm: any graph with odd 
degrees has an even number of 
HC through edge xy

 Proof Idea: 
 take a HC 
 remove edge (1,2) & take a HP
 fix endpoint 1 and start 

“rotating” from the other end
 each HP has two “valid” 

neighbors (d=3) except for 
those paths with endpoints 1,2
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