Congestion Games

Karousatou Christina

Algor. Game Theory

June 2, 2011

Congestion Games with Player-Specific Payoff Functions The model

The Existence of a Pure-Strategy Nash Equilibrium

Congestion Games with Player-Specific Constants Congestion Games on Parallel Links Arbitrary Congestion Games

Congestion Games with Player-Specific Payoff Functions The model

The Existence of a Pure-Strategy Nash Equilibrium

Congestion Games with Player-Specific Constants
Congestion Games on Parallel Links
Arbitrary Congestion Games

(Unweighted) Congestion Games

- The n players share a common set of r strategies.
- The payoff the *i*th player receives for playing the *j*th strategy S_{ij} is a monotonically nonincreasing function of the total number of players playing the *j*th strategy.
- We denote the strategy played by the *i*th player by σ_i .

The strategy-tuple $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n)$ is a Nash equilibrium iff each σ_i is a best-reply strategy:

 $S_{i\sigma_i}(n_{\sigma_i}) \geq S_{ij}(n_j+1)$

for all i and j. Here $n_j = \#\{1 \le i \le n \mid \sigma_i = j\}$. The strategy-tuple $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n)$ is a Nash equilibrium iff each σ_i is a best-reply strategy:

 $S_{i\sigma_i}(n_{\sigma_i}) \geq S_{ij}(n_j+1)$

for all i and j. Here $n_j = \#\{1 \le i \le n \mid \sigma_i = j\}.$

Theorem

Congestion games involving only two strategies possess the *Finite Improvement Property.*

Congestion Games with Player-Specific Payoff Functions The model

The Existence of a Pure-Strategy Nash Equilibrium

2 Congestion Games with Player-Specific Constants Congestion Games on Parallel Links Arbitrary Congestion Games

Theorem Every (unweighted) congestion game possesses a Nash equilibrium in pure strategies.

Theorem

Every (unweighted) congestion game possesses a Nash equilibrium in pure strategies.

Lemma

(a) If $j(0), j(1), \ldots, j(M)$ is a sequence of strategies, $\sigma(0), \sigma(1), \ldots, \sigma(M)$ is a best-reply improvement path, and $\sigma(k)$ results from the deviation of one player from j(k-1) to j(k) $(k = 1, 2, \ldots, M)$, then $M \leq n$. (b) Similarly, if the deviation in the kth step is from j(k) to j(k-1)

$$(k = 1, 2, \dots, M)$$
, then $M \leq n \cdot (r-1)$.

Proof of Theorem

By induction on the number n of players.

- n = 1 trivial.
- Assume that the theorem holds for all (n-1)-player congestion games.
- We prove it for *n*-player games.
 - We reduce an n-player congestion game \varGamma into an (n-1)-player game $\bar{\varGamma}$ by "deleting" the last player.
 - $\bar{\Gamma}$ is also a congestion game. The payoff functions \bar{S}_{ij} are defined by

$$\bar{S}_{ij}(\bar{n}_j) = S_{ij}(\bar{n}_j)$$

for $1 \le i \le n-1$ and all j, $\bar{n}_j = \#\{1 \le i \le n-1 \mid \sigma_i = j\}$.

- By induction hypothesis, there exists a pure-strategy Nash equilibrium $\bar{\sigma} = (\sigma_1(0), \sigma_2(0), \dots, \sigma_{n-1}(0))$ for $\bar{\Gamma}$.
- Let $\sigma_n(0)$ be a best reply of player n against $\bar{\sigma}$.
- Starting with $j(0) = \sigma_n(0)$, we can find a sequence $j(0), j(1), \ldots, j(M)$ of strategies and a best-reply improvement path $\sigma(0), \sigma(1), \ldots, \sigma(M)$, as in part (a) of the lemma, such that M is maximal.
- Claim: $\sigma(M) = (\sigma_1(M), \sigma_2(M), \dots, \sigma_n(M))$ is an equilibrium.

- Case σ_i(0) ≠ σ_i(M). Strategy σ_i(M) is a best-reply against σ(M), by the proof of the lemma.
- Case $\sigma_i(0) = \sigma_i(M)$.
 - If $\sigma_i(M) = j(M)$, then j(M) is a best reply against $\sigma(M)$, otherwise there is contradiction to the maximality of M.
 - If $\sigma_i(M) \neq j(M)$, then the number of players playing $\sigma_i(M) = \sigma_i(0)$ is the same in $\sigma(M)$ and $\bar{\sigma}$. Note that $S_{i\sigma_i(0)}(\bar{n}_{\sigma_i(0)}) \geq S_{ij}(\bar{n}_j + 1)$ for all *i* and *j*. Also, $n_j(M) \geq \bar{n}_j$ for all *j*.

- Case σ_i(0) ≠ σ_i(M). Strategy σ_i(M) is a best-reply against σ(M), by the proof of the lemma.
- Case σ_i(0) = σ_i(M).
 - If $\sigma_i(M) = j(M)$, then j(M) is a best reply against $\sigma(M)$, otherwise there is contradiction to the maximality of M.
 - If $\sigma_i(M) \neq j(M)$, then the number of players playing $\sigma_i(M) = \sigma_i(0)$ is the same in $\sigma(M)$ and $\bar{\sigma}$. Note that $S_{i\sigma_i(0)}(\bar{n}_{\sigma_i(0)}) \geq S_{ij}(\bar{n}_j + 1)$ for all *i* and *j*. Also, $n_j(M) \geq \bar{n}_j$ for all *j*.

We conclude that $S_{i\sigma_i(M)}(n_{\sigma_i(M)}(M)) \ge S_{ij}(n_j(M)+1)$ for all j, and thus $\sigma_i(M)$ is a best reply for i against $\sigma(M)$. \Box

As a result of the proof of the theorem and the second part of the previous lemma we get the next theorem.

Theorem

Given an arbitrary strategy tuple $\sigma(0)$ in a congestion game Γ , there exists a best-reply improvement path $\sigma(0), \sigma(1), \ldots, \sigma(L)$ such that $\sigma(L)$ is an equilibrium and $L \leq r \cdot \binom{n+1}{2}$.

Congestion Games with Player-Specific Payoff Functions The model

The Existence of a Pure-Strategy Nash Equilibrium

2 Congestion Games with Player-Specific Constants

- Congestion Games on Parallel Links
- Arbitrary Congestion Games

Some Definitions

A weighted congestion game with player specific constants is a weighted congestion game $\Gamma = (n, E, (w_i)_{i \in [n]}, (S_i)_{i \in [n]}, (f_{ie})_{i \in [n], e \in E})$ with player-specific latency functions such that

(i) for each resource $e \in E$, there is a non-decreasing delay function $g_e : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$, and

(*ii*) for each player $i \in [n]$ and a resource $e \in E$, there is a player-specific constant $c_{ie} > 0$, so that for each player $i \in [n]$ and a resource $e \in E$, $f_{ie} = c_{ie} \cdot g_e$.

- A profile is a tuple $s = (s_1, \ldots, s_n) \in S_1 \times \ldots \times S_n$.
- The load $\delta_e(s)$ for the profile s, on resource $e \in E$ is given by $\delta_e(s) = \sum_{i \in [n]|s_i \ni e} w_i$.
- The Individual Cost of a player $i \in [n]$, for the profile s, is given by $IC_i(s) = \sum_{e \in s_i} f_{ie}(\delta_e(s)) = \sum_{e \in s_i} c_{ie} \cdot g_e(\delta_e(s)).$

 \twoheadrightarrow In the unweighted case, $w_i = 1$ for all players $i \in [n]$.

Congestion Games with Player-Specific Payoff Functions The model

The Existence of a Pure-Strategy Nash Equilibrium

Congestion Games with Player-Specific Constants Congestion Games on Parallel Links Arbitrary Congestion Games

Theorem

Every unweighted congestion game with player-specific constants on parallel links has an ordinal potential.

Theorem

Every unweighted congestion game with player-specific constants on parallel links has an ordinal potential.

Proof We will show that function Φ with

$$\Phi(\mathbf{s}) = \prod_{e \in E} \prod_{i=1}^{\delta_e(\mathbf{s})} g_e(i) \cdot \prod_{i=1}^n c_{is_i},$$

for any profile s, is an ordinal potential.

- Fix a profile s.
- Consider an improvement step of player $k \in [n]$ to strategy t_k , which transforms s to t.
- We get $IC_k(s) > IC_k(t) \Leftrightarrow g_{s_k}(\delta_{s_k}(s)) \cdot c_{ks_k} > g_{t_k}(\delta_{t_k}(t)) \cdot c_{kt_k}$.
- $\bullet\,$ Function $\varPhi\,$ with the new profile becomes

$$arPsi_k(t) = arPsi_k(s) \cdot rac{g_{t_k}(\delta_{t_k}(t)) \cdot c_{kt_k}}{g_{s_k}(\delta_{s_k}(s)) \cdot c_{ks_k}}.$$

We know that the value of the fraction is < 1, because of the improvement step. Hence, $\Phi(t) < \Phi(s)$ and Φ is an ordinal potential. \Box

Some extra results

Theorem

There is a weighted congestion game with additive player-specific constants and 3 players on 3 parallel links that does not have the *Finite Best-Reply Property*.

Some extra results

Theorem

There is a weighted congestion game with additive player-specific constants and 3 players on 3 parallel links that does not have the *Finite Best-Reply Property*.

Proof By construction!

Theorem

Let Γ be a weighted congestion game with player-specific latency functions and 3 players on parallel links. If Γ does not have a best-reply cycle

$$\langle l,j,j\rangle \rightarrow \langle l,l,j\rangle \rightarrow \langle k,l,j\rangle \rightarrow \langle k,l,l\rangle \rightarrow \langle k,j,l\rangle \rightarrow \langle l,j,l\rangle \rightarrow \langle l,j,j\rangle$$

(where $l \neq j, j \neq k, l \neq k$ are any three links and $w_1 \geq w_2 \geq w_3$) then Γ has a pure Nash equilibrium.

Theorem

Let Γ be a weighted congestion game with player-specific latency functions and 3 players on parallel links. If Γ does not have a best-reply cycle

$$\langle l,j,j\rangle \rightarrow \langle l,l,j\rangle \rightarrow \langle k,l,j\rangle \rightarrow \langle k,l,l\rangle \rightarrow \langle k,j,l\rangle \rightarrow \langle l,j,l\rangle \rightarrow \langle l,j,j\rangle$$

(where $l \neq j, j \neq k, l \neq k$ are any three links and $w_1 \geq w_2 \geq w_3$) then Γ has a pure Nash equilibrium.

Proof Going over all the cases!

Congestion Games with Player-Specific Payoff Functions The model

The Existence of a Pure-Strategy Nash Equilibrium

2 Congestion Games with Player-Specific Constants

- Congestion Games on Parallel Links
- Arbitrary Congestion Games

We now consider weighted congestion games with player-specific affine latency functions where $f_{ie}(x) = a_e \cdot x + c_{ie}$, $i \in [n]$ and $e \in E$.

We now consider weighted congestion games with player-specific affine latency functions where $f_{ie}(x) = a_e \cdot x + c_{ie}$, $i \in [n]$ and $e \in E$.

Theorem

Every weighted congestion game with player-specific affine latency functions has an ordinal potential.

Proof

We will show that function Φ with

$$\Phi(s) = \sum_{i=1}^{n} \sum_{e \in s_i} w_i \cdot (2 \cdot c_{ie} + a_e \cdot (\delta_e(s) + w_i))$$

for any profile s, is an ordinal potential.

- Fix a profile s.
- Consider an improvement step of player $k \in [n]$ to strategy t_k , which transforms s to t.
- We get $IC_k(s) > IC_k(t) \Leftrightarrow$ $\sum_{e \in s_k} (a_e \cdot \delta_e(s) + c_{ke}) > \sum_{e \in t_k} (a_e \cdot \delta_e(t) + c_{ke}) \Leftrightarrow$ $\sum_{e \in s_k \setminus t_k} (a_e \cdot \delta_e(s) + c_{ke}) > \sum_{e \in t_k \setminus s_k} (a_e \cdot \delta_e(t) + c_{ke}).$
- $\bullet\,$ Function $\varPhi\,$ with the new profile becomes \ldots

$$\begin{split} \varPhi(t) &= \varPhi(s) + \\ & \left(-\sum_{e \in s_k \setminus t_k} w_k \cdot (2 \cdot c_{ke} + a_e \cdot (\delta_e(s) + w_k)) \right) \\ & + \sum_{e \in t_k \setminus s_k} w_k \cdot (2 \cdot c_{ke} + a_e \cdot (\delta_e(t) + w_k)) \\ & - \sum_{i \in [n] \setminus k} \sum_{e \in s_k \setminus t_k} w_i \cdot a_e \cdot w_k \\ & + \sum_{i \in [n] \setminus k} \sum_{e \in t_k \setminus s_k} w_i \cdot a_e \cdot w_k \right) \Leftrightarrow \dots \end{split}$$

$$\begin{split} \varPhi(t) &= \varPhi(s) + \\ & \left(-\sum_{e \in s_k \setminus t_k} w_k \cdot (2 \cdot c_{ke} + a_e \cdot (\delta_e(s) + w_k)) \right) \\ & + \sum_{e \in t_k \setminus s_k} w_k \cdot (2 \cdot c_{ke} + a_e \cdot (\delta_e(t) + w_k)) \\ & - w_k \cdot \sum_{e \in s_k \setminus t_k} a_e \cdot (\delta_e(s) - w_k) \\ & + w_k \cdot \sum_{e \in t_k \setminus s_k} a_e \cdot (\delta_e(t) - w_k)) \Leftrightarrow \dots \end{split}$$

$$egin{aligned} \Phi(t) &= \Phi(s) + \ &ig(-2 \cdot w_k \cdot \sum_{e \in s_k \setminus t_k} c_{ke} + a_e \cdot \delta_e(s) \ &+ 2 \cdot w_k \cdot \sum_{e \in t_k \setminus s_k} c_{ke} + a_e \cdot \delta_e(t) \end{pmatrix} \end{aligned}$$

We know that the value of the parenthesis is < 0, because of the impovement step. Hence, $\Phi(t) < \Phi(s)$ and Φ is an ordinal potential. \Box