Algorithmic Game Theory
-~ CoRelLab (NTUA)

Lecture 3:

Tractability of Nash Equ111br1a
PPAD completeness

Lemke-Howson algorithm

LMM



"NEin 2-player zero sum LP Duality
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Nash’s Theorem (1950) |
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Brouwer's Teorem (1911)
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Sperner’s Lemma (1950)

Parity Argument (1990)



What we know

Sperner

Brouwer

3 \Nash '

FNP



General 2~player games
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A slightly more ambitious attempt would be to face general 2- player
games and provide efficient algorithms or prove hardness results.

An other direction would be to face 3-player zero sum games....

- but in fact these games can only be harder.(!) -



Nash vs NP
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The problem resisted polynomial algorithms for a long time which
_aItered the research direction towards hardness results.

The first idea would be to prove Nash an FNP-complete problem.

- Butacceptingan FSAT—Nash

reduction directly implies NP=coNP. (!)



Nash vs TENP

What prevented our previous attempt was the fact that Nash problem
always has solution.

So the next idea would be to prove it complete for this class.

But no complete problem is known for TENP.



Complexity Theory of Total Search
Problems
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In order to overcome the obstacles we face we need to work as follows:
1. Identify the combinatorial structure that makes our problems total.
2. Define a new complexity class inspired from our observation.

3. Check the ‘tightness’ of our class — in other words that our prbblems are
complete for the class.



Sperner’s Lemma revisited
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No matter how the
internal nodes are
colored there exists a
tri-chromatic ‘
triangle.

D
@

fC\r\'r\r\r\r\r\

vl
ariaararals

4 4 J

v @ v vV v

i

In fact there will be an
odd number of them.
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Why_Spernehis hard?

We have to work with a graph of exponential

size!
Input: 2 n-bit A
numbers  a— Circuit yes/no

s - = - = - ———— SR e e 5



Proof of Sperner’s Lemma

e = x = = - — — Aah s SLTRS e £

1. We introduce an ) O O | —0—0—0-09
artificial vertex on \\\ \\
the bottom left (\:)\8\9\;;\ _: Q—@
B e—0— 0 0 ) = Claim:The walk can't
N\ B2 b get out nor can it
2. We define a C N \tJ\Q loop into itself
directed walk C 50— —0—0 '
crossing red-yellow & &&\ = \\x)
doors having red on T T 1 * |t follows that there
our left (x&\ &'»\&\ %\\’:\Q is an odd number of
N - ;\/\ : | ;\f\ ) tl’i-Chrom'atiC
._>{. . \\\‘\‘ = triangles
—@
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Parity Argument

Graph Representation

Every vertex
has in and out

degree at most

1

Each vertex
with degree 1 is
an acceptable
solution
(except the
artificial one)

=

ey
o=
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By the parity
argument there is .
always an even
number of
solutions

Notice that if we
insist in finding
the pair of our
green node the
problem is
beyond FNP!’



The PPAD Class [Papadimitriou *94]
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. '_father
node id — —snode id V)= vt =,
o
node id — —> node id B
child
END OF THE e Given F and C: If 0" i1s an unbalanced node, find
LINE ~another unbalanced node. Otherwise say “yes”.

PPAD = { Search problems in FNP reducible to END OF THE LINE}



What we know

FNP — NP=coNP

_ TFNP—Semantic

PPAD

<1

Sperner

<%

Brouwer

one




2-Nash PPAD-complete
[Daskalakls Goldberg,Papadlmltrlou 2@06]
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[DGP *05] ‘ e —)
[DGP *05] |
mbed PPAD : 371
Generic PPAD graph in [0,1]3 - 3D-SPERNER

[DGP ’05] [DGP °0




Arithmetic Circuit Sat
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* Input A circuit with :

® Varlable nodes xl,xz,-...

oGatenodesgl,gz,. ,gme{# 6&&&}

o Directed edges connecting varlablfe\thh gates and vice versa (loops are allowed)

= Qutput An assignment of values x4, x5, ..., X, € [0,1] satisfying the gate
constraints:

Assignment: y == xll Settoconst: y == max{0, min{a, 1}}
Addition:  y == min{1,x; + x;} Multiply const: y == max{0, min{ax, 1}}

Subtraction : y == max{0, x; — x,}



Arithmetic Circuit Sat

COmpariS'Oh gate: s n Example =
s s
_ 11 if x1>x,
y==<0, ifx1<x2
o lf X1 = X Unique solution:

i 1
x1=x2=X3=§




ArithmetiC'CircuitSat

S S

= We cangetan approxmate version ofArlthmetlc Circuit Sat by relaxmg the gate
constraints by € = 0:

Assignmenit Y == Xl o ~ Settoconst: y == max{0, min{a, 1}} (g
Addition: y==min{l,x; +x,} € Multiply const: y == max{0, min{ax, 1}} + ¢
Subtraction : y == max{0, x1 Xy}t € Comparison gatAe: |

(1, if x1>x,—€

= v




Graphical'Games
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* Players are nodesin a dlrected graph.
-* The player’s payoff u; depends on her strategy as well as
the strategies of the players pointing to her.




PolymatriX'Gémes
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- Special case ofGraph‘icaI'Games..
 Payoffis edge-wise separable:

uv(Xi: xz" ---:xn) == z uw,v(xw'xv) |

(w,v)EE




Arithmetic Circuit Sat === Polymatrix Game

e —————

~* Inordertoreduce Arithmetic Circuit Sat to Polymatrix
Games, we will present polymatrix gadgets which
simulate the arithmetic functions of the circuit.

. A‘Eve-ry player chooses her strategy from {0,1}.

* Forevery player p, representing a variable node xp,
Pr[p: 1] represents the value of x;,.

~* Finally, every Nash Equilibrium can be translated to a
feasible solution of Arithmetic Circuit Sat.

e ————— == = e



‘Arithmetic Circuit Sat —} Polymatrix Game '
Addition Gadget :

—— = =S = - —_—— - _— =

Variable nodes

u(w:0) = Pr[x: 1] + Pr[y.: 1_]‘

| u(w:1) = Pr[z:1]

u(z:0) = 0.5

u(z:1) =1 — Pr[w: 1]

In ahy Nash equilibrium of a galme containing this
Gadget Pr[z: 1] = min{1, Pr[x: 1] + Pr[y: 1]}



Arithmetic Circuit Sat mss) Polymatrix Game
Addition Gadget

N . — - ——

= u(w:0) = Pr[x: 1] + Pr[y: 1] : u(z:0) = 0.5

| u(w: 1) = Prlz:1] = ’ u(z:1) = 1 — Pr[w: 1]

e Pr[z:1] < min{1, Pr[x: 1] + Pr[y: 1]} =Pr[w:0] = 1 = Pz B =1

e Pr[z:1] > Pr[x:1] + Pr[y:1] = Prjw:1] =1 = Pr[z:0] = 1

Pr[z: 1] = min{1, Pr[x: 1] + Pr[y: 1]}




Arithmetic Circuit Sat = Polymatrix Game
Comparison Gadget

Variable nodes

u(z:0) = Pr[y: 1]

u(z: 1) = Pr[x:1]

Pr[x: 1]-> Priy:1] = Pr[z: TRt
PPl 1= Pl 110

- Pr[x:1] = Pr[y: 1] anything is pOSSi.b|e



From Polymatrix Game to 2-player Game
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" Variable nodes

Every gadget can be turned into a bipartite
graph with variable node-players sharing the

- same side and | on the
other.

~ We define a 2-player game where the yellow
lawyer represents all the yellow players and
similarly the represents all the




The Lawyer Game

Our goal :

If (x,y) is a Nash Equilibrium for the Lawyer Game, then the marginal distributions
- that x assigns to the strategies of the yellow nodes and the marginal distributions
that y assigns to the red nodes comprise a Nash Equilibrium in the Polymatrix Game.

In order to analyze the Lawyer Game we will first define and analyze
two games, that combined will give us the appropriate game.



Breaking down the Lawyer Game

= The Representation Game:

The set of strategies for the
yellow lawyer is the union of the
- strategies of every yellow node.
The same goes for the

The payoff for the lawyers is the
payoff that their clients would
had gotten had they played the
same strategies themselves.

— - : ——— : e D T s T

* The High Stakes Chase

The sets of strategies remain the
same.

Image an arbitrary labelling
{1,..,n} forthe yellow clients

and a respective labelling

~ forthe

Whenever both lawyers get to
pick the same label, the
pays M to the yellow.

Otherwise they both get 0.



The Lawyer Game
The High Stakes Chase

Strategies of
red node i

Strategies
of yellow
node j

It is easy to see that the High Stake
Chase is a zero-sum game where in
every NE the lawyers play uniformly
over their clients.

— - : ——— : e e T s :

Given this observation we could claim

Proposition 1: -

Taking M arbitrarily big would essentially lead the
lawyers to play with probability (approximately)
1/n each of their clients in the Combined Game!

(We no longer have to worry about our marginal
distributions being ill-defined) .



The Lawyer Game
The Representation Game

—————— o —

———— = - ——

On the other hand if both lawyers play uniformly over their clients, the way that the
probability is split among each client’s strategies will not affect the High Stakes Game.

The.split will be solely determined by the Representation Game and this directly implies
that our marginal distributions are indeed a NE for the Polymatrix Game.

Notice that we are being a little bit inaccurate as Proposition 1 holds up to an error,

but the sketch remains the same and the error can be accommodated by the ’

Apprbximate Arithmetic Circuit Sat!




PPAD‘completéness of 2-Nash

TENP




Arguments of existence and

respective complexity classes
PPA[Papadlmltrlou 294 |
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'If a node has odd degree then there must be an other.

n-bit Zr'T-bit
input e _output
l \ _ v1 EN(U,) & u, € N(uy)
node id — { node id, , node id,} ./’J
_ ‘ ' 2

ODD DEGREE NODE — Given N:If 0" has odd degree, find another node
with odd degree. Otherwise say “yes”.

PPA = { Search problems in FNP reducible to ODD DEGREE NODE }



PPA

Graph Representation

{om

E——

Exponentially large graph

Every node has degree at
most 2



PLS [JIPY “89]

E————

‘Every DAG must have a sink.’

= |ocal Max Cut is a well known PLS-complete problem.

= Spoiler! PNE in Congestion Games is also PLS-complete.



PLS [JPY 89]
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DIt ‘Every DAG must have a sink.’
input , .

‘/)/// output

node id — {node id,, ..., node id,}

v, = N(vy) &V (v3) > V(V1),

s _ : : ‘
: | V9.
node id — R oo | i ./ s
: : U1

FIND SINK — Given N, V: Findx s.t. V(x) = V(y),forally e‘N(x)‘..

PLS = { search problems in FNP reducible to FIND SINK }



PLS

Graph Representation

/ Exponentially large directed
~acyclic graph




PPP

— = e = - e —————

“If a function maps n elements to n-1-elements, then there is a collision.”’

node id —» node id

COLLISION — Given F: Find x s.t. F(x)= 0" or find x # y s.t. F(x)=F(y).

PPP={ Search problems in FNP reducible to COLLISION }



Inclusions

FNP

PLS PPP PPA




2 —player ‘Symmetr*ic Games
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A bimatix game represented by two matrices (4, B) is called Symmetric if
B = AT (i.e., the two players have the same set of strategies and thelr
ut|I|t|es remain the same if their roles are reversed).

A strategy profile x is a Symmetric Nash EqU|I|br|um if both players playing x
results in a Nash EqU|I|br|um

Looking at Symmetric Games is no loss of generality!




Reduction‘fhom Nash to Symmetric Nash

e —————

= — —————

Fix any bimatrix game represented by the matrices 4, B (w.l.0.g. with positive entrles).

Now con5|der the Symmetric Game defined by the matrices below:

s 0 A Ex

BT 0 }y

Let (x, y) be a Symmetric NE.

Y

X
0

AT

S| ™

In order (x,y) to be a best response to itself, x must be a best response to y and

vice versa.



Lemke—Howsoh

———— = - —

= Fixany Symmetric Game with an, n X n, utility matrix A.
* W.l.o.g. assume non negative entries and no zero column or raw.

" ConSIder the (non degenerate) polytope P deflned by the following

inequalities:
z=0

Az <1 ()



Lemke-Howson

This vertex represents every strategy
It follows that here we get a SNE

~ . =

A strategy i is represented at vertex z if -
z;=0 or A;jz=1 orboth.

Define set V with all the vertices of P that
represent every strategy except possibly
strategy n

Any vertex (other than 0) at which all
strategies are represented is.a NE.

In order to find such a vertex we shall
develop a (simplex-like) pivoting method
beginning at vertex 0 and ending at a SNE.



Lemke-Howsoh.
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Vop—

| Choose next inequality to

.

relax

P PR P PR B PR

{7 e

Choose next inequality to relax

e

2 -0 Bl -0 B - -0 B - -0 B

Symmetric Nash
Equilibrium!



Lemke—Howsoh
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* Claim the walk can not loop neithercan it reach the 0 vertex.(!)

- = There are exponentially many but finite vertices in P.

It follows that the algorithm halts returning a SNE.

Final remark: Although it may seem like there are no direction in the edges
we define, in fact this algorithm relates to PPAD.




N/

NE in 2-player zero sum © LP Duality

NE in general 2-player games PPAD complete

(Lemke-Howson exponential running time algorithm )

In order to sidestep the probable |ntractab|I|ty of NE we are gomg to relax
our equilibrium concept!



Approximate Nash Equilibrium
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Forany € > 0 a pair of mixed strategies x, y is called an € -Nash equilibrium
i

i For every mixed strategy x’ of the row player, (x', Ay) < (x, Ay) + ¢

ii. Forevery mixed strategy y’ of the column player, (x, By') < (x,By) + ¢




Lipton Markakis Mehta ’03

Main result

E——

(Assuming all entries of 4, B between 0 1)

Forany NE x*,y* and forany : > 0, there exists, forevery k > 12In7n/ ,
palr of k —uniform strategies X5 such that:

1. x!,y' isan &-NE

. | (x', Ay") — (x*, Ay™)| < € (row player gets almost the same payoff as
in the NE)

|(x’,By’) — (x*,By*)| < € (column player gets almost the séme payoff'
as in the NE)




Lipton Markakis Mehta ’03
Proof Sketch via Probabilistic Method
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= Given x*,y%e>0 fix k>12nn/,

* Form multiset X sampling k times mdependently, from the pure strategies of
the row player according to the distribution x* ’
Respectively, form Y from the pure strategies ofthe column player.

* Let x’ be the k —uniform strategy related with multiset X and
y' the k —uniform strategy related with multiset Y.



Lipton Markakis Mehta ’03
Proof Sketch via Probabilistic Method

E——

- Finally consider the foIIowi‘ng events:

o1 = (10, 4y") = (", Ay)| <)

02 = (Ix',BY") — (", By")| <3}

Ty = {(xi,Ay’) = ((x5Ay) el =12...,n) -
= {(x",By’) — (x',By’) < €} (]" =17 -—-n

GOOD = @ N @, N}y T NIy Ty

Goal: Pr[GOOD¢] < 1




Lipton Markakis Mehta ’03
Proof Sketch via Probabilistic Method

In order to bound thé probability of @7 wé define the followin-g :

P10 = {I(x, Ay") = (&%, Ay} < -
&E

01, = {|(x", Ay") = (x', Ay)|} < :

The expression (x', Ay™) is a sum of k independent random variables each of
expected value (x*, Ay™). Each such random variable takes value between 0 and 1.

As a result we can apply Chernoff bounds:
ke?

Prlpia] <2e &

ket
and similarly Pripi,] <2e s

ke?

P1a NP1p E @1 = Prlei] < PrlppU @1,] < 4e &

K — ————— = — — S



Lipton Markakis Mehta ’03
Proof Sketch via Probabilistic Method

———— = - —

Using the same toolbox we get the following bounds:

Pripi] < 4e 8 = 4 Prip5] < 4e 8
ke? ke? _g _k_ez
Pr[nf’i] <4e 8 +2e 2’ Pr[ng,j] = dewatle 2.

n n
Pr(G00D] < Pr(p§] + Prlpg] + ) Pr[ng |+ ) Prnf )]
i=1 s i

(e )
<8e 8 +2n\e 2 +4e s )<1




Lipton Markakis Mehta 203

Subexponential running time & m —player games
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The main result implies the existence of subexponential algorithm (n2(109™)y
. for computing all k —uniform & — equilibria for any 2 —player game(!)

The main result can accommodate m —player games although the
dependence of k to m is polynomial.




Barman’s sparsification technique ‘14
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Applying the approximate version of Caratheodory’s theorem Barman improved
the previous results proving the following statement:

(Assuming all entries of 4, B between 0,1)

In any bimatrix game with n X n matrices 4, B, if the number of non-zero entries
in any column of A + B is at most s then an € —NE can be computed in time

nO(logS/sz)




Anonymous Games
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In Anonymous Games a large population of players shares the same strategy set and,
while players may hav,e'different payoff functions, the payoff of each depends on her
own choice of strategy and the number of the other players playing each strategy
(not the identity of these players).

Canonical example:
500 citizens have to decide either to go to the cinema or to the theatre and they

only care about how crowded it will be.

= i s




Polynomial-Time Approximation Scheme
(PTAS)

A PTAS is an algorith’m which takes an instance of an optimization problem

and a parameter ¢ > 0 and, in polynomial time, produces a solution that is
within afactor 1 + ¢ of being optimal.

Notice that an algorithm running in time O(n ) or even 0(n®PE D) counts as
a PTAS. '



PTAS for Anonymous Games
(Daskalakis, Papadimitriou ’14)

e —————
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There is a PTAS for the mixed Nash equilibrium problem for normalized anonymous
games with a constant number of strategies.

More precisely, there exists some function g such that, forall ¢ > 0, an
¢ -Nash equilibrium of a normalized anonymous game of m players and n strategies
can be computed in time m9M ™).




Wrappling up'

= Computing exact | . belongsin

* Computing exact | IS

= Computing € —NE in general 2 pIayer games accepts subexponential time
algorithms

= Computing € —NE in Anonymous Gamés accepts PTAS algorithms



Thank You!

Sbaod




