CoNP and Function Problems

- By definition, coNP is the class of problems whose complement is in NP.
- NP is the class of problems that have succinct certificates.
- coNP is therefore the class of problems that have succinct disqualifications:
- A "no" instance of a problem in coNP possesses a short proof of its being a "no" instance.
- Only "no" instances have such proofs.

coNP (continued)

- Suppose L is a coNP problem.
- There exists a polynomial-time nondeterministic algorithm M such that:
- If $x \in L$, then $M(x)=$ "yes" for all computation paths.
- If $x \in L$, then $M(x)=$ "no" for some computation path.

coNP (concluded)

- Clearly P \subseteq coNP.
- It is not known if $P=N P \cap$ coNP.
- Contrast this with $\mathrm{R}=\mathrm{RE} \cap$ coRE

Some coNP Problems

- VALIDITY \in coNP.
- If φ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.
- SAT complement \in coNP.
- The disqualification is a truth assignment that satisfies it.
- HAMILTONIAN PATH complement \in coNP.
- The disqualification is a Hamiltonian path.

An Alternative Characterization of coNP

- Let $\mathrm{L} \subseteq \Sigma *$ be a language. Then $L \in \operatorname{coNP}$ if and only if there is a polynomially decidable and polynomially balanced relation R such that $L=\{x$: |forall $y(x, y) \in R\}$.
- $\mathrm{L}^{\prime}=\left\{\mathrm{x}:(\mathrm{x}, \mathrm{y}) \in^{7} \mathrm{R}\right.$ for some y$\}$.
- Because ${ }_{7} R$ remains polynomially balanced, L $\in N P$
- Hence $L \in$ coNP by definition.

coNP Completeness

- L is NP-complete if and only if its complement $\mathrm{L}^{\prime}=\Sigma *-\mathrm{L}$ is coNP-complete.
- Proof (\Rightarrow; the \Leftarrow part is symmetric)
- Let L1' be any coNP language.
- Hence L1 \in NP.
- Let R be the reduction from L 1 to L .
- So $x \in L 1$ if and only if $R(x) \in L$.
- So $x \in L 1$ ' if and only if $R(x) \in L^{\prime}$.
- R is a reduction from L 1 ' to L '.

Some coNP-Complete Problems

- SAT complement is coNP-complete.
- SAT complement is the complement of sat.
- VALIDITY is coNP-complete.
- φ is valid if and only if \rceil is not satisfiable.
- The reduction from sat complement to VALIDITY is hence easy.
- HAMILTONIAN PATH complement is coNPcomplete.

Possible Relations between P, NP, coNP

1. $P=N P=c o N P$.
2. $N P=\operatorname{coNP}$ but $P \neq N P$.
3. $N P \neq$ coNP and $P \neq N P$.

- This is current "consensus."

coNP Hardness and NP Hardness

- If a coNP-hard problem is in NP, then NP = coNP.
- Let $L \in N P$ be coNP-hard.
- Let PNTM M decide L.
- For any $\mathrm{L} 1 \in$ coNP, there is a reduction R from L1 to L.
- $\mathrm{L} 1 \in \mathrm{NP}$ as it is decided by PNTM $\mathrm{M}(\mathrm{R}(\mathrm{x}))$.
- Alternatively, NP is closed under complement.
- Hence coNP \subseteq NP.
- The other direction NP \subseteq coNP is symmetric.

coNP Hardness and NP Hardness (concluded)

- Similarly, If an NP-hard problem is in coNP, then NP = coNP.
- Hence NP-complete problems are unlikely to be in coNP and coNP-complete problems are unlikely to be in NP.

The Primality Problem

- An integer p is prime if $p>1$ and all positive numbers other than 1 and p itself cannot divide it.
- PRIMES asks if an integer N is a prime number
- Dividing N by $2,3, \ldots, \sqrt{ } \mathrm{~N}$ is not efficient.
- The length of N is only $\log N$, but $\sqrt{N}=2^{0.5 \log N}$.
- A polynomial-time algorithm for primes was not found until 2002 by Agrawal, Kayal, and Saxena!
- We will focus on efficient "probabilistic" algorithms for primes (used in practice).

$\Delta N P$

- $\Delta \mathrm{NP} \equiv \mathrm{NP} \cap \mathrm{coNP}$ is the class of problems that have succinct certificates and succinct disqualifications.
" Each "yes" instance has a succinct certificate.
" Each "no" instance has a succinct disqualification.
- No instances have both.
- $\mathrm{P} \subseteq \Delta N \mathrm{~N}$.
- We will see that primes $\in D P$.
- In fact, primes $\in P$ as mentioned earlier.

Primitive Roots in Finite Fields

- Theorem (Lucas and Lehmer (1927)) A number $p>1$ is prime if and only if there is a number $1<r<p$ (called the primitive root or generator) s.t.
- $1 \quad r^{p-1}=1 \bmod p$, and
- 2. $r^{(p-1) / q}=1 \bmod p$ for all prime divisors q of $\mathrm{p}-1$.
- Proof excluded.

Pratt's Theorem

- (Pratt (1975)) PRIMES \in NP \cap coNP.
- primes is in coNP because a succinct disqualification is a divisor.
- Suppose p is a prime.
- p's certificate includes the rin L.L. Theorem
- Use recursive doubling to check if $r^{p-1}=1$ modp in time polynomial in the length of the input, $\log \mathrm{p}$.
- We also need all prime divisors of $p-1$: $q 1$, q2 , . . . , qk .
- Checking $r^{(p-1) / q i} \neq 1 \bmod p$ is also easy.

The Proof (concluded)

- Checking q1, q2 , . . , qk are all the divisors of $p-1$ is easy.
- We still need certificates for the primality of the qi 's.
- The complete certificate is recursive and treelike: $C(p)=(r ; q 1, C(q 1), q 2, C(q 2), \ldots, q k$, C(qk)).
- $\mathrm{C}(\mathrm{p})$ can also be checked in polynomial time.
- We next prove that $C(p)$ is succinct.

The Succinctness of the Certificate

- The length of $C(p)$ is at most quadratic at $5 \log ^{2} \mathrm{p}$.
- This claim holds when $p=2$ or $p=3$.
- In general, p-1 has k < log p prime divisors q1 = 2, q2 , . . , qk .
- $C(p)$ requires: 2 parentheses and $2 k<2 \log p$ separators (length at most 2 log p long), r (length at most $\log p$), q1 $=2$ and its certificate 1 (length at most 5 bits), the qi 's (length at most $2 \log p$), and the $C(q i) s$.

The Proof (concluded)

- $C(p)$ is succinct because
$|C(p)| \leq 5 \log p+5+5 \Sigma_{i=2}{ }^{k} \log ^{2} q i$ $\leq 5 \log p+5+5\left(\sum_{i=2}{ }^{k} \log 2 q i\right)^{2}$
$\leq 5 \log p+5+5 \log (p-1) / 2$
$<5 \log p+5+5(\log 2 p-1)^{2}$
$=5 \log ^{2} p+10-5 \log 2 p \leq 5 \log ^{2} p$ for $p \geq 4$.

Function Problems

- Decisions problem are yes/no problems (sat, tsp (d),etc.).
- Function problems require a solution (a satisfying truth assignment, a best tsp tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
- If you can find a satisfying truth assignment efficiently, then sat is in P.
- If you can find the best tsp tour efficiently, then tsp(d) is in P.
- But decision problems can be as hard as thecorresponding function problems.

FSAT

- FSAT is this function problem:
- Let φ (x1 , x2 , ..., xn) be a boolean expression.
- If φ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next show that if SAT $\in P$, then FSAT has a polynomial-time algorithm.

An Algorithm for FSAT Using SAT

1: t:= ;
2: if $\varphi \in$ SAT then
3: for $\mathrm{i}=1,2, \ldots, \mathrm{n}$ do
4: if $\varphi[x i=$ true $] \in S A T$ then
5: $\quad \mathrm{t}:=\mathrm{t} \cup\{\mathrm{xi}=$ true $\} ;$
6: $\quad \varphi:=\varphi[x i=$ true $] ;$
7: else
8: $\quad \mathrm{t}:=\mathrm{t} \cup\{\mathrm{xi}=$ false $\}$;
9: $\quad \varphi:=\varphi[x i=$ false $]$
10: end if
11: end for
12: return t ;
13: else
14: return "no";
15: end if

Analysis

- There are $\leq \mathrm{n}+1$ calls to the algorithm for SAT
- Shorter boolean expressions than φ are used in each call to the algorithm for sat.
- So if SAT can be solved in polynomial time, so can FSAT.
- Hence SAT and FSAT are equally hard (or easy).

TSP and TSP (d) Revisited

- We are given n cities $1,2, \ldots, n$ and integer distances dij = dji between any two cities i and j.
- The TSP asks for a tour with the shortest total distance (not just the shortest total distance, as earlier).
- The shortest total distance must be at most $2^{|\times|}$ where x is the input.
- TSP (d) asks if there is a tour with a total distance at most B.
- We next show that if TSP $(\mathrm{d}) \in P$, then TSP has a polynomial-time algorithm.

An Algorithm for tsp Using tsp (d)

- 1: Perform a binary search over interval [$\left.0,2^{|x|}\right]$ by calling tsp (d) to obtain the shortest distance C ;
- 2: for $\mathrm{i}, \mathrm{j}=1,2, \ldots, \mathrm{n}$ do
- 3: Call tsp (d) with $B=C$ and $d i j=C+1$;
- 4: if "no" then
- 5: Restore dij to old value; \{Edge [$\mathrm{i}, \mathrm{j}]$ is critical.\}
- 6: end if
- 7: end for
- 8: return the tour with edges whose dij $\leq \mathrm{C}$;

Analysis

- An edge that is not on any optimal tour will be eliminated, with its dij set to $C+1$.
- An edge which is not on all remaining optimal tours will also be eliminated.
- So the algorithm ends with n edges which are not eliminated.
- There are $\mathrm{O}\left(|x|+n^{2}\right)$ calls to the algorithm for tsp (d).
- So if tsp (d) can be solved in polynomial time, so can tsp.
- Hence tsp (d) and tsp are equally hard (or easy).

FNP and FP

- L € NP iff there exists poly-time computable $R_{L}(x, y)$ s.t.

$$
x \in L \Leftrightarrow y\left\{|y| \leq p(|x|) \& R_{L}(x, y)\right\}
$$

- Note how R_{L} defines the problem-language L
- The corresponding search problem $\Pi_{R(L)} €$ FNP is: given an x find any y s.t. $R_{L}(x, y)$ and reply "no" if none exist
- Are all FNP problems self-reducible like FSAT? [open?]
- FP is the subclass of FNP where we only consider problems for which a poly-time algorithm is known

FP <?> FNP

- A proof a-la-Cook shows that FSAT is FNPcomplete
- Hence, if FSAT E FP then FNP = FP
- But we showed self-reducibility for SAT, so the theorem follows:
- Theorem: FP = FNP iff P=NP
- What happens if the relation R is total?
i.e., for each x there is at least one y s.t. $R(x, y)$
- Define TFNP to be the subclass of FNP where the relation R is total
- TFNP contains problems that always have a solution, e.g. factoring, fix-point theorems, graph-theoretic problems, ...
- How do we know a solution exists?

By an "inefficient proof of existence", i.e. non-(efficiently)-constructive proof

- The idea is to categorize the problems in TFNP based on the type of inefficient argument that guarantees theeir solution

Properties of TFNP

$F P \subseteq T F N P \subseteq F N P$

2. $\mathrm{TFNP}=\mathrm{F}(\mathrm{NP} \cap \mathrm{coNP})$

- NP = problems with "yes" certificate y s.t. $R_{1}(x, y)$
- coNP = problems with "no" certificate z s.t. $R_{2}(x, y)$
- for TFNP $F(N P \cap \operatorname{coNP})$ take $R=R_{1} \cup R_{2}$ for $F(N P \cap \operatorname{coNP})$ TFNP take $R_{1}=R$ and $R_{2}=\varnothing$

3. There is an FNP-complete problem in TFNP iff NP = coNP

- \rightarrow : If NP = coNP then trivially FNP = TFNP
- \&: If the FNP-complete problem Π_{R} is in TFNP then: FSAT reduces to Π_{R} via f and g, hence any unsatisfiable formula φ has a "no" certificate y, s.t. $R(f(\varphi), y)$ (y exists since Π_{R} is in TFNP) and $g(y)=$ "no"

4. TFNP is a semantic complexity class \rightarrow no complete problems!

- note how telling whether a relation is total is undecidable (and not even RE!!)

ANOTHER HC is in TFNP

- Thm: any graph with odd degrees has an even number of HC through edge xy
- Proof Idea:
- take a HC
- remove edge $(1,2)$ \& take a HP
- fix endpoint 1 and start "rotating" from the other end
- each HP has two "valid" neighbors ($\mathrm{d}=3$) except for those paths with endpoints 1,2

