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Congestion Games with Player-Specific Payoff Functions The model

(Unweighted) Congestion Games

The n players share a common set of r strategies.

The payoff the ith player receives for playing the jth strategy Sij is
a monotonically nonincreasing function of the total number of
players playing the jth strategy.

We denote the strategy played by the ith player by σi.
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Congestion Games with Player-Specific Payoff Functions The model

The strategy-tuple σ = (σ, σ, . . . , σn) is a Nash equilibrium iff each σi
is a best-reply strategy:

Siσi(nσi) ≥ Sij(nj + 1)

for all i and j.
Here nj = #{1 ≤ i ≤ n | σi = j}.

Theorem
Congestion games involving only two strategies possess the Finite
Improvement Property.
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Congestion Games with Player-Specific Payoff Functions The Existence of a Pure-Strategy Nash Equilibrium

Theorem
Every (unweighted) congestion game possesses a Nash equilibrium in
pure strategies.

Lemma
(a) If j(0), j(1), . . . , j(M) is a sequence of strategies,
σ(0), σ(1), . . . , σ(M) is a best-reply improvement path, and σ(k) results
from the deviation of one player from j(k− 1) to j(k) (k = 1, 2, . . . ,M),
then M ≤ n.
(b) Similarly, if the deviation in the kth step is from j(k) to j(k − 1)
(k = 1, 2, . . . ,M), then M ≤ n · (r − 1).
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Congestion Games with Player-Specific Payoff Functions The Existence of a Pure-Strategy Nash Equilibrium

Proof of Theorem
By induction on the number n of players.

n = 1 trivial.

Assume that the theorem holds for all (n− 1)-player congestion
games.

We prove it for n-player games.

We reduce an n-player congestion game Γ into an (n− 1)-player
game Γ̄ by ”deleting” the last player.
Γ̄ is also a congestion game. The payoff functions S̄ij are defined by

S̄ij(n̄j) = Sij(n̄j)

for 1 ≤ i ≤ n− 1 and all j, n̄j = #{1 ≤ i ≤ n− 1 | σi = j}.
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Congestion Games with Player-Specific Payoff Functions The Existence of a Pure-Strategy Nash Equilibrium

Proof contd.

By induction hypothesis, there exists a pure-strategy Nash
equilibrium σ̄ = (σ1(0), σ2(0), . . . , σn−1(0)) for Γ̄ .

Let σn(0) be a best reply of player n against σ̄.

Starting with j(0) = σn(0), we can find a sequence
j(0), j(1), . . . , j(M) of strategies and a best-reply improvement
path σ(0), σ(1), . . . , σ(M), as in part (a) of the lemma, such that
M is maximal.

Claim: σ(M) = (σ1(M), σ2(M), . . . , σn(M)) is an equilibrium.
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Congestion Games with Player-Specific Payoff Functions The Existence of a Pure-Strategy Nash Equilibrium

Proof contd.

Case σi(0) 6= σi(M). Strategy σi(M) is a best-reply against σ(M),
by the proof of the lemma.

Case σi(0) = σi(M).

If σi(M) = j(M), then j(M) is a best reply against σ(M), otherwise
there is contradiction to the maximality of M .
If σi(M) 6= j(M), then the number of players playing σi(M) = σi(0)
is the same in σ(M) and σ̄. Note that Siσi(0)(n̄σi(0)) ≥ Sij(n̄j + 1)

for all i and j. Also, nj(M) ≥ n̄j for all j.

We conclude that Siσi(M)(nσi(M)(M)) ≥ Sij(nj(M) + 1) for all j, and
thus σi(M) is a best reply for i against σ(M). �
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Congestion Games with Player-Specific Payoff Functions The Existence of a Pure-Strategy Nash Equilibrium

As a result of the proof of the theorem and the second part of the
previous lemma we get the next theorem.

Theorem
Given an arbitrary strategy tuple σ(0) in a congestion game Γ , there
exists a best-reply improvement path σ(0), σ(1), . . . , σ(L) such that
σ(L) is an equilibrium and L ≤ r ·

(
n+1

2

)
.
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Congestion Games with Player-Specific Constants

Some Definitions
A weighted congestion game with player specific constants is a weighted
congestion game Γ = (n,E, (wi)i∈[n], (Si)i∈[n], (fie)i∈[n],e∈E) with
player-specific latency functions such that

(i) for each resource e ∈ E, there is a non-decreasing delay function
ge : R>0 → R>0, and

(ii) for each player i ∈ [n] and a resource e ∈ E, there is a player-specific
constant cie > 0, so that for each player i ∈ [n] and a resource e ∈ E,
fie = cie · ge.
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Congestion Games with Player-Specific Constants

A profile is a tuple s = (s1, . . . , sn) ∈ S1 × . . .× Sn.

The load δe(s) for the profile s, on resource e ∈ E is given by
δe(s) =

∑
i∈[n]|si3ewi.

The Individual Cost of a player i ∈ [n], for the profile s, is given by
ICi(s) =

∑
e∈si fie(δe(s)) =

∑
e∈si cie · ge(δe(s)).

� In the unweighted case, wi = 1 for all players i ∈ [n].
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Congestion Games with Player-Specific Constants Congestion Games on Parallel Links

Theorem
Every unweighted congestion game with player-specific constants on
parallel links has an ordinal potential.

Proof
We will show that function Φ with

Φ(s) =
∏
e∈E

δe(s)∏
i=1

ge(i) ·
n∏
i=1

cisi ,

for any profile s, is an ordinal potential.
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Congestion Games with Player-Specific Constants Congestion Games on Parallel Links

Proof (contd.)

Fix a profile s.

Consider an improvement step of player k ∈ [n] to strategy tk,
which transforms s to t.

We get ICk(s) > ICk(t)⇔ gsk(δsk(s)) · cksk > gtk(δtk(t)) · cktk .

Function Φ with the new profile becomes

Φ(t) = Φ(s) · gtk(δtk(t)) · cktk
gsk(δsk(s)) · cksk

.

We know that the value of the fraction is < 1, because of the
improvement step. Hence, Φ(t) < Φ(s) and Φ is an ordinal potential. �
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Congestion Games with Player-Specific Constants Congestion Games on Parallel Links

Some extra results

Theorem
There is a weighted congestion game with additive player-specific
constants and 3 players on 3 parallel links that does not have the Finite
Best-Reply Property.

Proof
By construction!
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Congestion Games with Player-Specific Constants Congestion Games on Parallel Links

Theorem
Let Γ be a weighted congestion game with player-specific latency
functions and 3 players on parallel links. If Γ does not have a best-reply
cycle

〈l, j, j〉 → 〈l, l, j〉 → 〈k, l, j〉 → 〈k, l, l〉 → 〈k, j, l〉 → 〈l, j, l〉 → 〈l, j, j〉

(where l 6= j, j 6= k, l 6= k are any three links and w1 ≥ w2 ≥ w3) then Γ
has a pure Nash equilibrium.

Proof
Going over all the cases!
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Congestion Games with Player-Specific Constants Arbitrary Congestion Games

We now consider weighted congestion games with player-specific affine
latency functions where fie(x) = ae · x+ cie, i ∈ [n] and e ∈ E.

Theorem
Every weighted congestion game with player-specific affine latency
functions has an ordinal potential.

Proof
We will show that function Φ with

Φ(s) =
n∑
i=1

∑
e∈si

wi · (2 · cie + ae · (δe(s) + wi))

for any profile s, is an ordinal potential.
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Congestion Games with Player-Specific Constants Arbitrary Congestion Games

Proof contd.

Fix a profile s.

Consider an improvement step of player k ∈ [n] to strategy tk,
which transforms s to t.

We get ICk(s) > ICk(t)⇔∑
e∈sk(ae · δe(s) + cke) >

∑
e∈tk(ae · δe(t) + cke)⇔∑

e∈sk\tk(ae · δe(s) + cke) >
∑

e∈tk\sk(ae · δe(t) + cke).

Function Φ with the new profile becomes . . .
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Congestion Games with Player-Specific Constants Arbitrary Congestion Games

Proof contd.

Φ(t) = Φ(s)+(
−
∑

e∈sk\tk wk · (2 · cke + ae · (δe(s) + wk))

+
∑

e∈tk\sk wk · (2 · cke + ae · (δe(t) + wk))

−
∑

i∈[n]\k
∑

e∈sk\tk wi · ae · wk

+
∑

i∈[n]\k
∑

e∈tk\sk wi · ae · wk
)
⇔ . . .
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Congestion Games with Player-Specific Constants Arbitrary Congestion Games

Proof contd.

Φ(t) = Φ(s)+(
−
∑

e∈sk\tk wk · (2 · cke + ae · (δe(s) + wk))

+
∑

e∈tk\sk wk · (2 · cke + ae · (δe(t) + wk))

−wk ·
∑

e∈sk\tk ae · (δe(s)− wk)

+wk ·
∑

e∈tk\sk ae · (δe(t)− wk)
)
⇔ . . .
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Congestion Games with Player-Specific Constants Arbitrary Congestion Games

Proof contd.

Φ(t) = Φ(s)+(
− 2 · wk ·

∑
e∈sk\tk cke + ae · δe(s)

+2 · wk ·
∑

e∈tk\sk cke + ae · δe(t)
)

We know that the value of the parenthesis is < 0, because of the
impovement step. Hence, Φ(t) < Φ(s) and Φ is an ordinal potential. �
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