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Frugal Path Auctions
A problem of finding frugal mechanism

To buy an inexpensive s-t path

Each edge is owned by a selfish agent.

The cost of an edge is known to its owner only.

Goal: to investigate the payments the buyer to get a path

A possible solution: VCG mechanism, which pays a premium to
induce the edges to reveal their costs truthfully

Goal: to design a mechanism that selects a path and induces truthful
cost revelation without paying such a high premium
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Frugality

Ordinary Vickrey procurement auction: frugal?

* If there is tight competition

VCG shortest path mechanism: frugal?

* NO!

� Some Instances: Mechanism pays Θ(n) times the actual cost of path,
even if there is an alternate path available that costs only (1 + ε)
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Frugality

We want to design mechanisms that AVOID LARGE OVERPAYMENTS!
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Reasonable Mechanism Properties

Path Autonomy: Given any b−P bids of all edges outside P, there is a
bid bP such that P will be chosen

Edge Autonomy: For any edge e, given the bids of the other edges, e
has a high enough bid that will ensure that no path using e will not
win

Independence: If path P wins, and an edge e /∈ P raises its bid, then
P will still win

Sensitivity: Let P wins and Q is tied with P. Then increasing be for
any e ∈ P − Q or decreasing be for any e ∈ Q − P cause P to lose

Definition

Assume path P wins. if there is an edge e such that arbitrarily small
change in e’s bid cause another path Q to win. Then P and Q are tied.
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Min Function Mechanisms

Definition

A mechanism is called a Min Function Mechanism function if it defines for
every s-t path P, a positive real valued function fP of the vector of bids
bP , such that:

fP(bP) is continuous and strictly increasing in be , ∀e ∈ P

The mechanism selects the path with lowest fP(bP)

limbe→∞ fP(bP) =∞, ∀e ∈ P

limbP→0 fP(bP) = 0

* Note: Mechanism evaluates each function & select the path with the
lowest function value

* A mechanism is truthful only if it has the thresold property
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Min Function Mechanisms

Theorem

The min function path selection rule yields a truthful mechanism
Proof Sketch:

Path selection rule is monotone: if P is currently winning & edge e /∈ P,
then fP(bP) is the minimum function value. Raising be & e ∈ Q ⇒ Raising
fQ(bQ)⇒ Q loses

Every edge in the winning path has a threshold bid: e /∈ P, fP is minimum,
and Tbe the largest bid, e ∈ Q, beyond T ⇒ P wins

Theorem

Min function mechanism satisfies the edge and path autonomy,
independence and sensitivity property
Proof Sketch:
P.A: follows from limbP→0 fP(bP) = 0 with positive values
E.A: follows from limbe→∞ fP(bP) =∞ with increasing functions
Ind: follows from fP are strictly increasing & unaffected by edges not on P

Sens: follows from fP(bP) is continuous and strictly increasing
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Characterization Results

Theorem

If a graph G contains the edge s-t, then any truthful mechanism for the s-t
path selection problem on G that satisfies the independence, sensitivity
and edge and path autonomy properties is a min function mechanism

Theorem

If a graph G consists of some connected graph including nodes s and t,
plus two extra s-t path that are disjoint from the rest of graph, then any
truthful mechanism for the s-t path selection problem on G that satisfies
the independence, sensitivity and edge and path autonomy properties
is a min function mechanism
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Costly Example for Min-Function Mechanisms

Let L cost of the winning path and k=]edges

Let biP vector of bids along P and each edge bid L
|P| , except i-th bids

L
|P| + εL. Similarly, the bids of path Q.

w.l.o.g fQ(b1Q) = max
{
fP(b1P), ..., fP(b

|P|
P ), ..., fQ(b1Q), ..., fQ(b

|Q|
Q )
}

If P bids b0P and Q bids b1Q ⇒ P wins

Threshold bid ∀e in P: Te ≥ L
|P| + εL, the total payment is L(1 + |P|ε)

Theorem

Any truthful mechanism on a graph that contains either an s-t arc or
three node disjoint s-t paths and satisfies the independence, sensitivity and
edge and path autonomy properties can be forced to pay L(1 + kε), where
the winning path has k edges and costs L, even if there is some
node-disjoint path of cost L(1 + ε)

* Note: Min-Function Mechanisms have bad behavior as VCG
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Extention by Elkind et al.

Every truthful mechanism can be forced to overpay just as hardly as
VCG in the worst case

Extend the non-frugality result of previous theorem to all graphs and
without assuming the mechanism has the desired properties

A commonly known probability distribution on edge costs:
Bayes-Nash Equilibrium

Theorem

For any L, e > 0, there are bid vectors bP , bQ such that bP = L,
bQ = L + ε and the total payment is at least L + ε

2 min(n1, n2), where
n1 = |P| and |Q| = n2
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Results

Min-Function Mechanisms have bad behavior as VCG

An exceptional mechanism is truthful mechanism and satisfies the
desired properties (edge, path autonomy, independence and
sensitivity), but is not min function mechanism
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Budget Feasible Mechanisms

Model (Singer 2010)

There are n agents a1, ..., an

Each agent has a private cost ci ∈ R+ for selling a unique item

There is a buyer with a budget B ∈ R+

A demand valuation function V : 2[n] → R+

. A mechanism is budget feasible if the payments it makes to agents do
not exceed the budget

. Goal: to design an incentive compatible budget feasible mechanism
which yields the largest value possible to the buyer:

maximize V(S)

while
∑
i∈S

ci ≤ B
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Budget Feasible Mechanisms

Goals

1 Computation Efficient Mechanism

2 Truthful Mechanism

3 Budget Feasible Mechanism

4 a-approximate Mechanism

Examples:

* Knapsack: find a subset of items S which maximizes
∑
i∈S

vi under Budget

* Matching: find a legal matching S which maximizes
∑
e∈S

ve under Budget

* Coverage: find a subset S which maximizes
⋃

i∈S Ti under Budget
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BFM - Question

? Which utility functions have budget feasible mechanisms with
reasonable approximation guarantee

* Result: For any monotone submodular function there exists a
randomized truthful budget feasible mechanism that has a constant
factor approximation

� This result is developed by proportional share mechanisms
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Proportional Share Allocation
Proportional share mechanism: shares the budget among agents
proportionally to their contributions.

Sort: c1 ≤ c2 ≤ ...cn
Allocate: ck ≤

B

k
Set allocated: fM = {1, 2, ..., k}

For every agent, payment: min

{
B

k
, ck+1

}
Then, summing over the payments that support truthfulness satisfies the
budget constraint.

Theorem

For f (S) = |S | the mechanism is a 2-approximation

Theorem

For f (S) = |S |, no budget feasible mechanism can guarantee an
approximation ratio better than 2
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General Submodular Functions

Nondecreasing submodular utility functions (taking computation
limitations into account)

May require exponential data to represented ⇒ the buyer has access
to a value oracle (given a query S ⊆ [n] returns V (S))

Marginal contribution of agent i: Vi |S := V (S ∪ i)− V (S)

V (S) =
∑
i≤k

Vi

Sort:
V1

c1
≥ V2

c2
≥ ... ≥ Vn

cn

Allocate: ci ≤
B · Vi

V (Si )

For every agent, payment: min

{
B · Vi

V (Si )
,
Vi · ck+1

Vk+1

}
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Charecterizing Threshold Payments

Definition

The marginal contribution of agent i at point j is

Vi(j) = V (Tj−1 ∪ {i})− V (Tj−1)

where Tj denotes the subset of the first j agents in the marginal
contribution-per-cost sorting over the subset N \ {i}

Lemma (Payment Characterization)

The threshold payment for fM is max
j∈[k+1]

{
min{ci(j), ρi(j)}

}
cj ≤

V ′j · B
V (Tj)

ci(j) =
Vi(j) · cj

V ′j
(Agent i appears in the jth position)

ρi(j) =
Vi(j) · B

V (Tj−1 ∪ {i})
(Agent i is allocated at stage j)
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Budget Feasible Mechanisms

Theorem

For any monotone submodular function there exist a randomized
universally truthful budget feasible mechanism with a constant factor
approximation ratio. Also, no budget feasible mechanism can do better
that 2− ε for any fixed ε > 0

Universally truthful: randomization between truthful mechanisms

Constant factor ≈ 117, 7

* Knapsack: 5-aproximation budget feasible mechanism

* Matching: (
5e − 1

e − 1
)- aproximation budget feasible mechanism

* Coverage; fails

19/30



Budget Feasible Mechanisms - Open Questions

? Constant factor approximation for subadditive functions using
demand queries

? Other classes of functions have budget feasible mechanisms

? Budget feasible mechanisms that are not based on proportional share
mechanisms
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Learning on a Budget: Posted Price Mechanisms

Online procurement markets

Mechanism makes agents ”take-it-or-leave-it” offers

Agents are drawn sequentially from an unknown distribution
(describes the costs)

For agent i the mechanism posts a price pi

If pi ≥ ci ⇒ agent accepts & buyer receives the item

Technical Challenge: to learn enough about distribution under the
budget

* High offers ⇒ exhaust Budget
* Low offers ⇒ exhaust Pool of Agents
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Learning on a Budget: Posted Price Mechanisms

Model (BKS 2012)

There are n agents a1, ..., an

Each agent has a private cost ci ∈ R+ for selling a unique item

There is a buyer with a budget B ∈ R+

A demand valuation function V : 2[n] → R+

Online arrival of agents

Exist n different time steps: in each step i ∈ [n] a single agent appears

Mechanism makes a decision: based on the information it has about
the agent & the history of the previous i − 1 stages

How the order of agents is determined?
1 Adversarial model
2 Secretary model
3 i.i.d model

22/30



Learning on a Budget: Posted Price Mechanisms

Theorem

For any nondecreasing submodular procurement market there is a
randomized posted price budget feasible mechanism which is universally
truthful and is O(log n)-competitive

Idea

Choose τ ∈ [0, n] agents

Finds the agent with the highest value: v ′ = max{ai :i≤τ} f (ai )

Estimate: t = g(v ′)

For each a ∈ N\ {a1, ..., aτ}
I Offer the agent p = B

t · (f (S ∪ {a})− f (S))
I If a accepts, add it to S & set B ′ = B ′ − p

* Combine with Dynkin’s algorithm (secretary problem)
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More Results

Theorem

For the case of f (S) = |S |. The utility function f is a symmetric
submodular function. The algorithm is constant-competitive when agents
are identically distributed. In fact, with probability at least 1/2, the
number of offers accepted is at least c · (B/pl)

Theorem

In the bidding model, for any nondecreasing submodular utility function
there is a universally truthful budget feasible mechanism which is
O(1)-competitive
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Learning on a Budget: Posted Price Mechanisms -
Open Question

? There exists a O(1)-competitive posted price mechanism in the
nonsymmetric submodular case
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